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A. Discussion of Assumptions

In this section, we prove that the combinatorial semi-bandit and the cascading bandit satisfy Assumptions 1 and 2 proposed
in Section 5.

A.1. Combinatorial Semi-Bandits

Notice that in a combinatorial semi-bandit, the action a = (a1, . . . , aK), and
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where the last quality follows from the fact that all nodes in a combinatorial semi-bandit is observed, and hence
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A.2. Cascading Bandits

For a cascading bandit, the action is a = (a1, . . . , aK), and
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Thus, for any l, r(a, ✓) is weakly increasing in ✓
(l). Hence Assumption 1 is satisfied. On the other hand, from Kveton et al.

(2015a), we have

r(a, ✓1)� r(a, ✓2) =
KX

k=1

k�1Y

k1=1

✓
1� ✓

(ak1)
2

◆⇣
✓
(ak)
1 � ✓

(ak)
2

⌘ KY

k2=k+1

✓
1� ✓

(ak2)
1

◆

=
KX

k=1

P

⇣
E

(ak)
���✓2, a

⌘⇣
✓
(ak)
1 � ✓

(ak)
2

⌘ KY

k2=k+1

✓
1� ✓

(ak2)
1

◆
,

where the second equality follows from P
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B. Proof for Theorem 1

Proof:

Recall that the stochastic instantaneous reward is r(x, z). Note that r(x, z) is bounded since its domain is finite. Without
loss of generality, we assume that r(x, z) 2 [0, B]. Thus, for any action a and probability measure ✓ 2 [0, 1]d+L, we have
r(a, ✓) 2 [0, B].

Define Rt = r(a⇤, ✓⇤)� r(at, ✓⇤), then by definition, we have
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where Ht�1 is the “history" by the end of time t� 1, which includes all the actions and observations by that time5. For any
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above, Ut�1, Lt�1 and #t�1 are also conditionally deterministic given Ht�1. Moreover, as is discussed in Russo &
Van Roy (2014), since we apply exact Thompson sampling idTS, ✓⇤ and ✓t are conditionally i.i.d. given Ht�1, and
a
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5Rigorously speaking, {Ht}
n�1
t=0 is a filtration and Ht�1 is a �-algebra.
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where equality (a) is simply a decomposition based on indicators, inequality (b) follows from the fact that r(a, ✓⇤) 
r(a,#t�1) if Lt�1  ✓⇤  Ut�1, inequality (c) follows from the fact that r(X,Z) 2 [0, B] for all (X,Z) and hence
r(a, ✓) 2 [0, B] for all a and ✓, and inequality (d) trivially follows from the union bound of the indicators.

On the other hand, we have
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On the other hand, we have
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where inequality (a) follows from Assumption 2, inequality (b) follows trivially from Lt�1  ✓⇤  Ut�1 and the definition
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where (a) follows from the fact that Ut�1 and Lt�1 are deterministic conditioning on Ht�1, (b) follows from the definition
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We first bound the second term. Notice that we have P
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where we use subscript N (i)
t�1 for ✓̂ to emphasize it is an empirical mean over N (i)

t�1 samples. Following the union bound
developed in Auer et al. (2002), we have
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We now try to bound the first term of equation 12. Notice that trivially, we have
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Notice that from the Cauchy–Schwarz inequality, we have
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Moreover, we have
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where equality (a) follows from the tower property, and equality (b) follows from the definition of Omax. Thus, we have
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q.e.d.

C. Pseudocode of idTSinc

The pseudocode of idTSinc is summarized in Algorithm 2.

Algorithm 2 idTSinc: A computationally efficient variant of idTSvi.
1: Input: ✏ > 0
2: Randomly initialize q

3: for t = 1, . . . , n do

4: Sample ✓t proportionally to q(✓t)
5: Take action at = argmaxa2AK r(a, ✓t)
6: Observes xt and receive reward r(xt, zt)
7: Randomly initialize q

8: Calculate L(q) using (3) and set L0(q) = �1
9: while L(q)� L0(q) � ✏ do

10: Set L0(q) = L(q)
11: Update qt(zt) using (4), for all zt
12: Update q(✓) using (5)
13: Update L(q) using (3)
14: end while

15: end for


