
SUPPLEMENTAL MATERIAL
XtarNet: Learning to Extract Task-Adaptive Representation

for Incremental Few-Shot Learning

Sung Whan Yoon∗ 1 Do-Yeon Kim∗ 2 Jun Seo 2 Jaekyun Moon 2

1. Details of Backbone Networks
For the miniImageNet experiments of XtarNet, we utilized
ResNet12, a residual network with 12 convolutional layers,
as architecture of the backbone network. ResNet12 consists
of four residual blocks having 64, 96, 128 and 256 respec-
tive channels. We use a LeakyReLu for activation function
and the slope is 0.1 at x < 0. Each residual block contains
three 3 × 3 convolutional layers, where every convolutional
layer is followed by a batch normalization and an activation
function. For the last layer of the fourth residual block, we
do not use an activation function. The residual connection
of each block consists of a single 3 × 3 convolutional layer
and a batch normalization layer. At the end of each resid-
ual block, 2 × 2 max-pooling is applied. To reduce the
dimension of the feature vector, a global average pooling is
applied to the output of the last residual block. For every
residual block, we use a dropout layer with a drop ratio of
0.2 after the max-pooling layer. For all methods other than
XtarNet, the difference is that we use a ReLu for activation
function and do not remove the activation at the last layer
of the fourth residual block.

For the tieredImageNet experiments of XtarNet, we em-
ployed the standard ResNet18, which consists of 18 con-
volutional layers with identity mapping, as the backbone
network. We use a ReLu for the activation function. Down-
sampling layer is adopted in residual connection if needed;
average pooling and zero-padding are applied to match the
feature map size and the number of channel respectively.
As the miniImageNet cases, we also do not use an activa-
tion at the last convolutional layer of the last residual block.
ResNet18 is well-known, and we forgo a detailed descrip-
tion here. For all other methods except for XtarNet, the

*Equal contribution 1School of Electrical and Computer En-
gineering, Ulsan National Institute of Science and Technology
(UNIST), Ulsan, Korea 2School of Electrical Engineering, Ko-
rea Advanced Institute of Science and Technology (KAIST),
Daejeon, Korea. Correspondence to: Sung Whan Yoon <shy-
oon8@unist.ac.kr>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

difference is that we do not remove an activation at the last
layer of the last residual block and use a 1×1 convolutional
layer followed by batch normalization layer for downsam-
pling to match the dimension.

2. Details of Meta-Trained Modules
The details of MetaCNN module are described in the main
paper. We utilize fully-connected networks for MergeNet
and TconNet. For the miniImageNet experiments, MergeNet
consists of two separate 4-layer fully-connected networks.
These two component networks have the same architecture.
The size of the input layer of each 4-layer fully-connected
network is 512, which is the length of a concatenated feature
vector. For the hidden layers and the output layer, the size
of each layer is 256. For each of first three fully-connected
layers, an ReLu activation is employed. For the last fully-
connected layer, a sigmoid layer is employed. TconNet
consists of three 3-layer fully-connected networks. Two of
them are for computing the conditioning vector for the base
classifier. These two fully-connected networks have a skip
connection at each layer. The size of each fully-connected
layer is 256, which is the length of a combined feature vec-
tor. ReLu activation is used at every layer. At each output
of these two component fully-connected networks, we mul-
tiply the output vector by the constant 0.1 for scaling. The
remaining 3-layer fully-connected network is for condition-
ing of the novel classifier. The size of each fully-connected
layer is 64, which is the number of the base categories. The
last two fully-connected layers have skip connections. ReLu
activation is used at every layer.

For the tieredImageNet experiments, the architectures of
MergeNet and TconNet are the same as that we used in the
miniImageNet experiments, except for the size of the fully-
connected layers. Because the length of the feature vector
becomes double, the size of every fully-connected layer
of MergeNet and TconNet also doubles. In TconNet, the
size of each fully connetected layer for conditioning novel
classifier is 200, which is the number of base categories of
tieredImageNet.

XtarNet: Learning to Extract Task-Adaptive Representation for Incremental Few-Shot Learning

0 50 100 150 200 250 300 350 400 450 500

Principal Components of Query Samples

0

5

10

15

20

M
ag

ni
tu

de

pre

meta

Figure 1. Principal component analysis for mixture weight vectors

3. Hyperparameter Settings
We use 25 × 2 = 50 queries in each training episode for
the proposed XtarNet algorirthm. In the tieredImageNet
experiments, we also use 50 queries for the TAR method
used in conjunction with Imprint of (Qi et al., 2018), LwoF
of (Gidaris & Komodakis, 2018) and Attention Attractor
Network (AAN) of (Ren et al., 2019), respectively. On the
other hand, we used 5 × 5 for base categories and 25 × 5
for novel categories in TAR plugged-in Imprint and LwoF
for the miniImageNet experiments. For all cases, we use the
Momentum SGD optimizer with an initial learning rate of
0.1. The learning rate decays by a factor of 10 at every step
of 4, 000 episodes. l2 weight decay is set to be 3.0× 10−3

for all miniImageNet experiments and 7.0 × 10−4 for all
tieredImageNet experiments. Also, the scaling hyperparam-
eters a and b for outputs of meta-trained modules hγ and
hβ of TconNet are both set to 0.1. The 1-shot and 5-shot
experiments are done with the same settings.

4. Study on Mixture Weight Vectors
4.1. Principal Component Analysis of Mixture Weight

Vectors

We analyze the mixture weight vectors in the combined fea-
ture space constructed by query samples. The 5-shot 200+5
tieredImageNet experiment is also considered. First, we did
a principal component analysis (PCA) of 500 query samples
for a test episode. The magnitude of the projected mixture
weight vector to each principal component is computed in
order to figure out how much power of mixture weight vec-
tor aligns with each principal component. In Fig. 1, it is
shown that the magnitudes of mixture weight vectors for
a backbone and MetaCNN are focused mainly on the first
150 or so principal axes of query samples. Consequently,
the mixture weight vectors aim much of their attention at

the critical dimensions where query samples show larger
variances.

4.2. Magnitude Analysis

Fig. 2 shows the magnitude of the mixture weight vectors
ωpre and ωmeta during the meta-training phase. We consider
the 5-shot 200+5 tieredImageNet case. The mixture weight
vector for the feature from the pretrained backbone is seen
to have a larger magnitude than the weight vector for the fea-
ture from the MetaCNN. The magnitude of ωpre fluctuates
and slightly decreases until the learning rate decay at 4,000
episodes. Afterwards, the magnitude gradually increases
and eventually saturates. For the mixture weight vector
ωmeta from the MetaCNN, the magnitude steadily increases
over time and also saturates soon. An obvious observation
is that the magnitudes of the mixture weight vectors become
quite stable before the meta-training phase is over. Also,
given the difference in the magnitudes between the two
weight vectors, we conjecture that XtarNet more actively
utilizes the feature from the pretrained backbone, while also
significantly leveraging the feature from MetaCNN.

5. Dataset Statistics
In this section, we present the detailed statistics of the
miniImageNet and tieredImageNet datasets that we use in
the incremental few-shot learning tests. We follow the data
splits used in prior works of (Gidaris & Komodakis, 2018)
and (Ren et al., 2019). The data splits of miniImageNet are
presented in Table 1. For the miniImageNet experiments,
the training set Dbase/train (denoted by ‘Train-Train’), which
is for pretraining of base classes, is reused as the training
set Dnovel/train (denoted by ‘Train-Val’) for novel classes.
Since the data split Dnovel/train contains only base classes,
some randomly selected base classes are used as fake novel
classes. This process is suggested in the prior work (Gidaris

XtarNet: Learning to Extract Task-Adaptive Representation for Incremental Few-Shot Learning

Table 1. Dataset statistics of miniImageNet

Classes Purpose Split Nclasses Nsamples

Train Train-Train (Dbase/train) 64 38,400
Base (Dbase) Val Train-Val (Dbase/val) 64 18,748

Test Train-Test (Dbase/test) 64 19,200

Train Train-Train (Dnovel/train ←Dbase/train) 64 38,400
Novel (Dnovel) Val Val (Dnovel/val) 16 9,600

Test Test (Dnovel/test) 20 12,000

Table 2. Dataset statistics of tieredImageNet

Purpose Split Nclasses Nsamples

Train Train-A-Train (Dbase/train) 200 203,751
Base (Dbase) Val Train-A-Val (Dbase/val) 200 25,460

Test Train-A-Test (Dbase/test) 200 25,488

Train Train-B (Dnovel/train) 151 193,996
Novel (Dnovel) Val Val (Dnovel/val) 97 124,261

Test Test (Dnovel/test) 160 206,209

0 0.5 1 1.5 2

Number of training episodes 104

6

8

10

12

14

16

18

20

M
ag

ni
tu

de

pre

meta

Figure 2. Magnitude of mixture weight vectors during the meta-
training phase

& Komodakis, 2018) and (Ren et al., 2019).

On the other hand, for the tieredImageNet experiments, the
Dbase/train and Dnovel/train are different. The original training
split of tieredImageNet which contains 351 classes is di-
vided into two splits of ‘Train-A’ and ‘Train-B’ containing
disjoint classes. The ‘Train-A’ is then further divided into
training/validation/test sets of ‘Train-A-Train’,‘Train-A-Val’
and ‘Train-A-Test’ with disjoint samples. These splits are
for base classes. For novel categories, 151 extra classes of a
set ‘Train-B’ are used for novel classes in the meta-training
phase. For validation and test, sets denoted by ‘Val’ and

‘Test’ are used respectively. These splits for novel categories
contain disjoint classes.

6. Few-shot Classification Accuracies
Mainly out of curiosity, we also evaluate few-shot classifica-
tion accuracies of XtarNet, which is trained as an incremen-
tal few-shot learner supposed to handle both base and novel
categories. The accuracy rates on miniImageNet datasets, as
shown in Table 3, are all from previously published results,
except for our XtarNet.

It can be seen that the known incremental few-shot learning
methods, LwoF and Attention Attractor Networks, show sig-
nificantly degraded performance compared to the ResNet12-
based learners specialized to few-shot learning. Compared
to these prior incremental few-shot learners, our XtarNet
shows better accuracies, indicating relatively strong few-
shot learning performance although its design aimed at in-
cremental few-shot learning tasks.

7. Algorithmic Description
Algorithm 1 shows a pseudocode-style description of the
meta-training stage for XtarNet. For setting the initial novel
classifier weights, we adopt meta-learnable references of
TapNet (Yoon et al., 2019). Also, the classification of
queries is carried out in the task-adaptive projection space.

XtarNet: Learning to Extract Task-Adaptive Representation for Incremental Few-Shot Learning

Table 3. Few-shot classification accuracies for 5-way miniImageNet
5-way miniImageNet

Methods backbone 1-shot 5-shot

MAML (Finn et al., 2017) Conv4 48.70 ± 1.84% 63.15 ± 0.91%
Prototypical Nets (Snell et al., 2017) Conv4 49.42 ± 0.78% 68.20 ± 0.66%
Transductive Propagation Nets (Liu et al., 2018) Conv4 55.51 ± 0.86% 69.86 ± 0.65%
TADAM (Oreshkin et al., 2018) ResNet12 58.5 ± 0.3% 76.7 ± 0.3%
TapNet (Yoon et al., 2019) ResNet12 61.65 ± 0.15% 76.36 ± 0.10%
MetaOpt (Lee et al., 2019) ResNet12 62.64 ± 0.62% 78.63 ± 0.46%
Cross Attention Nets* (Hou et al., 2019) ResNet12 63.85 ± 0.48% 79.44 ± 0.34%

LwoF (Gidaris & Komodakis, 2018) ResNet12 55.45 ± 0.89% 70.92 ± 0.35%
Attention Attractor Networks (Ren et al., 2019) ResNet12 55.75 ± 0.51% 70.14 ± 0.44%
XtarNet (Ours) ResNet12 57.29 ± 0.54% 75.39 ± 0.43%

*The Cross Attention Networks version with high-confidence query samples yields higher accuracy but is
not shown here for fairness reasons.

Table 4. Results of combining AAN with our TAR for tieredImageNet
1-shot 5-shot

Methods Accuracy ∆ Accuracy ∆

Attention Attractor Networks* (Ren et al., 2019) 56.11 ± 0.33% -6.11% 65.52 ± 0.31% -4.48%

Proposed method with AAN 60.48 ± 0.35% -1.94% 68.34 ± 0.33% -1.69%

*The Attention Attractor Networks results reflect the reported numbers of (Ren et al., 2019).

8. Time Complexity
In Tables 1 and 2 of the main paper, XtarNet shows state-
of-the-art accuracies on incremental few-shot learning tasks.
AANs show the second best performance. We further re-
mark that our XtarNet has significant advantage in time
complexity over AANs. The meta-trained modules in Xtar-
Net operate without any recursive optimization procedures,
whereas AANs require several tens of inner-loop optimiza-
tion steps for obtaining novel classifier weights. See Step 6
through 9 in Algorithm 1 of (Ren et al., 2019). This recur-
sive process in AANs causes a substantial latency relative
to XtarNet during query processing in both training and
inference. Furthermore, during training, AANs actually em-
ploy additional inner-loop for computing gradients based on
the recurrent back-propagation (RBP) algorithm. Steps 15
through 17 of Algorithm 1 of (Ren et al., 2019) represent the
second inner loop. This further slows down meta-training
of the learner relative to our method.

9. Additional Experiments for Combining
Attention Attractor Network with TAR

In an effort to further evaluate the expandability of the pro-
posed TAR, we run our method on top of AANs (Ren et al.,
2019) for tieredImageNet as shown in Table 4. As men-
tioned in the main paper, combining AANs with our pro-
posed method is possible, although the combining strategy is
not straightforward. The most challenging part is optimizing

all of our modules along with the meta-learnable parame-
ters of AANs integrated with the inner loop optimization
procedure. In AANs, the attention-based regularizer is meta-
trained to regularize a novel classifier in a way that novel
classes predictions do not interfere the base classes during
the inner loop optimization for each episode. Our strategy
is to use TAR constructed by MetaCNN and MergeNet,
and the base classifer conditioned by TconNet for comput-
ing this regularization term. We drop the meta-module for
conditioning novel classifier hλ for simplicity. Naively com-
puting the gradients with respect to all of these modules
during the RBP step does not work well in practice, perhaps
due to the large number of parameters to be optimized. In
order to get around this computational burden, we compute
the gradients only with respect to the meta parameters of
AANs in the RBP step, and then backpropagate with respect
to our meta-modules outside of the inner loop independently,
given a novel classifier prepared from AANs. We ran exper-
iment on the same backbone architecture used in (Ren et al.,
2019) to gauge the effectiveness of our method. As shown
in Table 4, we obtained a 68.34% in accuracy and −1.69%
in ∆ value for the 5-shot tieredImageNet experiments. For
the 1-shot case, TAR combined with AANs shows 60.48%
in accuracy and−1.94% in ∆ value. These are considerable
gains in both accuracies and ∆ values compared to AANs
alone.

XtarNet: Learning to Extract Task-Adaptive Representation for Incremental Few-Shot Learning

Algorithm 1 Description of episodic learning during meta-training of XtarNet. The pretrained backbone and base classifica-
tion weights are prepared before meta-training begins.

Input: Backbone fθ; base classifier weights {wi}Nb
i=1; MetaCNN g; MergeNet rpre and rmeta; TconNet hγ , hβ and hλ; novel

classifier weights {wi}Nb+N
i=Nb+1

1: for t = 1 · · ·T do
2: Ltrain ← 0
3: S , Q← GetEpisode(Dbase/train,Dnovel/train) // support set S and query set Q
4: c← 1

|S|

∑
x∈S

[fθ(x), g(aθ(x))] // aθ(x) is an intermediate layer output of fθ(x).

5: ωpre ← rpre(c), ωmeta ← rmeta(c)
6: for k = Nb + 1, · · · , Nb +N do
7: c∗k ← 1

|Sk|

∑
x∈Sk

[ωpre � fθ(x) + ωmeta � g(aθ(x))] // per-class averages of combined features

8: end for

9: c∗ ← 1
N

Nb+N∑
k=Nb+1

c∗k

10: for i = 1, · · · , Nb do
11: w∗i ← (1 + ahγ(c∗))�wi + bhβ(c∗) // hyperparameters a and b are set to 0.1.
12: end for
13: for k = Nb + 1 · · ·Nb +N do
14: for i = 1, · · · , Nb do
15: σik ← c∗k ·w∗i
16: end for
17: σk ← [σ1

k, · · · , σ
Nb

k]
18: λk ← hλ(σk)
19: end for
20: for i = Nb + 1 · · ·Nb +N do

21: w∗i = wi −
Nb∑
j=1

exp(λji)∑
l exp(λli)

w∗j // λji is ith element of λk.

22: end for
23: for k = Nb + 1, · · · , Nb +N do
24: εi ← w∗k/||w∗k|| − c∗k/||c∗k||
25: end for
26: M← null

{
[εNb+1, · · · , εNb+N]

}
// task-adaptive projection space

27: for i = 1, · · · , Nb +N do
28: for (x, y = i) ∈ Q do
29: Di(x) = d

(
w∗iM, [ωpre � fθ(x) + ωmeta � g(aθ(x))]M

)
// d(·, ·): Euclidean distance

30: Ltrain = Ltrain +
1

|Q|

[
Di(x) + log

∑
l

exp
(
−Dl(x)

)]
// cross entropy loss

31: end for
32: end for
33: Update all parameters of g, rpre, rmeta, hγ , hβ hλ, {wi}Nb+N

i=Nb+1 minimizing Ltrain via optimizer
34: end for

XtarNet: Learning to Extract Task-Adaptive Representation for Incremental Few-Shot Learning

References
Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-

learning for fast adaptation of deep networks. In Inter-
national Conference on Machine Learning (ICML), pp.
1126–1135, 2017.

Gidaris, S. and Komodakis, N. Dynamic few-shot visual
learning without forgetting. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4367–4375, 2018.

Hou, R., Chang, H., Bingpeng, M., Shan, S., and Chen,
X. Cross attention network for few-shot classification.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 4003–4014, 2019.

Lee, K., Maji, S., Ravichandran, A., and Soatto, S. Meta-
learning with differentiable convex optimization. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10657–10665, 2019.

Liu, Y., Lee, J., Park, M., Kim, S., Yang, E., Hwang, S. J.,
and Yang, Y. Learning to propagate labels: Transductive
propagation network for few-shot learning. In Interna-
tional Conference on Learning Representations (ICLR),
2018.

Oreshkin, B. N., Lacoste, A., and Rodriguez, P. TADAM:
Task dependent adaptive metric for improved few-shot
learning. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 721–731, 2018.

Qi, H., Brown, M., and Lowe, D. G. Low-shot learning
with imprinted weights. In Proceedings of the IEEE
conference on computer vision and pattern recognition
(CVPR), pp. 5822–5830, 2018.

Ren, M., Liao, R., Fetaya, E., and Zemel, R. Incremen-
tal few-shot learning with attention attractor networks.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 5276–5286, 2019.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In Advances in Neural Information
Processing Systems (NIPS), pp. 4080–4090, 2017.

Yoon, S. W., Seo, J., and Moon, J. TapNet: Neural network
augmented with task-adaptive projection for few-shot
learning. In International Conference on Machine Learn-
ing (ICML), pp. 7115–7123, 2019.

