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1. Block diagrams for inference
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Figure 1. Block diagram of the proposed DVRL framework at inference time. (a) Data valuation, (b) Prediction. For data valuation, the
input is a set of samples and the outputs are the corresponding data values. For prediction, the input is a sample and the output is the
corresponding prediction. Both the data value estimator and predictor are fixed (not trained) at inference time.

2. Computational complexity

DVRL first trains the baseline model using the entire dataset (without re-weighting). Afterwards, we use this pre-trained
baseline model to initialize the predictor network and apply fine-tuning with DVRL update steps. The convergence of the
fine-tuning process is much faster than the convergence of training from the scratch.

We quantify the computational overhead of DVRL on the CIFAR-100 dataset (consisting 50k training samples and 100
label classes) with ResNet-32 (He et al., 2016) as a representative example. Overall, DVRL training takes less than 8 hours
(given a pre-trained ResNet-32 model on the entire dataset) on a single NVIDIA Tesla V100 GPU without any hardware
optimization. The pre-training time of ResNet-32 on the entire dataset (without re-weighting) is less than 4 hours; thus the
total training time of DVRL is less than 12 hours from the scratch. On the other hand, the training time of Data Shapley
(Ghorbani & Zou, 2019) (the most competitive benchmark) is more than a week on Fashion MNIST (consisting lower
dimensional inputs and less number of classes) with a much simpler predictor model (2-layered CNNG5).

At inference, the data value estimator can be used to obtain data value for each sample. The runtime of data valuation is
typically much faster (less than 1 ms per sample) than the predictor model (e.g. ResNet-32).
3. Experimental details

In all experiments, we use Standard Normalizer to normalize the entire features to have zero mean and one standard deviation.
We transform categorical variables into one-hot encoded embeddings. We use the inner iteration count N;=200 for the
predictor model, moving average window T'=20, mini-batch size B,=256 for the predictor model and mini-batch size
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B,=2000 for the DVE (large batch size often improves the stability of the reinforcement learning (McCandlish et al., 2018)).
We use the learning rates 5=0.01 for the DVE and o=0.001 for the predictor model. As the DVE architecture, for tabular
datasets, we use 5-layer MLPs with 100 hidden units and ReLU activation function; and for image datasets, we use 5-layer
MLPs with 100 hidden units and ReLLU activation function on top of the CNN-based architecture used for the predictor
model (such as ResNet-32 or WideResNet-28-10 (Zagoruyko & Komodakis, 2016)). The number of layers and hidden units
are optimized with cross-validation.

4. Additional experimental results
4.1. Additional results on robust learning with noisy labels

We evaluate how DVRL can provide robustness for learning with noisy labels. We add various levels of label noise, ranging
from 0% to 50%, to the training sets and evaluate how robust the proposed model (DVRL) is for the noisy dataset. In this
experiment, we use three image datasets (CIFAR-10, Flower, and HAM 10000). Note that we initialize the predictor model
using pre-trained Inception-v3 networks on ImageNet and only fine-tune the top layer (transfer learning setting).

Noise | CIFAR-10 ‘ Flower ‘ HAM 10000
ratio ‘ Clean ‘ DVRL ‘ Baseline ‘ Clean ‘ DVRL ‘ Baseline ‘ Clean ‘ DVRL ‘ Baseline

0% .8297 | .8305 .8297 9090 | .9292 .9090 7129 | 7148 7129
10% | .8281 | .8306 713 9057 | 9158 7441 7094 | 7142 .6746
20% | .8285 | .8271 .6883 9026 | .9152 .5960 7098 | 7126 .6199
30% | .8283 | .8262 .5897 .8889 | .8901 4546 7063 | .7005 5508
40% | .8259 | .8255 4887 .8620 | .8787 2929 7028 | .6968 4819
50% | .8236 | .8225 .3832 .8542 | .8678 .2962 7009 | .6814 4132

Table 1. Robust learning results with various noise levels on CIFAR-10, Flower, and HAM 10000 datasets. Clean is the performance of
the predictor model when it is only trained with the samples with clean labels (e.g. at 20% noise level, it uses only 80% clean samples).
Baseline is the performance of the predictor model when it is trained with both noisy and clean labels.

Noisy labels significantly degrade the prediction performance when they are included in the training dataset (see the
increasing performance differences between Baseline and Clean in Table 1). DVRL demonstrates high robustness up to
high noisy label ratio (50%). In some cases (even without noisy labels (i.e. 0% noise ratio)), the prediction performance
even outperforms the Clean case, as DVRL prioritizes some clean samples more than others. Overall, DVRL framework is
promising in maintaining high prediction performance even with a significant increase in the amount of noisy labels.

4.2. Additional results on robust learning with noisy features

o ‘ Blog ‘ Adult
‘ Baseline | DVRL H Baseline | DVRL

0.1 0.733 0.819 0.802 0.820
0.2 | 0.647 0.798 0.753 0.788
0.3 | 0.626 0.766 0.699 0.771
04| 0.623 0.717 0.652 0.725

Table 2. Testing accuracy when trained with noisy features. o is the standard deviation of the added Gaussian noise, quantifying the level
of perturbation on the features.

In this section, we consider training with noisy input features, with a clean validation set. We add Gaussian noise with zero
mean and a certain standard deviation of ¢ to each feature in the training set independently. We use two tabular datasets
(Adult and Blog) to evaluate the robustness of DVRL on input noise. As can be seen in Table 2, DVRL is robust with noise
on the features and the performance gains are higher with larger noise in comparison to Baseline (i.e. treat all the noisy
training samples equally), since DVRL can discover the training samples with less corrupted by the additive noise among
the entire noisy training samples and provide higher weights on those less noisy samples.
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4.3. Additional results on corrupted sample discovery with 20% label noise
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Figure 2. Discovering corrupted samples in three datasets ((a) Blog, (b) Fashion-MNIST, (c) HAM 10000 datasets) in the presence of 20%
noisy labels. ‘Optimal’ saturates at the 20 % of the fraction, perfectly assigning the lowest data value scores to the samples with noisy
labels. ‘Random’ does not introduce any knowledge on distinguishing clean vs. noisy labels, and thus the fraction of discovered corrupt

samples is proportional to the amount of inspection.

4.4. Additional results on removing high/low value samples with 20% label noise

Adult Dataset

Fashion-MNIST Dataset

Flower Dataset

o e ol T 06 %, x ol
g —— DVRL Least g . o g
DVRL Most >
< o5 < . Bt “x
--+- Data Shapley Least . s —+— DVRL Least o —s— DVRL Least
--- Data Shapley Most U S DVRL Most K‘ “ DVRL Most
0 +- LOO Least ’\\'-% --+- Data Shapley Least '\\ --+- Data Shapley Least
- LOO Most " --+- Data Shapley Most "% 051 --«- Data Shapley Most
Influence Function Least 04 @ LOO Least ® LOO Least
0z - Influence Function Most = LOO Most - LOO Most
Random Random 04 Random
oo 01 02 [ o5 00 01 02 03 ) [ oo 01 02 03 oa 05
Fraction of Removed Samples Fraction of Removed Samples Fraction of Removed Samples
Blog Dataset HAM-10000 Dataset CIFAR-10 Dataset
08 o7 08
o7
06
07
06
> -, > >
g \ x gos . g
S —e— DVRL Least % 5 S S 06
§ 0s DVRL Most ] § X, § -
--+- Data Shapley Least T sl ™ DVRL Least \\ —s— DVRL Least \\
--<- Data Shapley Most X DVRL Most * DVRL Most "%
0 +- LOO Least h --=- Data Shapley Least 0s{ --+- Data Shapley Least .
«- LOO Most ™, 0 --+- Data Shapley Most --+- Data Shapley Most '
Influence Function Least “~ @ LOO Least ® LOO Least
03 =~ Influence Function Most -x LOO Most wox LOO Most
Random Random o4 Random
02

o0

01 02 o [
Fraction of Removed Samples

0o

o 02 03 ) [
Fraction of Removed Samples

oo [

0 0 oa
Fraction of Removed Samples

Figure 3. Performance after removing the most (marked with x) and least (marked with ()) important samples according to the estimated
data values. We assume a label noise with 20% ratio on (a) Adult, (b) Fashion-MNIST, (c) Flower, (d) Blog, (¢) HAM 10000, (f)
CIFAR-10 datasets.

In this subsection, we focus on removing high/low value samples in the presence of label noise in the training data. As noisy
samples hurt the prediction performance, an optimal DVE with a clean validation dataset should assign low values to the
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noisy samples. With the removal of samples with noisy labels (‘Least’ setting), the prediction performance should either
increase, or at least decrease much slower, compared to removal of samples with correct labels (‘Most’ setting). In this
experiment, we introduce label noise to 20% of the samples by replacing true labels with random labels. As shown in Fig. 3,
for all data valuation methods, the prediction performance tends to first slowly increase and then decrease in the ‘Least’
setting; and tends to rapidly decrease in the ‘Most’ setting. Yet, DVRL achieves the slowest performance decrease in ‘Least’
setting and the fastest performance decrease in the ‘Most’ setting, reflecting its superiority in data valuation.

5. Learning curves of DVRL
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Figure 4. Learning curves of DVRL for 6 datasets with 20% noisy labels. x-axis: the number of iterations for data value estimator training,
y-axis: validation performance (log loss). (Orange: validation log loss without DVRL, Blue: validation log loss with DVRL)

Fig. 4 shows the learning curves of DVRL on the noisy data (with 20% label noise) setting in comparison to the validation
log loss without DVRL (directly trained on the noisy data without re-weighting) on 2 tabular datasets (Adult and Blog) and
4 image datasets (Fashion-MNIST, Flower, HAM 10000, and CIFAR-10).

6. Confidence intervals of DVRL performance on corrupted sample discovery experiments
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Figure 5. Corrupted sample discovery performance with 95% confidence intervals (computed by 10 independent runs) according to the
estimated data values by DVRL. We assume a label noise with 20% ratio on (a) Adult and Blog, (b) Fashion-MNIST and Flower (c) HAM
10000 and CIFAR-10 datasets.

Fig. 5 shows the confidence intervals of DVRL, demonstrating its high stability against randomness of the initialization or
data shuffling.
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7. Rossmann Store Sales data statistics and t-SNE analyses

Store Type

A |

B

| C

| D

Number of Samples ‘ 457042 (54.1%) ‘

15560 (1.8%) ‘ 112968 (13.4%) ‘ 258768 (30.6%)

Sales

| 1390-1660-1854 | 2052-2459-2661 | 1753-1974-2178 | 2109-2355-2524

Customers

169-203-221 |

436-492-543

| 192-232-259

| 224-246-259

Table 3. Rossmann Store Sales data statistics. Report 25-50-75 percentiles for sales and customers.
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Figure 6. t-SNE analyses on the final layer representations of each store type in Rossmann Store Sales dataset.

8. Further analyses on Rossmann Store Sales dataset in Train on All setting
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Figure 7. Histograms of the training samples from the target store type in Train on All setting based on the sorted data values estimated by
DVRL. (x-axis: the sorted data values (in percentiles), y-axis: counts of training samples from the target store type (in ratio).

To further understand the results in Train on All setting, we sorted (in a decreasing order) the training samples by their data
values estimated by DVRL and illustrate the distributions of the training samples that come from the target store type. As
can be seen in Fig. 7, DVRL prioritizes the training samples which come from the same target store type.
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