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Abstract
Quantifying the value of data is a fundamental
problem in machine learning and has multiple im-
portant use cases: (1) building insights about the
dataset and task, (2) domain adaptation, (3) cor-
rupted sample discovery, and (4) robust learning.
We propose Data Valuation using Reinforcement
Learning (DVRL), to adaptively learn data values
jointly with the predictor model. DVRL uses a
data value estimator (DVE) to learn how likely
each datum is used in training of the predictor
model. DVE is trained using a reinforcement sig-
nal that reflects performance on the target task.
We demonstrate that DVRL yields superior data
value estimates compared to alternative methods
across numerous datasets and application scenar-
ios. The corrupted sample discovery performance
of DVRL is close to optimal in many regimes
(i.e. as if the noisy samples were known apriori),
and for domain adaptation and robust learning
DVRL significantly outperforms state-of-the-art
by 14.6% and 10.8%, respectively.

1. Introduction
Data is an essential ingredient of machine learning – it is
well known that training on larger-scale and higher-quality
datasets results in superior models (Hestness et al., 2017;
Najafabadi et al., 2015). However, collecting such large-
scale and high-quality datasets can be challenging and costly,
as one needs to determine which data samples are most
useful for the target task and then label them correctly.

Recent work (Toneva et al., 2019) suggests that not all sam-
ples are equally useful to learn from, particularly so for
Deep Neural Networks (DNNs). Many datasets contain
low-quality (e.g. due to measuring hardware) or incorrectly-
labeled samples (e.g. due to human errors), and in those
scenarios similar or even higher performance may be ob-
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tained by removing a significant portion of training samples
(Ferdowsi et al., 2013; Frenay & Verleysen, 2014). More-
over, datasets may contain a mismatch between the train and
test sets (e.g. different location or time), and in those cases
higher performance can be obtained by carefully selecting
the samples most relevant for the test scenario from the train-
ing set (Ngiam et al., 2018; Zhu et al., 2019). Because of the
ubiquity of these scenarios, accurately quantifying the val-
ues of training samples has a great potential for improving
model performance on real-world datasets. In addition to
improving model performance, assigning a value to individ-
ual datum can also enable new use cases. It can be used to
suggest better practices for data collection, e.g. what kinds
of additional data would benefit the most. Organizations that
sell data can use it for pricing of each datum. Finally, it can
be used to construct large-scale training datasets in a cheap
way, e.g., by web searching using the labels as keywords
and filtering away less valuable data.

So how does one evaluate the value of a single datum? At the
full dataset granularity, it is straightforward: one can simply
train a model on the entire dataset and use its performance
on a testing set as its value. However, evaluating the value
of a single datum is far more difficult – especially so for
complex models such as DNNs on large-scale datasets as it
is computationally infeasible to train them on all subsets. To
tackle this, early explorations have recently been performed
with permutation-based methods such as Influence Func-
tions (Koh & Liang, 2017) and game theory-based methods
such as Data Shapley (Ghorbani & Zou, 2019). However,
even the best current methods are far from being computa-
tionally feasible for large datasets and complex models and
their data valuation performance is limited. Concurrently,
meta learning-based adaptive weight assignment approaches
such as (Ren et al., 2018) have been developed. Their data
value mapping is typically based on gradient descent learn-
ing or other heuristic approaches that alter the conventional
predictor model training dynamics, rather than prioritizing
learning from high value data samples.

To address these challenges, we propose a novel approach
to data valuation based on meta learning. Unlike previous
works, our method integrates data valuation into the training
procedure of the predictor model. This allows the predictor
model to get extra supervision from samples that are more
valuable for the given task, improving both predictor and
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data valuation performance. To infer the data values, we pro-
pose a data value estimator (DVE) that estimates data values
and selects the most valuable samples to train the predictor.
This selection operation is fundamentally non-differentiable
and thus conventional gradient-descent based methods can-
not be used. Instead, we propose to use Reinforcement
Learning (RL) such that the supervision of DVE is based on
a reward that quantifies the predictor performance on a small
validation set. The reward guides the optimization of the
policy towards the action of optimal data valuation, given
the state, input samples. Here, we treat the predictor model
learning and evaluation framework as the environment, as a
novel application scenario of RL-assisted machine learning.

A well-performing data value estimator can reprioritize the
use of training samples as needed and enables training of
high performance predictors even in the face of low quality,
noisy or out-of-domain training samples. This can revolu-
tionize how we think about dataset construction – what kind
of data to collect and label – and more generally how we
train deep learning models – enabling better training with a
combination of low quality and high quality datasets instead
of a standard single training dataset. To demonstrate the
potential of DVRL, we focus on a wide range of use cases
including corrupted sample discovery, robust learning and
domain adaptation in a diverse range of image, tabular and
language datasets. We show that DVRL significantly outper-
forms all notable data value estimation methods with orders
of magnitude less computational cost, and in its generic
form, it also outperforms specifically-designed meta learn-
ing approaches for robust learning or domain adaptation.

2. Related Work
Data valuation quantifies the contribution of individual da-
tum to the overall performance. A commonly-used method
for data valuation is leave-one-out (LOO), which quanti-
fies the performance difference when a specific sample
is removed to assign it as that sample’s data value. The
computational complexity of LOO scales linearly with the
number of training samples and becomes prohibitively high
for large-scale datasets and complex models. In addition,
there are fundamental limitations in the approximation –
e.g. despite being very important, one of the two exactly
equivalent samples may get a low data value with LOO
because high performance can be obtained by including the
other sample. The method of Influence Functions (Koh &
Liang, 2017; Wang et al., 2019) approximates LOO in a
computationally-efficient manner. It uses the gradient of
the loss function with small perturbations to estimate the
data value. It requires Hessian values that are prohibitively
expensive to compute for DNNs. Approximations for Hes-
sian are possible, although they often cause performance
limitations. It also inherits the major limitations of LOO.

Data Shapley (Ghorbani & Zou, 2019) is another approach
for data valuation. Shapley values are motivated by game
theory (Shapley, 1953) and are commonly used in feature
attribution problems such as relating predictions to input
features (Lundberg & Lee, 2017). For Data Shapley, the
prediction performance of all possible subsets is considered
and the marginal performance improvement is used as the
data value. The computational complexity for obtaining
the exact Shapley value is exponential with the number of
samples. Therefore, Monte Carlo sampling and gradient-
based estimation are used to approximate them. However,
even with these, the computational cost still remains high
(indeed much higher than LOO) due to the models needing
to be re-trained for each test combination. In addition, the
approximations may result in fundamental limitations for
data valuation performance – e.g. with Monte Carlo approx-
imation, the ratio of tested combinations compared to all
possible combinations decreases exponentially.

In addition to their approximation limitations and high com-
putational cost, all the aforementioned methods for data
valuation are decoupled from predictor model training, caus-
ing performance limitations. To address this, we design
DVRL such that learning is performed jointly for the data
value estimator and the corresponding predictor model, en-
abling the predictor model to learn how to optimize itself
for high value samples, and resulting in data valuation is
guided with a high-performance predictor model.

Meta learning for adaptive weight assignment has been uti-
lized for various use cases such as robust learning, domain
adaptation, and corrupted sample discovery. ChoiceNet
(Choi et al., 2018) explicitly models output distributions
and uses the output correlations to improve robustness. Li
et al. (2019) combines meta learning with standard stochas-
tic gradient update with generated synthetic noise for robust
learning. Shen & Sanghavi (2019) alternates the processes
of selecting the samples with low error and model training to
improve robustness. Shu et al. (2019) uses DNNs to model
the relations between current loss and the corresponding
sample weights, and utilizes a meta learning framework for
weight assignment. Köhler et al. (2019) estimates the uncer-
tainty to discover the noisy labels and relabels mislabeled
samples to improve the predictor model. Gold Loss Correc-
tion (Hendrycks et al., 2018) uses a clean validation set to
recover the label corruption matrix to re-train the predictor
model with corrected labels. Learning to Reweight (Ren
et al., 2018) proposes a single gradient descent step guided
with validation set performance to reweight the training
batch. Domain Adaptive Transfer Learning (Ngiam et al.,
2018) introduces importance weights (based on the prior
label distribution match) to scale the training samples for
transfer learning. MentorNet (Jiang et al., 2018) proposes
curriculum learning to learn the order of mini-batches.
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Figure 1. Block diagram of the DVRL framework for training. A batch of training samples is input to DVE (with shared parameters across
the batch) that outputs selection probabilities: wi = hφ(xi, yi) of a multinomial distribution. The sampler, based on this distribution,
returns the selection vector s = (s1, ..., sBs) where si ∈ {0, 1} and P (si = 1) = wi. The target task predictor model is trained only
using the samples with selection vector si = 1 using conventional gradient-descent optimization. The selection probabilities wi rank the
samples according to their importance – these importance scores are used as data values. The loss of the predictor model is evaluated on a
small validation set and is compared to the moving average of the previous losses (δ) to determine the reward. Finally, the reinforcement
signal guided by this reward updates the DVE. Block diagram at inference time is shown in supplementary materials (Section 1).

Our method, DVRL, tackles the three fundamental short-
comings of previous methods (poor approximation, com-
putational cost, lack of joint training) by directly modeling
the value of the data using a learnable DVE, for which we
use RL to optimize with policy gradients. DVRL is model-
agnostic and even applicable to non-differentiable target
objectives. Learning is performed jointly for DVE and the
corresponding predictor model to jointly improve the predic-
tor and data valuation performance, overall yielding superior
results in all of the use cases we consider.

3. Proposed Method
Framework: We denote the training dataset as D =
{(xi, yi)}Ni=1 ∼ P where xi ∈ X is a d-dimensional feature
vector, and yi ∈ Y is a corresponding label. We consider
a disjoint testing dataset Dt = {(xtj , ytj)}Mj=1 ∼ Pt where
the target distribution Pt does not need to be the same with
the training distribution P . We assume an availability of a
(small) validation dataset Dv = {(xvk, yvk)}Lk=1 ∼ Pt that
comes from the target distribution Pt.

DVRL consists of two learnable functions: (1) the target
task predictor model fθ, and (2) the data value estimator
(DVE) model hφ. The predictor model fθ : X → Y is
trained to minimize a weighted loss function Lf on training
dataset D (e.g. Mean Squared Error (MSE) for regression
or cross entropy for classification):

fθ = argmin
f̂∈F

1

N

N∑
i=1

hφ(xi, yi) · Lf (f̂(xi), yi). (1)

fθ can be any trainable function with parameters θ, such as
a DNN. The DVE model hφ : X × Y → [0, 1] is optimized

to output weights that determine the selection likelihoods
of the training samples to train the predictor model fθ. We
formulate the corresponding optimization problem as:

min
hφ

E
(xv,yv)∼P t

[
Lh(fθ(xv), yv)

]
s.t.fθ = argmin

f̂∈F
E

(x,y)∼P

[
hφ(x, y)Lf (f̂(x), y)

] (2)

where hφ(x, y) represents the value of the training sample
(x, y). The DVE is a trainable function such as a DNN
as assumed here. Similar to Lf , we use MSE or cross
entropy for Lh. We use the outputs of the DVE model,
w = hφ(x, y), as the data values. These data values can be
used to rank the training data (e.g. to determine a subset of
the training data) and to do sample-adaptive training (e.g.
for domain adaptation).

Training: Fig. 1 and Algorithm 1 give an overview of the
training procedure for DVRL. We next discuss training of
each of these components.

To encourage exploration based on the uncertainty in the
exponentially-large selection space, we model training sam-
ple selection in DVE stochastically. Let w = hφ(x, y) de-
note the probability that (x, y) is used to train the predictor
model fθ; hφ(D) = {hφ(xi, yi)}Ni=1 is the probability dis-
tribution for inclusion of each training sample; s ∈ {0, 1}N
is a binary vector that represents the selected samples. If
si = 1/0, (xi, yi) is selected/not selected for training the
predictor model. πφ(D, s) =

∏N
i=1

[
hφ(xi, yi)si · (1 −

hφ(xi, yi))1−si
]

is the probability that the selection vector
s is selected based on hφ(D).

The predictor model can be trained using standard stochastic



Data Valuation using Reinforcement Learning

gradient descent because it is differentiable with respect to
the input. However, gradient descent-based optimization
cannot be used for the DVE because the sampling process
is non-differentiable. There are multiple ways to handle the
non-differentiable optimization bottleneck, such as Gumbel-
softmax (Jang et al., 2017) or stochastic back-propagation
(Rezende et al., 2014). In this paper, we consider RL in-
stead, which directly encourages exploration of the policy
towards the optimal solution of Eq. (2). In this RL setting,
action of the agent (DVE) is its data selection, and the en-
vironment, that encompasses the predictor model training
and evaluation, correspondingly gives a reward for each
action, based on the state of current batch of data. We adapt
the REINFORCE algorithm (Williams, 1992) to optimize
using the policy gradients, and obtain the rewards from a
small validation set that approximates performance on the
target task. Ablation studies in Section 5 demonstrate the
importance of discrete selection for predictor model training
and the efficacy of our proposed policy learning. As the
single step reward based on the action, we use:

l̂(φ) = E
(xv,yv)∼P t,

s∼πφ(D,·)

[
Lh(fθ(xv), yv)

]
=

∫
P t(xv)

∑
s∈[0,1]N

πφ(D, s) ·
[
Lh(fθ(xv), yv)

]
dxv,

which has the gradient:

∇φ l̂(φ) =
∫
P t(xv)

∑
s∈[0,1]N

∇φπφ(D, s)

·
[
Lh(fθ(xv), yv)

]
dxv

=

∫
P t(xv)

[ ∑
s∈[0,1]N

∇φπφ(D, s)
πφ(D, s)

πφ(D, s)

·
[
Lh(fθ(xv), yv)

]]
dxv

=

∫
P t(xv)

[ ∑
s∈[0,1]N

∇φ log(πφ(D, s)) · πφ(D, s)

·
[
Lh(fθ(xv), yv)

]]
dxv

= E
(xv,yv)∼P t,

s∼πφ(D,·)

[
Lh(fθ(xv), yv)

]
∇φ log(πφ(D, s)),

where∇φ log(πφ(D, s))

= ∇φ
N∑
i=1

log
[
hφ(xi, yi)si · (1− hφ(xi, yi))1−si

]
To improve the stability of the policy gradient-based learn-
ing, we use the moving average of the previous loss δ with
a window size T as the baseline.

To provide further information to DVE, we propose to
use an additional input, marginal information, defined

as the difference between the predictions of a separate
predictive model (fine-tuned or trained from scratch on
the validation set) for the training samples and the orig-
inal training labels respectively. Marginal information
is defined as m(x, y) = |y − fv(x)| where fv =

argminf̂∈F E(xv,yv)∼P t
[
Lf (f̂(xv), yv)

]
. We simply con-

catenate this marginal information to an intermediate state
of the DVE network. The value of the marginal information
increases as the level of corruption increases in the training
data, and providing it to the DVE is valuable as it can decide
to lower the value accordingly.

Computational complexity: DVRL models the mapping
between an input and its value with a learnable function.
The training time of DVRL is not directly proportional to
the dataset size, but rather dominated by the required num-
ber of iterations and per-iteration complexity. One way to
minimize the computational overhead is to use pre-trained
models to initialize the predictor model at each iteration.
Unlike alternative methods like Data Shapley, we demon-
strate the scalability of DVRL to large-scale datasets such
as CIFAR-100, and complex models such as ResNet-32
(He et al., 2016) and WideResNet-28-10 (Zagoruyko & Ko-
modakis, 2016). Instead of being exponential in the data
size, the training time overhead of DVRL is only twice of
conventional training. Further analyses on additional com-
putational complexity discussions and learning dynamics of
DVRL are in supplementary materials (Section 2 & 5).

Algorithm 1 Pseudo-code of DVRL training

Inputs: Learning rates α, β > 0, mini-batch sizes
Bp, Bs > 0, inner iteration count NI > 0, moving aver-
age window T > 0, training dataset D, validation dataset
Dv = {(xvk, yvk)}Lk=1

Initialize parameters θ, φ, moving average δ = 0
while until convergence do

Sample DB = (xj , yj)
Bs
j=1 ∼ D

for j = 1, ..., Bs do
Get selection probabilities: wj = hφ(xj , yj)
Sample a selection vector: sj ∼ Ber(wj)

for t = 1, ..., NI do
Sample (x̃m, ỹm, s̃m)

Bp
m=1 ∼ (xj , yj , sj)

Bs
j=1

Update the predictor model:
θ ← θ − α

Bp

∑Bp
m=1 s̃m · ∇θLf (fθ(x̃m), ỹm))

Update the DVE model:
φ← φ−

[
β
L

∑L
k=1[Lh(fθ(xvk), yvk)]− δ

]
·∇φ log πφ(DB , (s1, ..., sBs))

Update the baseline:
δ ← T−1

T δ + 1
LT

∑L
k=1[Lh(fθ(xvk), yvk)]
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Figure 2. Performance after removing the most (marked with ×) and least (marked with©) important samples according to the estimated
data values in a conventional supervised learning setting. Similar to (Ghorbani & Zou, 2019), on Adult and Blog, we use 1,000 training
and 400 validation samples; and on Flower, we use 2,000 training and 800 validation samples. We use small datasets to compare with
LOO and Data Shapley which have high computational cost to train. DVRL is scalable to larger datasets, as shown in Section 4.3.

4. Experiments on Data Valuation Use Cases
We evaluate the data value estimation quality of
DVRL on multiple types of datasets and use cases.
Experimental details can be found in supplementary
materials (Section 3) and source codes can be found
in https://github.com/google-research/
google-research/tree/master/dvrl.

Benchmark methods: We consider the following bench-
marks: (1) Randomly-assigned values (Random), (2) Leave-
one-out (LOO), (3) Data Shapley Value (Data Shapley)
(Ghorbani & Zou, 2019). For some experiments, we also
compare with (4) Learning to Reweight (Ren et al., 2018),
(5) MentorNet (Jiang et al., 2018), (6) Influence Function
(Koh & Liang, 2017), (7) Adversarial Discriminative Do-
main Adaptation (ADDA) (Tzeng et al., 2017), and (8)
Domain Adversarial DNNs (DANN) (Ganin et al., 2016).

Datasets: We consider 12 public datasets (3 tabular datasets,
7 image datasets, and 2 language datasets) to evaluate DVRL
in comparison to multiple benchmark methods. 3 tabular
datasets are (1) Blog, (2) Adult, (3) Rossmann Store Sales; 7
image datasets are (4) HAM 10000, (5) MNIST, (6) USPS,
(7) Flower, (8) Fashion-MNIST, (9) CIFAR-10, (10) CIFAR-
100; 2 language datasets are (11) Email Spam, (12) SMS
Spam. Details can be found in the hyper-links.

Baseline predictor models: We consider various machine
learning models as the baseline predictor model to highlight
the proposed model-agnostic data valuation framework. For
Adult and Blog datasets, we use LightGBM (Ke et al., 2017),
and for Rossmann Store Sales dataset, we use XGBoost
and multi-layer perceptrons (MLPs) due to their superior

performances on the tabular datasets. For Flower, HAM
10000, and CIFAR-10 datasets, we use Inception-v3 with
top-layer fine-tuning (pre-trained on ImageNet, (Szegedy
et al., 2016)) as the baseline predictor model. For Fashion-
MNIST, MNIST, and USPS datasets, we use multinomial
logistic regression, and for Email and SMS datasets, we use
Naive Bayes model. We also use ResNet-32 (He et al., 2016)
and WideResNet-28-10 (Zagoruyko & Komodakis, 2016) as
the baseline models for CIFAR-10 and CIFAR-100 datasets
in Section 4.3 to demonstrate the scalability of DVRL.

4.1. Removing high/low value samples

Removing low value samples from the training dataset can
improve the predictor model performance, especially in the
cases where the training dataset contains corrupted samples.
On the other hand, removing high value samples, especially
in the case of small training datasets, would decrease the
performance significantly. Overall, the performance after
removing high/low value samples is a strong indicator for
the quality of data valuation.

We consider the conventional supervised learning setting,
where all training, validation and testing datasets come from
the same distribution (without sample corruption or domain
mismatch). We analyze the prediction performance on the
disjoint testing set after removing the high/low value sam-
ples based on the estimated data values. As shown in Fig.
2, even in the absence of sample corruption or domain mis-
match, DVRL can marginally improve the prediction perfor-
mance after removing some low value samples. Using only
around 60%-70% of the training samples (comprised of the
highest value samples), DVRL can obtain a similar perfor-

https://github.com/google-research/google-research/tree/master/dvrl
https://github.com/google-research/google-research/tree/master/dvrl
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/c/Rossmann-store-sales
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/bistaumanga/usps-dataset
https://www.kaggle.com/alxmamaev/flowers-recognition
https://www.kaggle.com/zalando-research/fashionmnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.cmu.edu/~enron/
https://www.kaggle.com/ishansoni/sms-spam-collection-dataset
https://www.kaggle.com/ishansoni/sms-spam-collection-dataset
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Figure 3. Discovering corrupted samples in three datasets with 20% noisy label ratio. ‘Optimal’ saturates at 20%, perfectly assigning
the lowest data value scores to the samples with noisy labels. ‘Random’ does not introduce any knowledge on distinguishing clean vs.
noisy labels, and thus the fraction of discovered corrupted samples is proportional to the amount of inspection. More results on Blog,
Fashion-MNIST and HAM 10000 datasets can be found in supplementary materials (Section 4.3).

mance compared to training on the entire dataset. After
removing a small portion (10%-20%) of the highest value
samples1, the prediction performance significantly degrades
which indicates the importance of the high valued samples.
Overall, DVRL shows the fastest performance degradation
after removing the highest value samples and the slowest
performance degradation after removing the lowest value
samples in most cases, underlining the superiority of DVRL
in data valuation quality compared to competing methods.

4.2. Corrupted sample discovery

Training samples may contain corrupted samples, e.g. due to
cheap labeling procedures. An automated corrupted sample
discovery method would be highly beneficial for distinguish-
ing samples with clean vs. noisy labels. Data valuation can
be used in this setting by having a small clean validation set
to assign low data values to the potential samples with noisy
labels. Ideally, all noisy labels would be assigned to the low-
est data values. We consider the experimental setting of 20%
noisy label ratio on 6 datasets. Fig. 3 shows that DVRL con-
sistently outperforms all benchmarks (Data Shapley, LOO
and Influence Function). DVRL can discover noisy labels
almost optimally (as if we perfectly knew which samples
have noisy labels), particularly for the Adult, Flower and
CIFAR-10 datasets.

4.3. Robust learning with noisy labels

Ideally, noisy samples should receive low data values as
DVRL converges and a high performance predictor model

1Qualitative inspection of such small subset of the highest value
samples also yields important insights about the target task.

can be returned. We demonstrate how DVRL can reliably
learn with noisy data in an end-to-end way, without remov-
ing the low-value samples as in the previous subsections.

We compare DVRL to two recently-proposed methods:
MentorNet (Jiang et al., 2018) and Learning to Reweight
(Ren et al., 2018) with two complex DNNs as the
baseline predictor models, ResNet-32 (He et al., 2016)
and WideResNet-28-10 (Zagoruyko & Komodakis, 2016),
trained on CIFAR-10 and CIFAR-100 datasets.

We follow the same settings from Ren et al. (2018). For the
first experiment, we use WideResNet-28-10 as the baseline
predictor model and apply 40% of label noise uniformly
across all classes, and with 1,000 clean samples as the val-
idation set. For the second experiment, we use ResNet-32
as the baseline predictor model and apply 40% background
noise (same-class noise to the 40% of the samples), and
use 10 clean samples per class as the validation set. We
test the performance on the clean testing set in both exper-
iments. We also consider five additional benchmarks: (1)
Validation Set Only – which only uses clean validation set
for training, (2) Baseline – which only uses noisy training
set for training, (3) Baseline + Fine-tuning – which is initial-
ized with the trained baseline model on the noisy training
set and fine-tuned on the clean validation set, (4) Clean
Only (60% data) – which is trained on the clean training
set after removing the training samples with noisy labels,
(5) Zero Noise – which uses the original noise-free training
set for training (100% clean training data).2 As shown in
Table 1, DVRL outperforms other robust learning methods

2We exclude Data Shapley and LOO in this experiment due to
their prohibitively-high computational cost.
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Noise (predictor model) Uniform (WideResNet-28-10) Background (ResNet-32)

Datasets CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Validation Set Only 46.64 ± 3.90 9.94 ± 0.82 15.90 ± 3.32 8.06 ± 0.76
Baseline 67.97 ± 0.62 50.66 ± 0.24 59.54 ± 2.16 37.82 ± 0.69

Baseline + Fine-tuning 78.66 ± 0.44 54.52 ± 0.40 82.82 ± 0.93 54.23 ± 1.75
MentorNet + Fine-tuning 78.00 59.00 - -

Learning to Reweight 86.92 ± 0.19 61.34 ± 2.06 86.73 ± 0.48 59.30 ± 0.60

DVRL 89.02 ± 0.27 66.56 ± 1.27 88.07 ± 0.35 60.77 ± 0.57

Clean Only (60% Data) 94.08 ± 0.23 74.55 ± 0.53 90.66 ± 0.27 63.50 ± 0.33
Zero Noise 95.78 ± 0.21 78.32 ± 0.45 92.68 ± 0.22 68.12 ± 0.21

Table 1. Test accuracy for ResNet-32 and WideResNet-28-10 on CIFAR-10 and CIFAR-100 with 40% Uniform and Background noise.

Source dataset Target dataset Task Baseline Data Shapley DVRL

Google HAM10000 Skin Lesion Classification .296 .378 .448
MNIST USPS Digit Recognition .308 .391 .472
Email SMS Spam Detection .684 .864 .903

Table 2. Target accuracy with domain adaptation on three scenarios: (1) using Google image search results to predict skin lesion
classification on HAM 10000 data (clean), (2) using MNIST data to recognize digit on USPS dataset, (3) using Email spam data to detect
spam in an SMS dataset. Baseline represents the predictor model which is trained with equal treatment of all training samples.

in all cases. The performance improvements with DVRL
are larger with Uniform noise. Learning to Reweight loses
7.16% and 13.21% accuracy compared to the optimal case
(Zero Noise); on the other hand, DVRL yields only 5.06%
and 7.99% lower accuracy on CIFAR-10 and CIFAR-100
with Uniform noise. Additional results on robust learning
can be found in supplementary materials (Section 4.1 &
4.2).

4.4. Domain adaptation

In some scenarios, the training dataset comes from a substan-
tially different distribution from the validation and testing
sets, and naive training methods (i.e. equal treatment of all
training samples) often fail (Ganin et al., 2016; Glorot et al.,
2011). We show how high-performing data valuation model
can be beneficial by selecting the training samples that best
match the distribution of the validation dataset.

We initially focus on the three scenarios from Ghorbani
& Zou (2019), following the exactly same experimental
settings. Table 2 shows that DVRL significantly outperforms
Baseline and Data Shapley in all three scenarios. While Data
Shapley needs a two step processes to construct the predictor
model in domain adaptation setting, DVRL jointly optimizes
the DVE and corresponding predictor model, resulting in
the superior overall performance.

Next, we focus on a real-world problem where the domain
differences are significant. We consider the sales forecasting

problem on Rossmann dataset, which consists of sales data
from four different store types. Simple data analysis (see
supplementary materials (Section 7)) shows a significant
discrepancy between the input feature distributions across
different store types, exposing the large domain mismatch.
We consider three different settings: (1) training on all store
types (Train on All), (2) training on store types excluding
the store type of interest (Train on Rest), and (3) training
only on the store type of interest (Train on Specific). In
all cases, we evaluate the performance on each store type
separately.3 Train on Rest is expected to yield the largest
domain mismatch between training and testing sets, and
Train on Specific yield the minimal (no mismatch). We
evaluate the performance of Baseline (training without data
valuation) and DVRL in 3 different settings with 2 different
predictor models, XGBoost (Chen & Guestrin, 2016) and
DNN (a 3-layer MLP).

As shown in Table 3, DVRL improves the performance in
all settings. The improvements are most significant in Train
on Rest setting due to the largest domain mismatch. For
instance, DVRL reduces the error more than 50% for store
type B predictions with XGBoost compared to Baseline. In
Train on All setting, the performance improvement is still
significant, showing that DVRL can distinguish the samples

3For example, to evaluate the performance on store type D,
Train on All setting uses all four store type datasets for training,
Train on Rest setting uses store types A, B and C for training, and
Train on Specific setting only uses the store type D for training.
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Predictor Model Store Train on All Train on Rest Train on Specific

Type Baseline DVRL Baseline DVRL Baseline DVRL

XGBoost

A 0.1736 0.1594 0.2369 0.2109 0.1454 0.1430
B 0.1996 0.1422 0.7716 0.3607 0.0880 0.0824
C 0.1839 0.1502 0.2083 0.1551 0.1186 0.1170
D 0.1504 0.1441 0.1922 0.1535 0.1349 0.1221

DNN

A 0.1531 0.1428 0.3124 0.2014 0.1181 0.1066
B 0.1529 0.0979 0.8072 0.5461 0.0683 0.0682
C 0.1620 0.1437 0.2153 0.1804 0.0682 0.0677
D 0.1459 0.1295 0.2625 0.1624 0.0759 0.0708

Table 3. Root Mean Squared Percentage Error (RMSPE) of Baseline and DVRL in 3 different settings with 2 different predictor models
(XGBoost, DNN) on Rossmann Store Sales dataset. We use 79% of the data as training, 1% as validation, and 20% as testing.

Ablation cases Blog HAM 10000 CIFAR-10

DVRL 47.3% 60.2% 68.1%
DVRL without the sampler, using continuous data values 44.9% 58.3% 63.7%

DVRL without a baseline in reward computation 45.8% 56.6% 62.9%
DVRL without marginal information 43.7% 57.1% 64.4%

Directly using marginal information as data values 43.1% 55.9% 62.3%

Table 4. The fraction of discovered corrupted samples after inspecting 20% of the samples with multiple variants of DVRL, on three
datasets with 20% noisy label ratio (same setting with Section 4.2).

from the target distribution and often prioritizes selection of
the samples from the target store type (see supplementary
materials (Section 8)). In Train on Specific setting, even
without domain mismatch, DVRL can marginally improve
the performance by accurately prioritizing the important
samples within the same store type, aligned with results
from Fig. 2 in the conventional supervised learning setting.

Lastly, we compare DVRL to two notable domain adap-
tation benchmarks: Adversarial Discriminative Domain
Adaptation (ADDA) (Tzeng et al., 2017) and Domain Ad-
versarial DNNs (DANN) (Ganin et al., 2016) with DNNs
as the predictor on Train on All setting. Table 5 shows that
DVRL yields superior performance compared to ADDA and
DANN, that are specifically designed for domain adaptation.

Store type Baseline DVRL ADDA DANN

A 0.1531 0.1428 0.1465 0.1491
B 0.1529 0.0979 0.1193 0.1201
C 0.1620 0.1437 0.1503 0.1589
D 0.1459 0.1295 0.1351 0.1388

Table 5. RMSPE of Baseline, DVRL, ADDA, and DANN in Train
on All setting with DNNs on the Rossmann Store Sales dataset.

Discussions: Overall, the experiments (e.g., Sections 4.2,
4.3, and 4.4) suggest that DVRL brings the biggest benefits
when the training dataset contains highly noisy, low-quality,

or mostly out-of-distribution samples, while the validation
dataset is small but clean, high-quality and in-distribution.
If the training dataset is also clean, high-quality and in-
distribution, the benefit of DVRL gets smaller (Section 4.1).

5. Ablation studies
In this section, we analyze the contributions of major com-
ponents of DVRL. Table 4 compares the corrupted sample
discovery results under various ablation cases.

Discrete representation: A straightforward idea is to use
the raw outputs of DVE to scale the contributions of each
sample in the loss term, without the sampler. Yet, we show
the benefit of the discrete representation of DVE for data
selection. The sampler encourages exploration of an ex-
tremely large action space in a systematic way, helping to
converge to a better optimal solution.

Baseline for reinforcement learning: The baseline stabi-
lizes convergence of reinforcement learning; thus, improves
performance, especially on complex models and datasets.

Marginal information: The marginal information has valu-
able information as fv (the trained model on the validation
set) achieves high performance (since it is trained with small-
scale high quality data). We observe that often a larger DVE
model (with more iterations) is needed without marginal
information. Yet, the overall benefit of the marginal in-
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Figure 4. Analyses on the number of validation samples needed for DVRL training. We analyze the impact of the size of the validation
dataset on DVRL with 3 different datasets: Adult, Blog, and Fashion MNIST for the use case of corrupted sample discovery. Similar
to Section 4.2, we add 20% noise to the training samples and use DVRL to find the corrupted samples. On Adult and Fashion-MNIST
datasets, DVRL needs 13% and 14% of inspected samples to identify 50% of the corrupted samples respectively - merely 3% and 4%
more than the optimal cases.

formation is not as high as other components, and without
DVRL, the marginal information itself as data value assign-
ment seems insufficient. Note that we propose to use the
output of the validation model as an additional input to the
data valuation framework; thus, this can also be regarded
as another contribution of our work. We observe that it
is mostly helpful for the noisy sample discovery use case
but not that significant in other cases such as performance
improvement by low value data removal without noise or
domain adaptation.

Impact of the validation dataset size: DVRL requires a
validation dataset from the target distribution that the testing
dataset comes from. Depending on the task, the require-
ments for the validation dataset may involve being noise-
free in labels, being from the same domain, and/or being
high quality. Acquiring such a dataset can be costly in some
scenarios and it is desirable to minimize its size require-
ments. As shown in Fig. 4, DVRL achieves reasonable
performance with around 100 to 400 validation samples. In
the Adult dataset, even 10 validation samples are sufficient
to achieve a reasonable data valuation quality. All these
settings are often realistic in real-world scenarios.

6. Conclusions
In this paper, we propose a novel meta learning framework
for data valuation which determines how likely each train-
ing sample will be used in training of the predictor model.
Unlike previous work, our method integrates data valuation
into the training procedure of the predictor model, allowing
the predictor and DVE to improve each other’s performance.

We model this data value estimation task using a DNN
trained using RL with a reward obtained from a small val-
idation set that represents the target task performance. In
a computationally-efficient way, DVRL can provide high
quality ranking of training data that is useful for domain
adaptation, corrupted sample discovery and robust learning.
We show that DVRL significantly outperforms alternative
methods on diverse types of tasks and datasets.
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