Simultaneous Inference for Massive Data: Distributed Bootstrap

A. Additional Simulation Results
A.1. Simultaneous Confidence Interval

Figures A.1 and A.2 display the empirical coverage probability and the average width for the linear regression and logistic
regression models under Toeplitz design with d = 23 and d = 2°. Figures A.3 and A.4 display the empirical coverage
probability and the average width for the linear regression and logistic regression models under equi-correlation design with
d € {21,23,25 27}, See Section 4.1 for the full details on the simulation setup. The observations made in Section 4.1 also
apply to all the cases here. Moreover, we see that the results for equi-correlation design are similar to those for Toeplitz
design.
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Figure A.1. Empirical coverage probability (left axis) and average width (right axis) of simultaneous confidence intervals by k—grad
(top) and n+k—-1-grad (bottom) in a linear regression model with Toeplitz design and varying dimension (left: d = 23 right: d = 2°).
Black solid line represents nominal confidence level (95%) and black dashed line represents oracle width.

A.2. Pointwise Confidence Interval

Figures A.1 and A.2 display the empirical coverage probability and the average width for the linear regression and logistic
regression models under Toeplitz design with d € {2123, 25 27}, The simulation setup is the same as in Section 4.1. All
the pointwise confidence intervals are constructed for the second coordinate of §*. The algorithm is modified by replacing
Il - oo With |(-)2] as discussed in Section 2.1. Comparing the results to those in Sections 4.1 and A.1, we see that the
performance of k—grad and n+k—-1-grad in constructing pointwise confidence intervals is similar to that in constructing
simultaneous confidence intervals. Therefore, the discussions on simultaneous confidence intervals in 4.1 can apply to the
cases here.

B. Proofs of Main Results
Proof of Theorem 3.1. By Lemmas F.9 and F.10, we obtain that
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Figure A.2. Empirical coverage probability (left axis) and average width (right axis) of simultaneous confidence intervals by k—-grad
(top) and n+k-1-grad (bottom) in a logistic regression model with Toeplitz design and varying dimension (left: d = 23, right:
d = 2°). Black solid line represents nominal confidence level (95%) and black dashed line represents oracle width.
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Figure A.3. Empirical coverage probability (left axis) and average width (right axis) of simultaneous confidence intervals by k—grad
(top) and n+k—1-grad (bottom) in a linear regression model with equi-correlation design and varying dimension (from left to right:
d = 2',23,25 27). Black solid line represents nominal confidence level (95%) and black dashed line represents oracle width.
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Figure A.4. Empirical coverage probability (left axis) and average width (right axis) of simultaneous confidence intervals by k—-grad
(top) and n+k-1-grad (bottom) in a logistic regression model with equi-correlation design and varying dimension (from left to right:
d = 2',23 25 27). Black solid line represents nominal confidence level (95%) and black dashed line represents oracle width.

1.0 A

Coverage
=)
ot
L
T
w
=
)
Width

N

_,ﬂ’_
IO’
.
p
%

i F1.55
— coverage r
0.0 By e L === eSSy L
0 2 4 6 8 10 2 3 4 5 6 7 8 o 1 2 3 4 5 6
logy k log, k logy k
x1072
1.0 1 % | 6.19
ARNEY BN RSN
I 4.64
o N
9 e =
2 0.5 1 Y F3.10 =2
8 =
F1.55
UO L T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T r 000
0 2 4 6 8 10 01234567389 01 2 3 4 5 6 7 8 o 1 2 3 4 5 6
logy k logy k log, k logy k

Figure A.5. Empirical coverage probability (left axis) and average width (right axis) of pointwise confidence intervals by k—grad
(top) and n+k-1-grad (bottom) in a linear regression model with Toeplitz design and varying dimension (from left to right: d =
21 23 2% 27). Black solid line represents nominal confidence level (95%) and black dashed line represents oracle width.

We complete the proof by solving these inequalities for 7. O
Proof of Theorem 3.2. By the argument in the proof of Theorem 3.1 with applying Lemma C.2, we have
SUPqe(0,1) |P(T < () — a| = o(1) and sup,¢(o,1) ‘P(f < cpla)) —al = o(l), as long as n > dlogh*" d,
n+ k> d?log’™ d, and

" 1
¢ logd < —————and
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Figure A.6. Empirical coverage probability (left axis) and average width (right axis) of pointwise confidence intervals by k-grad
(top) and n+k-1-grad (bottom) in a logistic regression model with Toeplitz design and varying dimension (from left to right:
d = 2',23 25 27). Black solid line represents nominal confidence level (95%) and black dashed line represents oracle width.
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We complete the proof by solving these inequalities for 7. O

Proof of Theorem 3.6. By Lemmas F.11 and F.12, we obtain that
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Then, by Lemma C.3, we have sup ¢ 9.1 |[P(T < cgr(@)) — af = o(1) and sup,¢ (g 1) P(T < c(@)) —al =o(1), as
long as n > d*logd, k > d?log® ™ d, nk > d°log®* ™" d,

RHS of (B.1) < and RHS of (B.2) <

1 1
VNlog/?+7q’ Vndlog' ™ d’
We complete the proof by solving these inequalities for 7.
O

Proof of Theorem 3.7. By the argument in the proof of Theorem 3.1 with applying Lemma C.4, we have
SUDqe(0,1) |P(T < cg(@)) —a| = o(1) and SUPqe(0,1) ‘P(f < cgip(a)) —a‘ = o(1), as long as n > d*logd,
n4+ k> d?log’™ d, nk > d®log®> ™" d,

RHS of (B.1) <

1
\/]Vlogl/%”' d’

We complete the proof by solving these inequalities for 7.

1 1 11
and RHS of (B.2) < min : 4
©2 {dlogn/“”d Vdlog't*d V n k}

O
C. Lemmas on Bounding Bootstrap Errors
Lemma C.1 (k—grad). In linear model, under Assumptions (Al) and (A2), if n > d10g4+“ d, k> d*log”t" d,
“5—5“ < ;, and HO_—H*H < min{ ! 5 , 1 },
~  /Nlog'?*** ¢ ! dy/Tog klog* " d’ v/ndlog' " d
for some k > 0, then we have that
sup |P(T < cp(a)) —al =o(1), and (C.1DH
a€(0,1)
sup ‘P(f < () — a‘ = o(1). (C.2)
a€e(0,1)
Proof of Lemma C.1.  As noted by (Zhang & Cheng, 2017), since |[v/N(6 — 0%)|oc = max; vVN|f;, — of| =
VN max; (6, — 0;) vV (67 — 6;)), the arguments for the bootstrap consistency result with
T = max VN —6*), and (C.3)
T= max VN(@O - 6), (C.4)

imply the bootstrap consistency result for 7 = ||[v/N (6 — 6*)|o and T = ||\/N(§, 0*)||oo- Hence, from now on, we
redefine 7" and T as (C.3) and (C.4). Define an oracle multiplier bootstrap statistic as

W*:= max ZZ VELH(0%)TIVL(0%; Zij)), €5y (C.5)

1<l<d
i=1 j=1

where {e;‘j bzt .....,nij=1,....k are N independent standard Gaussian variables, also independent of the entire data set. The proof
consists of two steps; the first step is to show that IW* achieves bootstrap consistency, i.e., Sup,¢(o,1) [P(T' < cw+(a)) — o
converges to 0, where cyy« () = inf{t € R : P.(W* <t) > «}, and the second step is to show the bootstrap consistency
of our proposed bootstrap statistic by showing the quantiles of W and W* are close.

Note that V2L*(0*) "'V L(0*; Z) = E[zx "] 'z (20" — y) = Oze and

E [(v%*(e*)—lvzj(e*; 2)) (V2L (0*)"'VL(0*; 2)) } OF [zz7¢?] © = 0°OX0O = 526.
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Then, under Assumptions (A1) and (A2),

o2

() (€0

mlinE [(V2£*(0*)_1V,C(9*, Z))ﬂ = 02 rnlin ®l,l 2 U2)‘min(@) =

is bounded away from zero. Under Assumption (Al), = is sub-Gaussian, that is, w !z is sub-Gaussian with uniformly

bounded v,-norm for all w € S¢~!. To show w " O is also sub-Gaussian with uniformly bounded v,-norm, we write it as

ow \'
w' Oz = (Ow) 'z = ||Ow|| () x
2\ llewll,

Since Ow/ ||Ow||, € S, we have that (Ow/ ||Ow||,) z is sub-Gaussian with O(1) t-norm, and hence, w' Oz is
sub-Gaussian with O([|Ow],) = O(Amax(©)) = O(Amin(X) ™) = O(1) 12-norm, under Assumption (A1). Since e is
also sub-Gaussian under Assumption (A2) and is independent of w ' ©x, we have that w " ©xe is sub-exponential with
uniformly bounded 4;-norm for all w € S%~*, and also, all (V2L*(*) "'V L(6*; Z)), are sub-exponential with uniformly
bounded 11 -norm. Combining this with (C.6), we have verified Assumption (E.1) of (Chernozhukov et al., 2013) for
V2LH(0%)7IVL(0%; Z).

Define

TO : = max _\/N(VQE*(H*)_1VEN(9*))

max, L (C.7)
which is a Bahadur representation of T". Under the condition log” (dN)/N < N~¢ for some constant ¢ > 0, which holds if
N 2 log”"€ d for some x > 0, applying Theorem 3.2 and Corollary 2.1 of (Chernozhukov et al., 2013), we obtain that for
some constant ¢ > 0 and for every v, { > 0,

2/3 R
sw|Pangm»_m5N%+ww<uu%d) +Pﬂp—90 >Q
ae(0,1) v max
(C.8)
/ d
+¢ 1\/log6+P(\T—To| > (),
where
1 n k
Q:=cov, | ——— V2LH(0F) IV L(0F; Zsj) el
(C.9)
n k
1
= V2L (6*) ! v SON VL0 Z)VL(O%; Ziy) T | VPLH(0F) 7', and
i=1 j=1
Qo 1= cov (=V2L*(0*)7'VL(0*; 2)) = VAL (0%)'E [VLO*; Z)VLO 5 2) T V2L ()" (C.10)

To show the quantiles of W and W* are close, we first have that for any w such that & + w,a — w € (0, 1),

PUT < epl@)} & {T < ew-(@)})
< 2P(ew-(a —w) < T < cw-(a+w)) + Plew- (@ —w) > ep(@) + Pleg@) > ew-(a +w)),

where © denotes symmetric difference. Following the arguments in the proof of Lemma 3.2 of (Chernozhukov et al., 2013),
we have that

Pl -t + st <2 ([ ]

> u), and

max

P(ew(a — m(u)) > () < P (H’ﬁ _ QH > u) ,
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where 7(u) : = u!/3 (1 Vlog(d/u))** and

k

J— 1 - _ B
Timcove | =2 3 SVR(VLO) - VEx D)

K (C.1n
=0 i;“(v@(@—VﬁN(G)) (VL;(8) - VLN@) |67

By letting w = m(u), we have that
PAT < ep(@)} AT < cw-()})
< 2P(cw-(a — m(w)) < T < ew-(a + m(w)) + Plew-(a — 7()) > (@) + Plegr(a) > e (a + m(w)
< 2P(ew- (o — () < T < ey (a + 7(u))) + 2P (H - ﬁ” > v,

where by (C.8),

Plew-(a—7(u)) < T <cw+(a+7(u)) = P(T < cw+(a+7(u)) — P(T < cw+(a —m(u)))

,Sﬂ(u)—FN_C—&-CUl\/logg—I—P(\T—To|>C),

g\ 23 R
sup |P(T < err(a)) — af S N7+ 1/3 (1 v log v) +P (’HQ - QOH
a€(0,1)

and then,

> v)
max

d f AN .
+¢ lvlogC+P(|TT0|>C)+u1/3<1\/log ) +P<‘HQ*Q”

u

> u) .
max

(C.12)

Applying Lemmas D.1, E.2, and E.1, we have that there exist some ¢, u, v > 0 such that

Q/lvlogg—i—P(|T—TO| > () =o0(1), and (C.13)

a\*? — -
ul/3 <1\/log> +P(H’Q—QH
u
3

> u) —o(1), and (C.14)

max

2
2/ R
vl/3 (1v10gd> JFP(”’Q*QOH
v

> v) = o(1), (C.15)

max

and hence, after simplifying the conditions, obtain the first result in the lemma. To obtain the second result, we use

Lemma D.2, which yields
d N
¢ 1vlogg+P(\T—TO|>§) = o(1). (C.16)

O
Lemma C.2 (n+k-1-grad). In linear model, under Assumptions (Al) and (A2), if n > d log4+“ dn+k>d? log5+“ d,

Hg_é\Hoo<<\/N10g11/2+“d’ and Hé—@*

, 1 1 /1 1
< min , 4oy,
! { dv/log((n + k)d)log®™* d’ Vdlog't"dV n k }
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for some k > 0, then we have that

sup |P(T < () —af =o(1), and (C.17)
a€e(0,1)

sup ‘P(f < cppla)) — 04‘ =o(1). (C.18)
a€(0,1)

Proof of Lemma C.2. By the argument in the proof of Lemma C.1, we have that

max )

. d 2/3
sup |P(T < ¢gp()) —a| SN~ + v!/3 (1 Vv log v> (‘HQ QOH

ac(0,1)
d d\ %3 - .
+ ¢y 1VIog 2+ P (T =Ty > ¢) + ul/? <1Vlogu> —i—P(H’Q—Q > u) :
(C.19)
where
~ 1 noL _ _
Q= cov. == ;@ (VLO; Zn) — VLN (D)) €1 + Z@f (VL;(0) — VLN (D)) ¢
. 1 n
= @m (; (VL(O; Zin) = VLN(0)) (VLO; Zin) — VLN () (C.20)
k
+Y n( — VLN () (VL;(0) — VLN ()" ) o,
Jj=2

if N > log”"" d for some x > 0. Applying Lemmas D.1, E.2, and E.3, we have that there exist some ¢, u,v > 0 such that
(C.13),

d 2/3 L
@ (1vieg2)p (-2

and (C.15) hold, and hence, after simplifying the conditions, obtain the first result in the lemma. To obtain the second result,
we use Lemma D.2, which yields (C.16). O]

Lemma C.3 (k—-grad). In GLM, under Assumptions (B1)~(B4), if n.>> dlog® " d, k > d?1og®"* d, nk > d® log®> ™" d,

> u) = o(1), (C21)

max

1

PON 1 _ N
HQ—GHOO < and H0—9 Hl < m7

\/71 1/2+I{ d
for some k > 0, then we have that (C.1) and (C.2) hold.

Proof of Lemma C.3. We redefine 7 and 7T as (C.3) and (C.4). We define an oracle multiplier bootstrap statistic as in
(C.5). Under Assumption (B3),
min E [(v%*(a*)—lvz(a*; Z))ﬂ = min (V2L (07) "B VL0 2)VLO%5 2)T] V2LH(07) ),
> Amin (V2L¥(0F)'E [VLO*; Z)VLO 5 2)T ] VELH(07)7Y)
> Ain (V2L7(07) ™) Ain (E [VL(07; 2)VL(©0% 2)T])
~ in (B [VL(05,2)VL(0%2)T])
a Amax (V2L*(0+))”

is bounded away from zero. Combining this with Assumption (B4), we have verified Assumption (E.1) of (Chernozhukov
et al., 2013) for V2L*(0*) =1V L(6*; Z). Then, we use the same argument as in the proof of Lemma C.1, and obtain (C.12)
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with

k
S 0 (VLi(0) — VLN (0) (VL;0) — VEN®) ' | 60)T, (C.22)

j=1

0:=0(0)

| =

under the condition log” (dN)/N < N~ for some constant ¢ > 0, which holds if N' > log”"" d for some « > 0. Applying
Lemmas D.3, E.5, and E.4, we have that there exist some (, u, v > 0 such that (C.13), (C.14), and (C.15) hold, and hence,
after simplifying the conditions, obtain the first result in the lemma. To obtain the second result, we use Lemma D.4, which
yields (C.16). O
Lemma C.4 (n+k—-1-grad). In GLM, under Assumptions (BI)~(B4), if n > dlog® " d, n + k > d?log’ ™™ d, nk >
d®log®t" d,

~ 1

0 —9H L ——F»—, and

H 00 \/N 10g1/2+f€ d

|6 — 6

< mi n+k 1 1 n 1
min , — —+ =3,
' d (n + kyTogd + k3/41og¥/* d) log?+* g Vdlog' ™ dV n  k
for some k > 0, then we have that (C.17) and (C.18) hold.

Proof of Lemma C.4. By the argument in the proof of Lemma C.3, we obtain (C.19) with

n

Q:= é(‘)ﬁ ( Z (VL(O; Zix) — VLN (0)) (VLO; Zir) — VLN(9)

k (C.23)
+ > 0 (VLi(0) = VLN(9)) (VL;(0) — VLN () ) CION

j=2
it N 2> log”” d for some x > 0. Applying Lemmas D.3, E.5, and E.6, we have that there exist some (, u, v > 0 such that
(C.13), (C.21), and (C.15) hold, and hence, after simplifying the conditions, obtain the first result in the lemma. To obtain
the second result, we use Lemma D.4, which yields (C.16). O
D. Lemmas on Bounding Bahadur Representation Errors

For both linear model and GLM, we denote the global design matrix and the local design matrices by Xy =

(X7, X" € RV and X; = (z1j,...,7,;)" € R4 for j = 1,...,k. We write each covariate vector as
zij = (Tija,--,Tija) € R fori = 1,...,nand j = 1,...,k. Also, we denote the global response vector
and the local response vectors by yn = (y7 ,... 7ykT)T € RV>*1 and Yj = (Y1js---Ynj) € R forj = 1,... k.
For linear model, we define the global noise vector and the local noise vectors by ex = (ef,...,el )" € RV*! and

ej = (e1j,--.,nj) ER™forj=1,... k.
Lemma D.1. T and T} are defined as in (C.3) and (C.7) respectively. In linear model, under Assumptions (Al) and (A2),
provided that Hg— 5H = Op(rg), we have that

dv/logd
|T—T0|:OP<T’§VN-|— \/N >
Moreover, if N > d?log® ™" d and
o 1
o P
H s  /Nlog!'/?t ¢

for some k > 0, then there exists some ( > 0 such that (C.13) holds.

Proof of Lemma D.1. First, we note that

T To| < max ‘\/ﬁ(g— 0*) + VN (v%*(e*)—lch(e*))l‘ — VN Hé— 0" + V2L (0°) TV Ly (07)

J

o0

<vN (Hé— 5"00 n Hé— 0" + V2L (0°) IV L (67)
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Now, we bound Hé— 0* + V2L (0%) "IV LN (07)

(X3 Xn) "' Xen, and then,

. In linear model, we have that § — (X]T,XN)_1 XYyn = 0* +

XTxp\ 7!
< —

Under Assumptions (Al) and (A2), each z;;,; and e;; are sub-Gaussian, and therefore, their product x;;e;; is sub-
exponential. Applying Bernstein’s inequality, we have that for any ¢ € (0, 1),

log 24 log 24 6
> /2 LIV} 0 < =
LI\ TN N =

for some constant ¢ > 0. Then, by the union bound, we have that

‘ o

Ha_ 0" + V2L*(0") 1V Ly (67)

N N

—1
‘ _ X;XN XEGN —@XJT[SN
oo N N

‘ X]—\FIBN

0o oo

(XXen)
N

(

X;(’,N

log 24 log 24
P ) 0 0 < 4. D.1
H N Hoo >y Ee | S VAT ] S0 @®.D

= O(1), and then,

Under Assumption (A1), we have that max; 3;; < |||

max

Xien _ o, log d
N |l N )

Using the same argument for obtaining (F.3), we have that
( d+/log d)
‘ - Op .
(o)

<Vd

(5) -

)

=
ES

00 2

and therefore,

H (XEXN)_I e
N

N
Putting together the preceding bounds leads to the first result in the lemma. Choosing
1-k
d+/logd
C = <7"§\/N+ g ) 5
VN
with any x > 0, we deduce that P (|7 — Tp| > {) = o(1). We also have that

g,/1v1og%, if (r;x/ﬁ+dv\/li]\§cl)logl/2+“d:o(l).

‘We complete the proof by simplifying the conditions. O
Lemma D.2. T and Ty are defined as in (C.4) and (C.7) respectively. In linear model, under Assumptions (Al) and (A2),

we have that
d+/Tog d)
vN )’

Moreover, if N > d?log**™" d for some k > 0, then there exists some & > 0 such that (C.16) holds.

Hﬁ— 0"+ V2L5(0°) 1V Ly (67)

|f_TO|=oP(

Proof of Lemma D.2. By the proof of Lemma D.1, we obtain that
T — Ty < max MV(@- 0*), + VN (vZ.c*(a*)*le(@*))l\ =VN Hé_ 0" + V2L (0%) " VLN (67)

o (1),

’ oo
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Choosing

- (12

with any x > 0, we deduce that P (\f —To| > f) = 0(1). We also have that

d . d\/logd) 1245
1Vlog —, if ——— 1o d=o0(1),
gf1vis it (2o )

which holds if N > d?log® ™" d.
O

Lemma D.3. T and Ty are defined as in (C.3) and (C.7) respectively. In GLM, under Assumptions (B1)—(B3), provided
that Hé— §H = Op(ry) and N Z d*logd, we have that

d®/?logd
Moreover, if N > d°log**" d and
s /Nlog'/?tq’

for some k > 0, then there exists some ¢ > 0 such that (C.13) holds.

Proof of Lemma D.3. First, we note that
T~ Tl < max \\/N(é— 0*) + VN (v%*(e*)—lch(a*))l‘ - VN H'e“- 0" + V2LH(0°) TV Ly (67)

. Note by an expression of remainder of the first order Taylor

oo

<vN (Hé— 5“00 n H@- 0" + V2L (0°) IV Ly (67)

Now, we bound H@— 0 + V2L (0°) 'V Ly (6%)

expansion that

~

=110 —0* —e(VLN(B) — VLN(0Y))

1
_ 9—9*—@/ V2L (0% + 5(0— 07))ds (0 — 67)

Héf 0" + V2LH(0") IV Ly (67)

oo

0
— e /01 (v%*(e*) — VLN (0" + (0 — e*))) ds(6 — 6%)

(oo}

IN

jel.. [ (2@ - enier + s@-o0)|

ds H@— 0"

max 1

Under Assumption (B1), we have by an expression of remainder of the first order Taylor expansion that

)

1
@iy 07+ 50— ) = (i, a 0] = | [ " s, a 0" 4 T ) 2] 6 0
0

S |zl @0

ij
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and then,

mv2cN(9*) — V2L (0 + (0 — 9*))”

ZZ% u( (yig (0" + (0 — 9*)))—9”(%»%50*))

max

/L 1j 1 max
< 830 ol (50 G ) 5|
1=1 j=1
- NZZH‘J;” |||max (y”’x;;(e*—*—‘g(é\_e*))) g (y117 zge*)
=1 j=1
1 n k 1 n k R
S 7 20 2 Il i@ =09 < 5 323 el —
==t i=1 j=1
slo-e|.. o)

where we use that ||z;;|lcc = O(1) under Assumption (B2) in the last inequality. Note that

n k
* * [Nk 1 * *
V228 (67) = V2L O e = || 37 D D29 iz w7 iy — B [g" (.20 T] )|
i=1j5=1 max
and g" (ysj, x;@*) = O(1) under Assumption (B1). Then, we have that by Hoeffding’s inequality,
Sy Zil 9" (Yij, w507 )xij a0 S 210g(%) 5
P - : N -E [gll(yax ¢ )ﬂvll"l’] > N < 2
and by the union bound, for any § € (0, 1), with probability at least 1 — 9,
2log(2&
V2L (6) - 9220 0], < | 22
max N
which implies that
log d
IV2Ln (6%) = V2L*(6%)]). = Op ( = ) . (D.3)

Then, by the triangle inequality, we have that

H)v?c*(a*) —V2LN (0" + s(0 - 07))

max

< H‘v?cN(e* +5(0— 07)) — V2L (0Y)

| IVRLn () = VL O S [ - 07

logd
+0P< ]%)

Note that [|©]| . < Vd[|©], = O (\/&) By Lemma F.11, if N > d*log d, we have that

i

<l =or (455

VN

and therefore,

R 5/2
Ha g VL) VLN ()| = op (leogd> .
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Putting together the preceding bounds leads to the first result in the lemma. Choosing

&5/ 1ogd>1”
VN ’

with any x > 0, we deduce that P (|7 — Tp| > ¢) = o(1). We also have that

d d®/?logd
(/1Viog =, if r~\/N+)lo V26 g = o(1).

We complete the proof by simplifying the conditions. O

Lemma D.4. T and Ty are defined as in (C.4) and (C.7) respectively. In GLM, under Assumptions (B1)—(B3), provided
that Hg— §H = Op(ry) and N Z d*logd, we have that

(= <r5\/ﬁ+

~ d®/?logd
‘T* To| = OP <T§\/N+ \/N) .

Moreover, if N > d°log®>™* d for some r > 0, then there exists some & > 0 such that (C.16) holds.

Proof of Lemma D.4. By the proof of Lemma D.3, we obtain that if N > d*logd,
T~ Tyl < max [VN@ - 07)+ VN (V2£5(67) VLN (67)) |

d5/21og d
_ 0 <Og> _

VR [0+ V) V) 75

Choosing

‘ <d5/2 1ogd>1“
- (")

with any xk > 0, we deduce that P (\f —To| > f) = 0(1). We also have that

d d®/?logd
5,/1vlogg, if (\/%g)logl/”“d:o(l),

which holds if N > d° log® ™" d. O

E. Lemmas on Bounding Variance Estimation Errors

Lemma E.1. ﬁ_and Q are defined as in (C.11) and (C.9) respectively. In linear model, under Assumptions (Al) and (A2),
provided that || — 0*||, = Op(rg), rg\/log(kd) < 1, n 2 d, and k 2 log®(dk) log d, we have that

1 log?(dk)1
=0Op <d< Olfd + 28 (dk) ogd + log(kd)rg—FnTZ) + \/E) .

Moreover, if n > dlog4+” d, k> d?log®™" d, and

Iy

[o-9]

i} 1 1
0 — 07|, < mi , ,
1= 7]), < min { d\/log(kd) log> " d’ V/ndlog " d}

for some k> 0, then there exists some u > 0 such that (C.14) holds.
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Proof of Lemma E.1. Note by the triangle inequality that

Io-2] w0 -]

< (122 = 0|

max max

max

where Qg is defined as in (C.10). First, we bound H‘ﬁ —Q H . With Assumption (E.1) of (Chernozhukov et al., 2013)
max

verified for V2L£*(0*) =1V L(6*; Z) in the proof of Lemma C.1, by the proof of Corollary 3.1 of (Chernozhukov et al.,
2013), we have that

} logd N log®(dN)logd

HHQ QO” N N ’

which implies that

WQ QO” N N

o, ( logd log?(dN) log d> .

Next, we bound ]Hﬁ —Q H| . By the triangle inequality, we have that

max

192 = 0],
k
= (e (1 > n(VL;i(0) — VLN (9)) (VL;(0) — VLN(é))T) 0" —OE[VL(9*;2Z)VL(2)T] O

J=1 max

IN
w\r—

k
( >0 (VL;(0) = VLN () (VL;(B) ~ VL) ~E[VL(E": 2)VLE" Zﬂ) ©

+||8E [vew 2)vew 2)T) 8T — er VL 2)VEE 2)] 6
=1,(0) + L.

max

To bound I; (6), we use the fact that for any two matrices A and B with compatible dimensions, [|AB|| . < Al |1 Bll,ax
and ||AB| .k < 1Al I B|l;, and obtain that

max

VL) (VE,0) - VEN (D) ~E[ve@zveez)]| 6]

max

- ~ 1
<[], |z
)= 800 k

~m2 1
=[8ll..| =
el |z

Under Assumption (A1), by Lemma E.7, if n 2 d, we have that mém =0Op (\/ﬁ) , Then, applying Lemma F.2, we have
that =

— VLN (B)) (VL;(0) — VLN(B) —E[VLEO": 2)VLO:2)T]

e
e

max

_ locd log?(dk)logd
1,(0) = Op (d) op< Olf | log( k) L 1og(lcd)r9+m"§>
logd log?(dk)logd
=0Op <d< Oi + 2% ( k:) gc log(kd)re+nr§>>,

under Assumptions (A1) and (A2), provided that ||6 — 6* Hl = Op(rg), rg\/log(kd) < 1, and k > log?(dk) log d.

It remains to bound /5. In linear model, we have that

L=[® ()8 ~e(*x) 6|

g H‘@z@T @H

max m’lX
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and by the triangle inequality,

I = o m(éf@+@)z(éf@+ef feH

max

— o2 m(é — )26 -0)T 1056 -0) +(6-0)20 + %6 — @H

max

max

<o m(é —0)%(6 - @)TH

c2o-of

max

By Lemma F.7, we have that

5~

gmlaxHél—@lH Op( d), and
2

max n

m(é —0)%(6 - @)TH

~ 2 d
< 20, max |6, - 04 = Op () ,
max l 2 n

where we use that ||| < ||IZ]l, = O(1) under Assumption (Al). Then, we obtain that

max < o (;l)+op (ﬁ) =Op (\/i)

Putting all the preceding bounds together, we obtain that

2
2|, =0p (d ( o g W08, tog(hdyrs + mg> ; d) |

and finally the first result in the lemma. Choosing

1—k
logd dlog?(dk)logd d
uz(d 0;;; 48 (k‘)()g +d\/10g(kd)r9+ndr3+\/7> ,
n

with any s > 0, we deduce that P (‘HQ — (AZH

> u) = 0(1). We also have that

max

2/3 2
1 1 1
ul/3 (1 v log Z) T (d olg;d n dlog (ik) ogd + dv/log(kd)rg + ndr3 + \/E) log?t™d = o(1).

We complete the proof by simplifying the conditions.

O
Lemma E.2. Q and Qg is defined as in (C.9) and (C.10) respectively. In linear model, under Assumptions (Al) and (A2),

we have that
_on ( logd log?(dN) log d) |

-

max N N

Moreover, if N > log® ™ d for some . > 0, then there exists some v > 0 such that (C.15) holds.

Proof of Lemma E.2. The first result is derived in the proof of Lemma E.1. Choosing

11—k
o [ flosd log?(dN)log d
B N N ’

with any x > 0, we deduce that P (MQ — Q9

> v) = o(1). We also have that
max

2/3 2
o1/3 (1\/log i) it < logd n log (dN)logd> log?t" d = o(1),

N N

which holds if N > log” ™ d. O
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Lemma E.3. ﬁ_and Q are defined as in (C.20) and (C.9) respectively. In linear model, under Assumptions (Al) and (A2),
provided that || — 0*||, = Op(rg), r51/1og((n + k)d) < 1, and n 2, d, we have that

_ [logd  log*(d(n + k))logd onk d
max_OP <d< Tl+k+ TL+:Z€ + log((n+k)d)7“9+n+k7"9 * E ’

Moreover, if n > dlog*™ d, n + k > d?log®*" d, and

[o-9f

16-07, < min{

1 1 1 1
) -+ - )
d\/log((n + k)d)log? ™ d’ Vdlog ™" dV n 'k }
for some k > 0, then there exists some u > 0 such that (C.21) holds.

Proof of Lemma E.3. Note by the triangle inequality that

7
max

o=

<o

# oo

max max

where () is defined as in (C.10). By the proof of Lemma E.1, we have that

—0p ( log d n log?(dN) logd> .

-

B N N

max

Next, we bound ‘Hﬁ — Qo
that

using the same argument as in the proof of Lemma E.1. By the triangle inequality, we have
max

-]

max

n+k—1

O (Z (VL(O: Zia) = VLN (D)) (VL Zn) = VEN(D))

i=1

_|_

J

S) <n+11€_1 <Z (VL(O; Zin) — VLN () (VL(O; Zin) — V/JN(é))T

i=1

k
n (VL,;(0) — VLN (D)) (VL;(0) — VLN (B)) ) 6T — OF [VL(6"; Z2)VL(H*:2)"] O

max

<

-

||
N

+> n(VL;i(0)—VLN(D)) (VL;(0) — ch(é))T ) —E[VL(0*2)VL(0%2)"] )éT

J
+ |6 [vewr 2)vee 2)) 0T - e [ve(; 2)vL(6 2)T]

max

max

We have shown in the proof of Lemma E.1 that

o ({7).

To bound I (#), we note that

. ~ 112
10 <ol =

. (ﬁ: (VL(O; Zin) = VLN(0)) (VLO; Zin) — VEN(Q_))T
1

i=

k
+ Zn (VL;(0) — VLN (0)) (VL;(0) — ch(é))T ) ~E[VLO52)VL(052)")
Jj=2

max
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Under Assumption (A1), by Lemma F.7, if n 2 d, we have that
6ll.. =0 (va).
Then, applying Lemma F.4, we have that

_ logd  log*(d(n+k))logd
f1(0) = Or <d< ik’ n+k)

+ log((n + k)d)rs

)

under Assumptions (A1) and (A2), provided that ||6 — 6* ||1 = Op(rz), rg\/log((n + k)d) < 1,and n + k > log?(d(n +
k)) log d. Putting all the preceding bounds together, we obtain that

B [logd  log*(d(n + k))logd nk .2 d
max o OP (d ( n+ k + n -+ k + log((n + k)d) n —+ k + n ’

and finally the first result in the lemma. Choosing

11—k
[logd  dlog?(d(n + k))logd el 00 \/E
b (d n+k+ n+k + og((n + +k9+ n ’

with any x > 0, we deduce that P (MQ QH

o2

u) = o(1). We also have that
max
2/3
ut/? (1 V log d> , if
u

logd  dlog®(d(n + k))logd kd d .
(d o8 | og_(d(n )log +d\/m'f'g+n k9+\/7>10g2+ d=o(1).

n+k n+k

We complete the proof by simplifying the conditions.

O

Lemm_a Ed4. Qand Q are defined as in (C.22) and (C.9) respectively. In GLM, under Assumptions (B1)—(B4), provided
that ||9 — 9*”1 =Op(rg), rg <1, n 2 dlogd, and k Z logd, we have that

logd dlogd
=0Op (d < ) + +/logdrg + nr§> + o8 > .
max k‘ n
Moreover, if n > dlog® ™™ d, k> d?log® ™" d, and

~ . 1 1
— < min = s s
’ ! {dlog°/2+”d Vndlog'™* d}

for some k> 0, then there exists some u > 0 such that (C.14) holds.

o=

Proof of Lemma E.4. We use the same argument as in the proof of Lemma E.1. Note by the triangle inequality that

< (12 = |

max max

o=

# 2 -0l

max

where € is defined as in (C.10). First, we bound H‘ﬁ —Q H . With Assumption (E.1) of (Chernozhukov et al., 2013)
max

verified for V2L£*(0*) =1V L(6*; Z) in the proof of Lemma C.3, by the proof of Corollary 3.1 of (Chernozhukov et al.,
2013), we have that

-

B logd log?(dN)logd
—OP< N + N .

max
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Next, we bound |H§ —Q |H .- By the triangle inequality, we have that

ma.

112 = 0]l 0

-6
o

+||8@E [vews 2)vews 2)T180) - ok [vLer 2)vLe2)T] 6|

L= 11(9) +IQ.

Note that

x| =
]~

n(VL;(0) — VLN D)) (VL;(0) — V/:N(Q))T) 0(0)" - OE[VL(9*;2)VL(0%:2)T] O

1

max

IN

| =
]~

1

n (VL;(0) — VLN () (VL;(0) — VLN ()| —E [VL©O"; Z)VL(O; Z)T]) CION

max

max

OOE[VLO*;Z)VL(02)T]0()"
_ (é(é) - @) E [VL(0"; Z)VL0 2)T] (é(é) - @)T +OF [VL(0"; Z)VL(0"; 2)T] (é(é) - @)T
+ (é(é) — @) E[VL(O*;Z)VLO*;2)" |0+ OE [VL(0*;Z2)VL(O*;2)"] O.
By the triangle inequality, we have that

I, <

~—

‘ (’é(é) - 9) E [VL(0"; Z)VL0 2)T] (é(é - @)T

max

+2 ‘H@]E (VL0 2)VL052)T] (é(é) - e)T

max

~ _ 2
< ||E [vL; VL' 2)T] ||, max [©0) - €1
+2||E[VLO": 2)VL0's 2)T] |, max €, max | ©(8) — &1 -

Note that max; |0;||, < [|O], = O(1) under Assumption (B3). By Lemma F.8, provided that n 2 dlogd and r5 < 1, we

have that
1 [d1 [d1
I, =0p (d ng+7«§+ d?lgd-i-’l"g):Op( dlogd (;Lgd+r9—).

To bound I3 (#), we note that

wo< oo

k
S 0 (VL;(0) — VLN (0)) (VL;(0) — VLN () —E VL6 2)VL(6%2)7]

By Lemma F.8, we have that max
[s@., = or (va).

Then, applying Lemma F.5, we obtain that

- 1
11(9):Op (d( Oid-i- logdrg—i-m"g)) s

provided that H§ — 0" ||1 =O0p(rg), rg < 1,n 2 logd, and k 2 log d. Putting all the preceding bounds together, we obtain

that
1900000 (/22 4 Vi £ ) + 2251,

n
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and finally the first result in the lemma. Choosing

11—k
logd [dlogd
u:(d og +d\/logdrg+nd7“§+ 0g> ,

n

with any x > 0, we deduce that P (‘HQ — (AZH

> u) = 0(1). We also have that

max

d\?3 log d dlogd\ .
ul/3 <1\/log > , if d . +d\/logd7’g+ndr§+ —" ] log*™d = o(1).
U n

We complete the proof by simplifying the conditions.

[
Lemma E.5. Q and Qg is defined as in (C.9) and (C.10) respectively. In GLM, under Assumptions (B3)—(B4), we have that

B logd log*(dN)logd
O ( N T N '

-]

Moreover, if N > 1og5+” d for some k. > 0, then there exists some v > 0 such that (C.15) holds.

Proof of Lemma E.5. The first result is derived in the proof of Lemma E.4. Choosing

11—k
_(Jlogd log?(dN)logd
- N N ’

with any x > 0, we deduce that P (‘HQ — QOH

> v) = o(1). We also have that

max

d\? logd log?(dN)logd
p1/3 <1 V log ) , if < %8 + og (dN) log log? ™" d = o(1),
v

N N

which holds if N > log” ™" d. O
Lemma E.6. Q and Q are defined as in (C.23) and (C.9) respectively. In GLM, under Assumptions (BI)—(B4), provided

that ||0 — 9*”1 = Op(rg), rg S 1, andn 2, dlog d, we have that
~ log d ky/Togd + k3/*1og®* d k dlogd
[o-8f =op(afy- 80 ¢ TEEEE 8 Sy T2 ) 4 [SRE )
max n—!—k ’I’L+k' ’I’L+k n

Moreover, if n > dlog” ™ d, n + k> d?log®* d, and

|6 — 6

. n+k 1 1 1
; <min 7 5 , T 4 T 0
d (n+ kviogd + k410" d) log** d Vdlog! ™"V n
for some k > 0, then there exists some u > 0 such that (C.21) holds.

Proof of Lemma E.6. Note by the triangle inequality that

o2

<[[o-2

+o-a

)

max max max

where () is defined as in (C.10). By the proof of Lemma E.4, we have that

B logd log?(dN)logd
—OP< N + N .

-

max
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using the same argument as in the proof of Lemma E.4. By the triangle inequality, we have
max

Next, we bound ‘Hﬁ — Qo H
that

-]

max

o) n+ k; -1 (i (VL(O; Zin) = VLN (0)) (VL(O; Zin) — VEN(é))T

k
+3 0 (VL;(0) — VLN (D)) (VL;(0) — VLN (D)) > 6(0)T — OF [VL(0"; Z)VL(0*; Z)T] ©
=2

max

< é(é) <n+]1€_1 <i (Vﬁ(f)% Zin) — VﬁN(é)) (V[,(@; Zn) — VﬁN(é))T
k
+ Z n( — VLN () (VL;(8) — VLN(0)' > ~E[VLOZ)VLO2)] )é(é)T

- W@ E[VL(0%; 2)VLO* 2)]O(6)T — OF [VL(O; 2)VL(0 Z)"] @H

max

‘We have shown in the proof of Lemma E.4 that

dlogd
12:0p<\/ Zg —|—7‘9>,

provided that n > dlogd and 5 < 1. To bound I (f), we note that

G G ﬁ (; (VL@: Za) = VLN (8)) (VL(B; Zi) = VL)
k
+ Z n — VLN (9)) (VL;(0) — ch(é))T ) ~E[VLO52)VL(052)T)
j:2 max

By Lemma F.8, we have that
le@|],, = or(va).

Then, applying Lemma F.6, we have that

_ log d kvTogd + k3/4log/* d k
I{(a)—op<d< no_fk+”+ OgC T B ¢ 4 DN 2

ntk T L ke

under Assumptions (B1)~(B3), provided that ||6 — §* ||1 =Op(rg),rg S 1,and n + k 2 logd.

Putting all the preceding bounds together, we obtain that

~ logd kvTogd + k3/410g®/* d k dlog d
IS N P (AT S i AT W )
max n+k n+k n+k n

and finally the first result in the lemma. Choosing

1-k
/1 Viogd + k*/*log®* 1

we 0gd+n+k ogd + k°/*log ddrg—i— nkdr§+ dlogd 7
n+k n+k n+k n
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with any x > 0, we deduce that P (Mﬁ — (AZH

> u) = o(1). We also have that

max

d\?*? logd kvTogd + k3/4log®/* d kd dlog d
u'/? 1V log — , if (d gt .- + g+ o8 drg + " r% + o8 log?t" d = o(1).
U n+k n+k n+k n

We complete the proof by simplifying the conditions. O

F. Technical Lemmas

Lemma F.1. For any 0, we have that

k
% Z — VLN (0) (VL;(0) — VLN (0) T —E[VLO 2)VLO52)T]|| < UL(0) + Us + Us(9),

max

where

)

k
=1 3 (VL) = VL 0) (V45(6) = V2 (O) ~n9 £,0)9L5(0")

max

k
U= % S nVL 01V L (0%)T — B [VLO"; 2) VL0 2)T]

Jj=1

. and Us(0) :=n||VLx(0) — VL*(0)|,

max

Proof of Lemma F.1. We write VL;(0) — VL*(8) as (VL;(0) — VLN (8)) + (VLN (0) — VL*(§)), and have that

k
> n(VL;(0) = VL (0)) (VL;(0) = VL (0))
j=1

k
=2 n(VEL;(0) = VENO) (VL5 (0) = VLN(8)) " +nk (VLN (D) = VL (0)) (VEN(O) = VL (9))"
k k
n (VLN (0 (0)) 3 (VL;(0) = VLx(0 Z = VLN (0)) (VEN(©) = VL (0)

=D n(VLi(0) = VLN () (VL;(0) = VLN(0)) " + nk (VLN (0) — VLY (0)) (VLN (0) — VL (0))

Jj=1

where we use VLy (0) = ¢ Zle VL;(6) in the last equality. Then, we have that

— VLN(0)) (VL (0) = VLN(0)T

Il ES
-
4
o

<.
Il

n (VL (0) — VL (0)) (VL (0) — VL) — nk (VLN (0) — VL*(0)) (VL (0) — VL (0))T

Jj=1

and by the triangle inequality,

k
%Z —VLN(9)) (VLj(0) — VLN () —E[VLO";2)VLEO 2)]

max

<UL0)+Us+n \H(VﬁNw) — VL (6) (VEN(0) - VL 0)] |

max

max

By the fact that H|aaT H’
n_lUg (0)

— [|al|2, for any vector a, we have that W(ch(e) — VL)) (VLN (0) — vc*(e))TH

max
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Lemma F.2. In linear model, under Assumptions (Al) and (A2), provided that Hé — 0" ||1 = Op(rg), we have that

k
% S0 (VL5 (0) - VEN () (V£;(0) — VEN (@) — B [VL(©" 2)VL0*; 2)]
2 1/4 2
_ 0P< 1o§d | log (dl;:) logd <1+ (loid) L [log (dll:) 10gd> g lhdirs

+ (n + nl(;gd + 10g(kd)> 7"3).

Proof of Lemma F.2. By Lemma F.1, it suffices to bound Uy (), Us, and U3(#). We begin by bounding Us. In linear

model, we have that
k T T T
1 X ej Xjej 2
) )

(X e\

is bounded away from zero, under Assumptions (A1) and (A2). Also, using same argument for obtaining (D.1), we have that

(X e 2 tv/n
Pl |—L== <2 —c| —— < —c
(‘ Jn >t| <2exp| —c S0? A S < Cexp(—c't),

for some positive constants ¢, ¢/, and C, that is, (X jT e;)1/+/n is sub-exponential with O(1) ¢ -norm for each (j,). Then,
by the proof of Corollary 3.1 of (Chernozhukov et al., 2013), we have that

E[Us] = E 1 i XT@J XjTej ! 257 < [logd . log?(dk) log d
o kg Vn 7 ~ k k ’

Note that

0'22571

Zz 1 Xv] leZ]] _

max

which implies by Markov’s inequality that

locd log?(dk)logd
U2=Op< ogd  log’( )0g>.

k k

Next, we bound Us(f). By the triangle inequality and the fact that for any matrix A and vector a with compatible dimensions,

< 1Al llall1. we have that
VLN (0) = VL D) <||[VLNEO) = VLN O] + VLN O] + VL)
_ X;(X]}ff—yN)_XN(XNAQ;_yN H +‘X%(XNji*—yN)HOOJFHE(e_a*)HOO
_ XJS’VXN(G ) w+‘XZ€NHOO+HZ(9_0*)H°°
g e LR o R e
S R LIRS = RN
o .
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Under Assumption (A1), each x;;; is sub-Gaussian, and therefore, the product x;; ;2;;;- of any two is sub-exponential. By
Bernstein’s inequality, we have that for any ¢ € (0,1),

(X;XN)” log =5 10g¥ 1)
P A 1] i < —
‘ N we| > Bl | =75 N S @
for some constant ¢ > 0. Then, by the union bound, we have that
XTI Xy log 2& log 242
P EELR > |I= 9 0 < 6. F.1
757 -] s v ) ) < (1)
Similarly, we have that
XX log 24> log 24
P H‘ 2171 2’ Sl [ 2 vy 22| <. (F2)
n max con cn

By (F.1) and (D.1), we have that

XWXy 5
N

max cN cN N
Xien log %d log % log d
< =
H N Hm s max /o | =5V Ty Or N )’

where max; /> < [|2 = O(1) under Assumption (A1). Then, assuming that ||@ — 6*
’ max p g

log 2Z  [log 24° 1
Il B [} Z0p (/1) ana

| = Op(rg), we have that

||V£N(9_) B Vﬁ*(é)Hoo — <0(1) +Op ( lojid)) Op(rg) + Op < logd>

N
log d logd
op<<l+ e )w logd )

and then,

- logd logd
U3(9)20p<<1+ N)TLT%-‘F A )

Lastly, we bound Uy (6). We write VL;(0) — VL*(6) as (VL;(0) — VL*() — VL;(0*)) + VL;(6*), and obtain by the
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triangle inequality that

no) < | ¢ Zn (VL;(0) = VL (0) = VL;(07)) (VL (0) — VL (0) = VL;(07)) |
+lz invw*) (VL;(0) = VL (0) = VL;(67) "
s Zn (VL (0) — VL (0) ~ VL (0%)) VL; (0°)T
- % Zﬁ;n (VL;(0) — VL (B) — VL (67)) (VL;(0) — VL (B) — VL (6%))
+2 ;inij*) (VL(0) = VL (0) - VL£;(07) e

t= Uy (0) + 2U15(0).

To bound U1 (f), we first define an inner product (4, B) = ||ABT |Hmax for any A, B € R4*k, the validity of which is
easy to check. We then apply Cauchy-Schwarz inequality on (A, B) with

A:\/Z[Vﬁlw*) ... VLp(0*)] and

B= \/Z [VL1(0) — VL) = VLL(0%) ... VL(B) — VL (0) — VLk(0%))]

and obtain that
1/2

nV L (0F)VL;(0%)"

| =
NGk

Il
—

U2(0) <

J

max

1/2

k
E3 0 (VL) ~ VL) - VL,(6%)) (VE(0) ~ VL) - VL5(6)

Jj=1

max
1/2

TLV,C](Q*)V[:](G*)T U11(§)1/2.

| =
gk

1

J

max

By the triangle inequality, we have that

k
1 * *
%§ nVL;(0F)VL;(0°)T

j=1

max

+||E[VLO": 2)VL52)T]

k
< % S nVL ()L (07) — [V 2) VLD 2)] .

j=1

max

logd log?(dk) log d)

= U+ 0% [ Sl = Op (1 e ;

It remains to bound Uy, (). Note that
; ; X (X50 —y;) 5 +X;(Xj9**yj) _ <XjTXj B

VL;(0) — VL (0) — VL, (07) = 2
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Then, we have that

k T T
_ 1 X7 X; . oo [ XTX;
Un(0) = k;;n< - —2)@-9)@-9) — - %
k T T
XTX; _ _ X7 X,
S%E:n <J32>waﬂw9ﬂT<ﬂ Jz)
n n
j=1 max
k T 2 k T 2
1 XX, _ 1 XX, _ )
= T sl e-0| <= 1) 5 — 0
o (X -s) -0 S & oo

where we use the triangle inequality and the fact that ||aa ™ ‘Hmax = |la||%, for any vector a, and || Aal|oc < |A]l,..x lall1
for any matrix A and vector a with compatible dimensions. By (F.2), we have that

XTX, log 2kd’ log 2k 1)
P (H‘H =X > |HE|"max ( & 2 v £ ° g E’
n cn cn

which implies by the union bound that
log(kd
=(h>< og( )>.
n
max

Ur1(0) = Op (log(kd)r3)

1/4 2
U12<e>:op((1+(l°§d) 4y e <d’;”°gd) m)

1/4 2
U,(0) = Op ((1 ; (k’gd) i W) Viog(kd)rg +1og<kd)r3-) ,

and finally the bound in the lemma.

X/ X;

n

b))

max
J

Putting all the preceding bounds together, we obtain that

Lemma F.3. For any 0, we have that

n+2_1(E:““X@ZMT—VQNQHVEwﬂh)—VﬁanT
i=1

+

k
j=2 max

nﬁ%ﬂ&—VﬁM@ﬂV@@)—V&ﬂﬁf)—EhMWﬂ@VCWﬂ@W
vy

<VA(O) + VI (0) + Vo + Vi + V3(6),

where V1(0) := n—llﬂ—;i T

LS (VE(6: Z0) — VL7 (0)) (VL Z0) - VL7 (0) — VL@ Z) VL0 Z00)T

i=1

n

Vl/(e)::n—&—k—l

n
max
k—1

Vz::n—l—k—l

i

k

k
ilZ)Nﬁ#MVQWﬂT—EWTWﬁmV£Wﬁ@W
=2

max
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. n

2 T+ k-1

%Zn: VL(O*; Zn)VLO  Z0n) T —E[VLO* Z)VLO* Z)T ]

, and

max

nk

Val0):= 22—

IVLN(0) — VL)% .

Proof of Lemma F.3. We write VL(0; Z;1)—VL*(0) as (VL(0; Zin) — VLN (0))+ (VLN (0)
VL) as (VLi(0) — VLN(0)) + (VLN (0) — VL*(H)), and have that

>~ (VEWiZi) = VL (0)) (VE(: Z) - VL' (0)
3 (VL85 Z0) — VEn(0)) (VEG: Za) ~ VL (6) +n(VLx(6) — VL (6)) (VEn(6) — VL (6)

n n

+ (VLN (8) = VL (8) D (VL(:; Zu) = VLN(6) ' + D (VL(O: Zn) — VLN (9)) (VLN (6) ~ VL (6))'

=3 (VLO:; Zu) — VEN(0)) (VLO; Zun) — VLN (0)T +1 (VLN (0) — VL (8)) (VLN (0) — VL (0))T

+n (VLN (0) = VL (0)) (VL1(0) = VLN (0)) T +n(VL(O) = VLN () (VLN () = VL (9)

and
k
> 0 (VL (0) — VLY(9)) (VL;(0) — VL (0)) "

k
=30 (VL (0) ~ VLN (0) (VL;(0) — VLN ()T +nlk — 1) (VLN (0) — VL (0)) (VLN (0) — VL (6))"

k k

n(VLy(0) = VL (0)) (V —VLN©) +nY (VL(0) — VLN(0)) (VLN (0) — VL (D)) .
j=2 j=2

Adding up the two preceding equations, we obtain that

k
> (VL(O: Zin) = VL(0)) (VLO: Zin) = VL 0) "+ n(VLi(0) = VL (0)) (VL;(0) = VL (6))'
j=2

=1

n k
Z (VL(0; Zin) = VLN () (VL(O; Zix) = VLN (0)) T + Y n(VL;(0) = VLN () (VL;(0) — VLN(0))

+nk (VLN (0) = VL (0)) (VLN () — VL (0))
k k
n (VL (6 0)D_ (VL;(6) = VLN(0)" +nY (VL;(0) = VLN(0)) (VEN(O) = VL (0)

J

= N (VE®: Za) — VEN(0)) (VE®: Zn) — VEN ) +

=1

'Mw &

n (VL (0) = VLN(0)) (VL;(0) — VLN (0))"

||
o

+nk (VLx(0) — VL*(0)) (VLN (0) — VL (0)) ",

— VL*(0)) and VL, (0)—
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where we use VL (0) = & Z§:1 VL;(6) in the last equality. Then, we have that

n

Jj=

@
i

. —_

M .

7

1 Jj=

—nk (VLN (0) = VL (0)) (VLN (0) = VL (0))

and by the triangle inequality,

n

ﬁ (Z (VL(6; Zin) — VLN (0)) (VL(O; Zin) — VLN (D))
=1

k
+ Zn (VL;(0) — VLN (0)) (VL;(0) — VLN () ) —~E VLB 2)VLO*;2)"]

max

En: VL(0; Zir) — VL (0)) (VL(O; Zin) — VL (0)) | —E [VLO"; Z)VLO" 2)T]
=1

“n+ k -1 .
k
T >~ (VAVE,0) = VRV 0) (VA9 (0) - AVE ) B (V20 202 2)]
+ m H‘ (VLN (0) — VL(0)) (VLN (0) — v,c*(e))TH .

= A(6) + B(O) + — (VLN () = VL (0)) (VEn(6) - V£(0) |

=

max

By the fact that [|aa " || = |la||% for any vector a, we have that ”’ (VLN(0) =V L*0)) (VLN (O) — VL0 w

(n+k —1)(nk)~1V3(0). We apply the triangle inequality to further decompose A(6) and B(6) and obtain that B(6
V1(0) + V2 and A(9) < V/(0) + V5.

max

Lemma F.4. In linear model, under Assumptions (Al) and (A2), provided that Hé —0* Hl = Op(rg), we have that

n

ﬁ (Z (VL(; Zi) = VEN(D)) (VLO: Zin) - VLN D)

X
+ Z n(VL;(0) —VLN()) (VL () — VLN(é))T ) —E[VLO2)VL(02)"]

B [logd  log*(d(n+ k))logd logd\ nk )
_0P< n+k+ o—y +( 1+ N n+k+log((n—|—k)d) 5

og!/* dy/1 k)d ] ]
+< log((n + k)d) + og((n + 0g’(d(n + k) logd rs .

(n+k)t/4 n+k

max

k
> (VLO: Zin) — VLN(9)) (VL(O: Zin) — VLN(D)) T + Zn VL;(0) — VLN(0)) (VL;(0) — VLN (9)) "

k
(VL(O: Ziy) — VL (0)) (VL(O; Ziy) — VL (O) " + Zn (VL;(0) — VL () (VL,;(0) — VL (9) "

max

O
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Proof of Lemma F.4. By Lemma F.3, it suffices to bound V; (9_2 1(0), Va, V4, and V3(A). By the proof of Lemma F.2,
we have that under Assumptions (A1) and (A2), assuming that H9 9* H1 = Op(rg),

n+k—1 k

logd\"/*  [log®(dk)logd \ k+/log( Rd)  klog(kd)
=0p 1+ + g+ Ty |
k k n+k n+k

k—1 logd log®(dk)logd) VElogd  log?(dk)logd
n+k10P< kT k: =0 YT oare )

- nk log d log d logd nk logd
V3<9>:n+k101’<<” J%T>TE+ J%f)zOP(<1+ N >n+kr3+nik>'

It remains to bound V7 () and V. To bound V;, we have that in linear model, under Assumptions (A1) and (A2),

Vi(0) = ko1 Op ((1 + (logd) + 710g2(d:) logd) Vlog(kd)rg + log(k‘d)rg>

2 =

!/

Vo= —-——

n
T 2
g %1621 leeil) — 0%
n—l—k:—l
1 max

Note that E [(mil eﬂ)ﬂ = 023, is bounded away from zero, and also that (z;1€;1), is sub-exponential with O(1) 11 -norm
for each (4,1). Then, by the proof of Corollary 3.1 of (Chernozhukov et al., 2013), we have that

<

~

log d n log?(dn) log d
n n ’

1 n
T 2
EE (zirein) (Tinein) —o°X

max.

which implies by Markov’s inequality that

;L n Op ( log d N log?(dn) logd> 0 <\/nlogd N log?(dn) logd> .

Vi
2 n4+ k-1 n n n+k n+k

Lastly, we bound V7 (9) using the same argument as in bounding U1 (9) in the proof of Lemma F.2. We write VL(0; Z;1) —
VL (0)as (VL(O; Zin) — VL (0) — VL(O*; Zin)) + VL(0*; Z;1 ), and obtain by the triangle inequality that

n+k—1

i VL(0: Zu) — VL (0) ~ VL Z0)) (VLO: Za) — VL (6) ~ VL0 Z))

max

1
- Z VL0 Zix) (VL(O; Zin) — VL (0) = VL(O; Zin)) T
i=1 max

% S (VL(O: Zia) — VLA (0) — VL0 Zia) VL0 Zia)

=1

+

max

Zn: VL(0; Zin) — VL (0) — VLO; Zi1)) (VL(O; Ziy) — VL (0) — VL% Ziy))

max

LS L0 Zi) (VE(0:Z0) VL (6) — VO Z0)
i=1 max

1= V11(0) + 2/, (0).
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Applying Cauchy-Schwarz inequality, we obtain that

1/2

Vi5(0) <

% > VL0 Z)VLO  Zn) T
i=1

max

n 1/2
1
- > (VL(O; Zin) — VL (0) — VLO; Zi1)) (VL(O; Zin) — VL () — VLO": Zn))
=1 max
L 1/2
= H - > VL0 Z)VLO  Zn) T I ORE
=1 max
By the triangle inequality, we have that
1 n
- > VL0 Za) VL Zin) T
1=1 max
1 n
<|- > VL0 Zn) VL0 Zin) T —E VL Z)VLEO": Z)T ] +[E VL 2)vLeos 2) .
i=1 max
k—1 logd log®(dn)logd
Ty 2 Sl = Op (1“/ ogd , log'{dn)log ) .
n n n
It remains to bound VY, (A). Note that
VL(0; Zir) — VL (0) — VLO"; Zin) = 245 (x50 — i) — 20 — 0%) + 45 (2,0 — y35) = (w2, — ) (60— 0%).

Then, we have by the triangle inequality that

Vlll(é) =

1o . .
1

i=

max

o Z | @iz =) (0676 =67 (zawh = 2) ||

oy [
=1

Similarly to obtaining (F.2), we have that

lo 2nd? lo 2nd?
(Ikuxu E|||m>||z||m( M )) <

which implies by the union bound that

2 1 ~ 2 _
< 13" flenat — I 7 - 07|
i=1

S|l

)

max |”x11le Emmax =Op ( log(nd)) .
Putting all the preceding bounds together, we obtain that

Vi1(0) = Op (log(nd)rg) ,

1/4 2
5) = Op ((1 N (loid) n log(dz)logd) log(nd)r(;) ;

Vis(
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_ logd\"/*  [log®(dn)logd
v/ (0) = ﬁOp ((1 + ( Oi > + og(n)og) \/log(nd)re—i-log(nd)rg)

n

1/ 2
—0p ((1+ <logd> 4+ log”(dn) logd> n\/wr n nlog(nd) 2) ’

n n n+k g n+k "o

and finally the bound in the lemma. O
Lemma F.S. In GLM, under Assumptions (B1)—(B3), provided that Hé — 9*|

| = Op(rg), we have that

k
% > n(VLi(0) — VLN (0)) (VL;(0) - wN(é))T ~E[VLO52)VL(052)")

max

1 1 logd\ '/
:Op( o§d+o]§d+<1+(o§d> )(x/logd—&—\/ﬁrg)rg—&-(n+logd+nr§)r§>.

Proof of Lemma F.5. By Lemma F.1, it suffices to bound Uy (f), U, and Usz(f). We begin by bounding U,. Note
that VLy (0%) = >0, Zle 9 (yij, © ;0% )5 /N and ¢ (yij, 2,0 )xi5, = O(1) for each I = 1,.. ., d under Assump-
tions (B1) and (B2). Then, by Hoeffding’s inequality, we have that for any ¢ > 0,

P (\/ﬁ|Vﬁj(9*)l| > t) < 2exp (—f) ,

that is, \/nV.L;(0%); is sub-Gaussian with O(1) )o-norm. Therefore, nVL;(0*);VL;(6*), is sub-exponential with O(1)
¢1-norm. Note that E[nVL;(6*),VL;(0%)y] = E[VL(0*; Z);VL(6*; Z);]. Then, we apply Bernstein’s inequality and
obtain that for any ¢ € (0,1),

log % log 2%2

1)
< 79
ck ck — d?

k
1
Pl > VL (0°)VL(0%)r — E[VL(O"; 2)VL(O"; Z)]| >

j=1
logd
U20p< ]f )

Next, we bound Us(0). By the triangle inequality, we have that

which implies by the union bound that

VLN (@) = VL B).. < [|VLN (@) - VLN ()

o TIVENE)ll + VL O]
By an expression of remainder of the first order Taylor expansion, we have that

VLN (0) — VLN (0) = /01 V2L (0% + (0 — 07))dt(0 — 0%)

1 n k
1 * n * 0 *
= [ 5 X o a6 + 0 = 0yt @ - 0°),

i=1 j=1

and then, under Assumptions (B1) and (B2),

~ 1 1 n k B B _
IVen(® = VEn@) = [ 3 S 1 50" +40 = 0 g 2 0 -] 5 9 0°

i=1 j=1

’oc'



Simultaneous Inference for Massive Data: Distributed Bootstrap

Note that for any 6,

IVL*(0)] \vu) VL 0o = [E[(9' (27 0) = g'(y, 27 6%))) 2] ||

H { (9* +t0—-06" >>)dt$3«"T(9—9*)]

o0

0

Therefore, ||V£*(§)HOO < ||§ — 0* ||oo By (F.5), we have that

log d
wN(e*)nm:OP( ~ )

| = Op(rg), we have that

Then, assuming that Hé —0*

VLN () — VL (@) = Or (7“5 . 101%765) |

and then,

] log d
Us(0) = Op (nr§+ = )

Lastly, we bound U (). As in the proof of Lemma F.2, we have that

k
1 * (0 * n * (0 A\ T
- Z (VL;(0) — VL (0) — VL (07) (VL;j(0) — VL (0) — VL;(07))
1 _ i .
=D nVL;(0%) (VL;(0) = VL (0) = VL;(67))
j:1 max
= Uu(é) + 2U12(§),
and
1/2
Ur2(0) < Z nVL;(0*)VL;(0)" U1 (6)Y2.
7 1 max
Note that ME [Vﬁ(@* WL Z ] H| ) under Assumption (B3). Then, by the triangle inequality, we have
that

1k
EZ L;(0°)VL;(0%)"

max

k
% S VL, (67)V L (6%) T — E [VL(O% 2)VL0% )]

j=1

+ [ [VLE 2)VLO 2) ]

max

— Uy + ||E[VL"; 2)v L% 2)T]|. (1 + k’]fd) .
It remains to bound Uy (). Note that

VL, 8) = VL (67) /v? (6" + (0 — 67))dt(6 — 6) / Zg” i (07 4 (8 — 67)))zielde(6 — 67),
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and
1
9" Wij, w507 + 10— 0%))) = g" (yij, 2;0%) + / 9" (i, w507 + st(0 — 6%)))dsa; (£ — 0%)),
0
and then

VL;(0) - VLj(0) = Z 9" ij, 07 )iz (0 — 07)

=1
1 1 n
0 Jo in
In a similar way, we have that
VL (0) = VL (0) — VL (%)
1 1
=K [g//(y7$T0*).’E:L'T:| (g — 0*) +/ / Eﬁ,y [g//l(yvx—r(g* + St(é o 0*)))th(0_ _ 9*)1'$T] dtds(é - 9*)7
0o Jo

and then,
Vﬁj(é) — VL) - VL;(6%) = ( Zg yw,xwﬂ JEPE ZTJ E [g”(y, Tt‘)*)xazW) (0—07)

/ / Zg"’ Yigs 2 (0% + st(8 — 0°))alyt(B — 0% )iy

—E,, [g///(

O +st(0—07))z"t(0 — 0%)ax "] dtds(0 — 6%)
= U111g + Ur12,5(0).

Then, we have by the triangle inequality that

k
1 _ )
Un(0) = ||+ > 0 (Uning + Unia j(0)) (Unnn; + Uri2,5(0)

Jj=1

max

W Ui, + Uri2,(0)) (Ur11,5 + U112,j(é))T“

<1
=%

max

1 2 & _
=7 |U111]+U112] 2 EE:: <|U111,j||zo+ ||U112,j(9)|}i0)

i
2

Using the argument for obtaining (D.3), we have that

011,50 = [ (V2£;(07) = V2L7(6)) (6 = 67) <|||v2 (07) = V2L (O | 10 = 6711,

o e (5]

Under Assumptions (B1) and (B2), we have that
N ! 11 . " T /p* n * n * 2
|V, < / / S 1" i 20" + 510 = 7)) il 10— 0, s 2
i=1

el ] deds||o - o],

By [0 (50T (0 + 10— 07)] ol £ [}0 - 0"

<ol =0 (7).
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Hence, we have that

Un(8) = n (op (ﬁf%g) L Op (rg)) — Op ((logd +n12) 12).

Putting all the preceding bounds together, we obtain that

Ui2(0) = Op <<1 + <10§d> 1/4> (\/@ + \/ﬁffi) Té) ;

, logd '/*
U1(9)=OP<(1+(OI§ ) )( 1ogd+\/ﬁr(;)r§+(10gd+nr3)r§>,

and finally the bound in the lemma.

Lemma F.6. In GLM, under Assumptions (B1)—(B3), provided that ||§ —6* ||1 = Op(rg), we have that

ﬁ (i (VL(B; Zin) — VLN(D)) (VL(O: Zin) — VLN (D))
i=1
k

+3 0 (VL (0) — VLN (D)) (VL (0) — VLN (®)' ) —~E[VLO*;2)VLO"2) ]

Jj=2

logd log d nk logd 1/4 n 9 no oy
=O0p| 4/ > 1 G+ry)+——r;
P( n+k+n+k+n+kr‘9+ + n n+k(T9+T9)+n+kT9

1/4
N <1+ <10gd> /> k\/logd—&—k\/ﬁrgr N klogd + knr? )

max

: 2
k ntk 8 ntk 0

Proof of Lemma F.6. By Lemma F.3, it suffices to bound V1 (6), V{(f), V2, V3, and V3(6). By the proof of Lemma F.5,
we have that under Assumptions (B1)—(B3), assuming that HG — 9*| , =0 p(rg),

_ k-1 logd\*/*
V1(0) = mOp <<1+ ( Ii; ) > (x/longr\/ﬁrg) rg + (logd + nrf) rﬁ)
1/4
o, <<1+ (logd) / ) kVIogd + ky/irg . klogd + knrg 2>’

k ntk o ntk 0

k-1 1 vkl
Vo = Op( Ogd> ZOP( K Ogd), and
n+k—1

k n+k
-~ nk o, logd\ nk 5 logd
%’(9)_n+k—1OP<r‘)+ N >_Op<n+kr9+n+k '

It remains to bound V/(f) and V.

To bound Vy, we note that each VL(0*; Z;1)iVL(0*; Zin)r = ¢'(yir, x10%)?2i1 1251 is bounded under Assump-
tions (B1) and (B2). Applying Hoeffding’s inequality, we obtain that for any ¢ € (0, 1),

P 1§:vc(9*~z WVLO: Zi ) — E VL0 Z) VL% 2)]| > clog %7\ _ 0
n 5 441)1 s L1 )1 ) l ) 14 n _d27

i=1

which implies by the union bound that

;L n logd\ nlogd
V2_n+k—10P< n >_0P<\/ n+k )’
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Lastly, we bound V7 (f). As in the proof of Lemma F.4, we have that

k n
ntk=1y, Z (VL(B:; Zo1) — VL (8) — VL(6%; Z01)) (VL(6: Zur) — VL*(8) — VL(O%: Zur)) "
- Z VL0 Zi1) (VL(O; Zi) — VL (0) — VLO*: Zi1)) "
i=1 max
1= V{1(0) + 2V/5(0),
and
. 1/2
Vi,(0) < - > VL0 Zin)VLO : Zin) T Vi (0)Y2.
i=1 max
Note that ||E [VL(6*; Z)VL(0*; Z)T]|| .. = O(1) under Assumption (B3). Then, by the triangle inequality, we have
that
1 n
- > VL0 Zin) VL Zin) T
=1 max

+[|B VL 2)VL0 2) T e

1 n
- > VL0 Zn) VL0 Zin) T — B [VLO Z)VLO": Z)T ]
i=1

max

- TN o (9207 292052 - 0 (14251,

It remains to bound V7, (6). Using the same argument for analyzing V£, (0) —V.L*(0) —V L;(6*) in the proof of Lemma F.5,
we obtain that

VL(O; Zin) — VL (0) — VLO; Zin) = (9" (yir, 2,0z, —E [¢"(y, 2" 0%)zz"]) (6 — 67)

11
[ " el @+ st(@ 0705006~ 6w
o Jo
—Euy [¢" (v, (07 + st(0 — 0%)))x"t(0 — 0 )zz " | dtds( — 6%)
i= Vi + Viea(0),
and

-
Vii(0) =

1 & _
i Z Vit + Vi z(9>) (Vllll,i + ‘/1/12,1‘(9))

max

rlli ‘H Vi, i T Viia 1(0_)) (V1’11,1' + V1/12,i(9_))TH

max

n

n ~ 9 ~
Z ||V111 i+ Vo 9)”20 < o Z <||V1/111HZO + HV1,12,1'(0)||C2>O> .

i=1
Moreover, under Assumptions (B 1)—(B3), we have that
Hvl/ll,’i ||OO = H (VQE(H*; Zzl) - VQL:*(&*)) (é - 9*

< (|9" (wir i 8)] a2, + [| V2L (6%)

oo S NV2LO%; Zin) — V2L (67)
max) He 0" | - OP (Té),

0 -0,

max

and

2
a5

1 1
[Virae@llo < [ [ 10" .l + st@ = 0D s 0 - 07

+ By [0 (5,27 (0 + 10— 07)] 2]l t]}0 - 0"

Nl ] deds|j - o7,

<lo-eli=0r03),
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and hence,
V{1(0) = Op (7% + Tg) :

Putting all the preceding bounds together, we obtain that

1/4
V/y(0) = Op ((1 + <1O§d> ) (r9+r§)> ,

- n logd\ /4
Vl/(e):rH—k—lop<<1+< =) )WHE_)%%)

—0p [ 14 (& Y e (rg +12) + ——rd
—r n n+k 0T T g0

and finally the bound in the lemma. O

Lemma E.7. In linear model, under Assumption (Al), if n 2 d, we have that

Jell -or (va) s mysléi-a, -0 ().

n

Proof of Lemma F7. O is simply the inverse of X, X;/n. We use the fact that for any matrix A, B € Rx9,
|A=t =B, < ||B~! H‘; | A — B]|,. and obtain that

fo-el, - ()" -
2 n

Since the design matrix is sub-Gaussian and |||, = O(1), by Proposition 2.1 of (Vershynin, 2012), we have that if n > d,

o)

XX,
n

-2

— 2
<[I=,
2 2

XX g
n

Also note that |HE’1 |||2 = O(1), and then, we have that

n

=0 =[], =00 (%)

5~ <valle-ef,=o-(7)-

Note that |0, < Vd|[|©], = Vd = H|2 =0 (\/8) By the triangle inequality, we have that

8] <[~ el + 101 = 0= () + 0 (va) =0r (va).

Lemma E.8. In GLM, under Assumptions (B1)—(B3), if n 2, dlogd and r < 1, we have that

H‘é(é)wo@ =Or (\/a) and mlaxH(:)(é)l - @lH2 =0Op <\/dl(;j+ rg) .
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Proof of Lemma F.8. ©(6) is simply the inverse of V2£1(6). Then, we have that

o)~ 6], = Iv22:0) - w26y 1], <[22 @) w22 B) - 92 0],

Note that

[V2L1(6%) — V2L (6%)||, =

)

1 n . )
‘Hn Zgﬁ(yz‘j’l‘jje Jaijzy; — Elg" (y, a0 )aa ]
i=1 ,

\/gH\/gH(yijvxlTje*)xij o

= O(1). By Section 1.6.3 of (Tropp et al., 2015), we have that if n = dlogd,

= 0Wd

H 9" (Yij, © ;0% )i ,

and || V2L*(6")|| )

dlogd

2}5 n )

dlogd
IV2cu(6%) - 9227 (6")]], = O (\/ " )

E[||V2£1(6%) — V2L (6%)

which implies that

Also note that

n

Z yzj,xUG (yij7x;rj€*)) acuac

IV2L1(6) — VL1 (6%)

2

dlogd
, =Orp <\/ Zg +7"é>-
Since || V2L*(6*)7!||, = O(1), we have that

s [30- 0], =[50l =0r (5 4 1)
oo < il -], o (4 4 i)

Note that |0, < vV [|©]l, = Vd ||v2£*(6*) Y|, = O (ﬁ) By the triangle inequality, if 5 < 1, we have that

[0 < 560 o]+ 1. =0r (/"= i) 0 (v3) =00 (1),

By the triangle inequality, assuming that H@ — 0*||, = Op (rg), we have that

IV2L1(6) — V2L (8

< [IV2L1(8) — V2L, (09|, + | VL1 (6%) — V2L (0|

Lemma F.9. In linear model, under Assumptions (Al) and (A2), if N 2, d, then we have that

dlogg n dlogg
2 N N

H%e*

with probability at least 1 — 6, for any § such that e < § < 1.
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Proof of Lemma F.9. Note that

0—0"

H/\

XExa\ T 1 xTen
N

= o)™ st o], -

g st

2 .
By (D.1), we have with probability at least 1 — § that

d
)

<\[HXN6NH < dlog%+dlog

XNBN
N N

By Proposition 2.1 of (Vershynin, 2012), if n = d, we have with probability at least 1 — § that
< d+1og%+d+1og%
9 ~ N N )

T —1

-X

|5

and then, by the triangle inequality,

XTXN B 2 XTXN
m ) +1ol, < ol | 2
2

d+logi d+logi
<4/ g 0 4+1<1 F.4

provided that N > d + log(1/4). Finally, by the union bound, we have with probability at least 1 — 24 that

-

+ el
2

dlog? dlog?
g5+ gg.

9 — 0
H 2™ N N

Lemma F.10. In linear model, under Assumptions (Al) and (A2), if n 2, d, then we have that for any t > 1,

[0 - 4], ) L faen -]
2 ™ 2’

with probability at least 1 — 0, for any 0 such that e™" < § < 1, where 0®) is the t-step CSL estimator defined in Algorithm
2.

Proof of Lemma F.10. Note that

Hé(t) - §H2 = (6 — 2L, (B D) 1w Ly (60D — 5H2
_lge-n _ (XX Xy (XN("t*l))—yN) (X3 XN T X
N n N N N
2
T (t—1) _ T nt—1)y _

— |lgt-1) _ X1 X1 Xy (XNG )~ yN) _gt-n XxXN ' Xy (XN9 ) yN)

N N N

2

. ‘(Xir)ﬁ) (X]T,XN> -1 XJ—\;XN (9(t_1) —9)
- N

2 2
<) CF) -G | Ll
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By (F.4) with triangle inequality and the union bound, we have with probability at least 1 — ¢ that

XX\ (XaXn\ Xle
n N

-1 -1

/d+log5 d+1og5 /d+log6 d—l—log5
< /d+log3+d+1og3’ and
n n

[d+1logt d+logi
Y, < 9 o 4 1.

Provided that d + log < n, we obtain the bound in the lemma. O
Lemma F.11. In GLM, under Assumptions (B1)~(B3), if N > d*log d, then we have that

< dlog%
2 ™ N

with probability at least 1 — 0, for any 0 such that e~ N/d* <o< L

e N
- N

Heﬁe*

Proof of Lemma F.11. We use the argument in the proof of Lemma 6 of (Zhang et al., 2012). By Theorem 1.6.2 of (Tropp
et al., 2015), we have with probability at least 1 — § that

. . dlog ¢ dlog 4
V2L (67) = V2L* (67|, < CY/ ~ O

for some constant C' > 0. By (D.2), for any 6, we have that

IV2Ln(0) = VLN (09|, < d|[V2LN(0) — VLN (09|, < Cdllo— 0%, < Cd*? |0 —6%,.

Let p = (4Cud®/?)~1 and assume 4Cu+/dlog(d/6)/N < 1 and 4Cpudlog(d/5)/N < 1. Then, forany § € U : = {6 :
|6 — 0*||, < p}, we have by the triangle inequality that

V2L (0) — V2L*(6%)

l, < [V2Ln(0) = V2L (67)

+[[V2Ln (6%) = V2L (67)]

-1

|, < (2u)

Since Amin (VZL*(6%)) > p~ 1, we have Apin (V2L (0)) > (2u) ! for any € U. Then, for any 6’ € R%, we have that
Ln () > Lx(0%)+ TLx(07)T (0 = 0%) + () min {07 = 0" 2. 2

and then,

min {16/ = 0°13, 9} < 4u(Ln () — L (6") = VEN(O7)T (8 - 6)
<Ap(Ln(0) = Ln(07) + VLN (072 16 = 07]1,).

Dividing both sides by ||#’ — 6*||, and then setting 6’ = k6 + (1 — k)6* for any € [0, 1], we have

2 4 (EN(H§+ (1—-k)6%) —EN(G*))
<

~

min HHQ—Q* p

) ~

2 KH@—@*

+4p| VLN (072 < 4|V LN (07)]2,

~

KJHQ—Q*

2 2
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where we use that £y (k0 + (1 — £)0*) < Ly (6*) for any # € (0, 1) since Ly is strongly convex at 6* and § minimizes
L. Note that VL (6%) = Y0, Zle 9 (yij, x ;07 )xi; /N and g (yij, 250% )i, = O(1) foreach I = 1,.. ., d under
Assumptions (B1) and (B2). Then, by Hoeffding’s inequality, we have that

clog %

P ‘V,CN(Q*)H > N

1)
<77
—d

for any 6 € (0,1). By the union bound, we have with probability at least 1 — ¢§ that

log 24
IVLN (0]l <4/ =Es Of, LY (F5)

Then, we have with probability at least 1 — ¢ that

. y dlog%
IVLN (), < VA|IVLN(67)]| < C N
and by the union bound, with probability at least 1 — 24,
—~ 2 dlog 4
min HHQ—G* y — <4Cpu %gp,

2 nHefe*

2
provided that 4C'u/dlog(d/d)/N < p. Since this holds for any x € (0,1), if Hé\i 0*

2
p/ Hg— o

> p, we may set Kk =

< 1, and find that
2

TP T =P,
2 ,-;He—e*
2

min < K HG — 0"

which would yield a contradiction. Thus, we have H§ —0*|| < p,thatis, ) € U. Furthermore, we have that
2

~ 2 . . .
[0-0°|, <4 (£n(® = £a(0") + IV L @112 [0 - 0°]| ) < 4V Lx (@) 6 -0 .
and thus,
o * * log%
He 0| <au| VLN (@) < 40k 7
2 N
with probability at least 1 — 2§, provided that 4Cpu+/dlog(d/é6)/N < 1, 4Cpudlog(d/é)/N < 1, and

ACu\/dlog(d/8)/N < p, which hold if § > e=N/" and N > d*log d. O
Lemma F.12. In GLM, under Assumptions (B1)—~(B3), if n 2 d*log d, then we have that for any t > 1,

d
70 -], < (=2 e e ], ) [0 -3
2 ™ n 2

with probability at least 1 — 6, for any  such that e—n/d* < 6 < 1, where 0@ is the t-step CSL estimator defined in
Algorithm 2.

)

2

Proof of Lemma F.12. We use the argument in the proof of Theorem 3 of (Jordan et al., 2019). Note by the triangle
inequality that

o=,

_ Hg(tq) C V2L (00D T L (64D — 5”2

< Hg(t—n _ vzﬁN(g(t—l))—lvﬁN(g(t—l)) _ 9‘H2 n H (VQEN(g(t—l))—l _ v2£1(§(t—1))—1) VEN(g(t—l))HQ )



Simultaneous Inference for Massive Data: Distributed Bootstrap

To bound the first term on the right hand side, we have that
|7 = V2L (@) VLN (@) - é\H
2
— |lge-1 —§ — w2y @) (vc @) — VLN (@ )H

= [0 — § — V2L (@t-1)! / V2LN (0 + s8¢V — ))ds (5“—1) - 5)

2

w2 @) / V2L (00) V2L (G + (0 ~)yds (70— 5)

2

IN

Peen @), [ En ) - 9@ 4 G - i[5 -],
By the proof of Lemma F.11, we have that
WvQ 0(t 1) H‘ < ‘HVQ 0(15 1)) v2£* 0* 71‘” + |||v2£*(9*)71|||2
2

< mv2£* (%) 1m H’VQ e(t 1)) V2L (6%)

£,

dlogg N d10g5

9t 1)
N N

A

LB/ ’

9

with probability at least 1 — §, and

R R 8
and thus,
’§(t D _v2Ln ( (t— 1) VLN (g(t 1) QH ( dljo\fg erljo\fa Jrdi’>/2’9(t 1) _ g 2+1) d3/2‘§(t71)7§Hj'
To bound the second term, we have that
H (VQEN('é'(t—l))—l _ V2£1(’9“(t—1))—1) VL g(t—l) H
N ]
[l ween oo ven),
< |v2en@0)t - v @) /1 [w2en @+ s@ =0~ o) as|jo— -7 .
2 Jo 2 2
By the proof of Lemma F.11, we have that
‘Hvz 9(f 1) ) — V2L, (e(f 1) H‘ < ‘Hvz e(f 1) ) V2£*(9*)—1H‘2 n H V2£1(§(t—1))—1 _ V2£*(9*)—1H)2
< dlog § alog s dlog 4085 | g3/2 ‘ git-1) _ g*
~V o n 2’
with probability at least 1 — §, and
[v2ex@+ 5@ 0| <[|v2en@+ 5@ - 0) - v2er )|+ 92 @),
< dl(])\‘?g +%+dm( g1 — 9 2+H(379* 2) +1

S d3/2 Hg(t—l) —p*

)
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for 6 2 e~ N/, provided that N > d*log d, and thus,

H (vzﬁN(g(tq))q _ V2E1(§(t71))71) VEN(a(til))H

d d
(Jdoe s | dlogF | s Hg(t—n _ o
n n

Provided that n > d*logd and § > e~™/4* we have d3/2 H§<t—1> _ ¢

2

<d3/2 Hg(t—l) _ o

+1) oo -9 .
2 2

2

< 1 for any ¢ > 1, and then,
2
d
Hgm _ §H < Hga—n _ 5H2 I VRS SRR ng—n _ o
2 ™ 2 n

Hg(t—l) e

Joe=» -],
2 2

Since

< fpn oo
2 2

~ N dlog 4
< [|gtt-1 — GH 0
2~ H 2 + N
we obtain the bound in the lemma.



