Graphical Models Meet Bandits: A Variational Thompson Sampling Approach

A. Discussion of Assumptions

In this section, we prove that the combinatorial semi-bandit and the cascading bandit satisfy Assumptions 1 and 2 proposed
in Section 5.

A.1. Combinatorial Semi-Bandits

Notice that in a combinatorial semi-bandit, the action a = (a1, ..., ax), and

Zew —Ze (le€a).

Thus, for any [, r(a, #) is weakly increasing in 6. Hence Assumption 1 is satisfied. On the other hand, we have
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where the last quality follows from the fact that all nodes in a combinatorial semi-bandit is observed, and hence
pP(EWD |0,a) =1 (I € a) for all §. Thus, Assumption 2 is satisfied with C' = 1.

A.2. Cascading Bandits

For a cascading bandit, the action is a = (a4, ..., ax), and
K
r(a,0) =1-JJa -0y =1-[]-0").
k=1 l€a

Thus, for any I, 7(a, 0) is weakly increasing in ("), Hence Assumption 1 is satisfied. On the other hand, from Kveton et al.
(2015a), we have
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where the second equality follows from P (E(“’**) ’92, ) k _1 <1 - 9(% )) . Thus, we have
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where the last inequality follows from Hsz: kil <1 — 9£Gk2)> € [0, 1]. Thus, Assumption 2 is satisfied with C' = 1.
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B. Proof for Theorem 1

Proof:

Recall that the stochastic instantaneous reward is r(z, z). Note that r(z, z) is bounded since its domain is finite. Without
loss of generality, we assume that r(z, z) € [0, B]. Thus, for any action a and probability measure 6 € [0, 1]+, we have
r(a,0) € [0, B].

Define R; = r(a*,0.) — r(a¢, 0 ), then by definition, we have

n n

Rp(n) =) E[R] =) E[E[R[H:1]],
t=1 t=1
where H;_1 is the “history" by the end of time ¢ — 1, which includes all the actions and observations by that time’. For any

parameter index ¢ = 1,...,d+ L and any time ¢, we define Nt(i) = Zt 1 [Eg)} as the number of times that the samples

T=1
corresponding to parameter Hii) have been observed by the end of time ¢, and éﬁ“ as the empirical mean for 0,@ based on
these Nt(z) observations. Then we define the upper confidence bound (UCB) Ut(z) and the lower confidence bound (LCB)
Lgi) as

o _ { min {87+ ¢ (1, M) 1} it NP >0
t

1 otherwise
: max {é(” - (t N(“) 0} it N >0
LE%) — t AT t
0 otherwise

where ¢ (t, N) = 4/ %Og(t) for any positive integer ¢ and N. Moreover, we define a probability measure 6, € [0, 1]%+Z as

g0 _ U fieTt
K LY ifiez-
Since both Nt@l and 9}@1 are conditionally deterministic given H;_1, and Z+ and Z~ are deterministic, by the definitions

above, U;_1, L;—1 and ¥;_; are also conditionally deterministic given H;_1. Moreover, as is discussed in Russo &
Van Roy (2014), since we apply exact Thompson sampling idTS, 6, and 6; are conditionally i.i.d. given H;_1, and

*

a* = argmax, r(a,0,) and a; = argmax, r(a, ;). Thus, conditioning on H;_1, r(a*,d;_1) and r(as, ¥;_1) are i.i.d.,
consequently, we have
E[Ri|Hi—1] =E[r(a*,0+) — r(as, 0:)|Hi—1]

=E[r(a*,0.) —r(a”, ¥—1)|Hi—1] + Elr(as, Vi—1) — r(ag, 0.)|He—1]. ®)

To simplify the exposition, for any time ¢t and ¢ = 1,...,d + L, we define
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Notice that Uf:lL Ggi) = ﬂf:lj“ Ggi) = {L; < 0, < U;}. Moreover, from Assumption 1, if L; < 0, < Uy, based on the
definition of ¥;, we have r(a, 8,) < r(a, ;) for all action a. Thus, we have
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SRigorously speaking, {#}7~ is a filtration and H;_, is a o-algebra.
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where equality (a) is simply a decomposition based on indicators, inequality (b) follows from the fact that r(a,6,) <
r(a,¥—1) if L1 < 0, < U;_1, inequality (c) follows from the fact that r(X, Z) € [0, B] for all (X, Z) and hence
r(a,0) € [0, B] for all a and 6, and inequality (d) trivially follows from the union bound of the indicators.

On the other hand, we have
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Similarly as the above analysis, we have
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On the other hand, we have
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where inequality (a) follows from Assumption 2, inequality (b) follows trivially from L; 1 < 6, < U;_; and the definition

of ¥;_1, and inequality (c) follows from the fact that Ut(i)l > L§’21 always holds, no matter what ¢, is. Combining the
above results, we have
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where (a) follows from the fact that U;_; and L;_; are deterministic conditioning on H;_1, (b) follows from the definition
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of P (Et(i) 0., at> , (c) follows from that fact that conditioning on 6, and ay, Et(i) is independent of H;_1, and (d) follows
from the tower property. Thus we have
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We first bound the second term. Notice that we have P (G,E?l) =K {P ( i1
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where we use subscript Nt@l for 0 to emphasize it is an empirical mean over Nt(i)l samples. Following the union bound
developed in Auer et al. (2002), we have
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where inequality (a) follows from the union bound over the realization of Nt(i)l, and inequality (b) follows from the
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Hoeffding’s inequality. Since the above inequality holds for any 6,, we have P (G,(f_)l) < t% Thus,
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We now try to bound the first term of equation 12. Notice that trivially, we have
U, — LY, <2¢ (t, Nt(i)l) 1 (Nt@1 > 0) +1 (Nt@1 — o)
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Thus, we have
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Notice that from the Cauchy—Schwarz inequality, we have
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Moreover, we have
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where equality (a) follows from the tower property, and equality (b) follows from the definition of Oy,,x. Thus, we have

d+L n
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Putting everything together, we have

Rp(n) <C\/6(d + L)Omaxnlog(n) (1 + log(n)) + <C + 2?3) (d+ L)
=0 (CV(d+ L) Opaxnlog(n)) - (15)

q.e.d.

C. Pseudocode of idTSinc

The pseudocode of idTSinc is summarized in Algorithm 2.

Algorithm 2 idTSinc: A computationally efficient variant of idTSvi.

1: Input: ¢ > 0

2: Randomly initialize ¢

3: fort=1,...,ndo

4:  Sample 6, proportionally to q(6;)

5:  Take action a; = argmax,c 4x r(a,6;)

6:  Observes z; and receive reward r(z¢, 2¢)

7:  Randomly initialize ¢

8:  Calculate £(q) using (3) and set L'(q) = —o0
9:  while £(¢q) — £L/(¢) > edo
10: Set L'(q) = L(q)

11: Update g;(z;) using (4), for all z,
12: Update ¢(6) using (5)
13: Update £(q) using (3)

14:  end while
15: end for




