
It’s Not What Machines Can Learn, It’s What We Cannot Teach

Supplemental Material

Gal Yehuda Moshe Gabel Assaf Schuster

Proof of Lemma 5.
Lemma 5. There exists an NP-hard language L1 and a
function δ(n)→ 0 as n→∞, such that for any sufficiently
long w generated by any randomized polynomial process,

Pr[w ∈ L1] ≤ δ(n) .

The proof is similar to the proof of Theorem 1 in (Itsykson
et al., 2016). The main difference is that we construct a
decidable language, in contrast to the language generated in
(Itsykson et al., 2016).

Proof. For every n, the output of a randomized algorithm
P is a random variable Pn: for w ∈ {0, 1}n, Pr[Pn = w]
is the probability that given the length n, P outputs w. Let
K ⊆ {0, 1}n be a set of words of length n; Pr[Pn ∈ K] is
the probability that a random word w drawn by Pn is in K.

Given two random variables X,Y such that X , Y take
values in {0, 1}n, the statistical distance between X and Y
is defined as (Itsykson et al., 2016):

∆(X,Y) = max
K⊆{0,1}n

|P [X ∈ K]− P [Y ∈ K]| .

Using Theorem 9 in (Itsykson et al., 2016) when a = 1
2 and

b = 1 we obtain the following corollary.

Corollary 6. For every randomized algorithm P that runs
in time O(nlog

0.5 n) there exist infinitely many words that
P can only generate with probability less than ε(n), where
ε(n)→ 0 as n→∞.

We construct the randomized algorithm P as follows. Let
M be an enumeration of all probabilistic Turing machines
M = M1,M2,M3, ..., under a standard enumeration of
Turing machines, and let g(n) be a function that satisfies
g(n)ε(n)→ 0 and g(n)→∞ (where ε(n) is the function
from Corollary 6). Example of such function is g(n) =

1
log(ε(n)) . We define δ(n) = g(n)ε(n), by the definition of
g(n), δ(n)→ 0.

On input n, the algorithm P uniformly chooses Mi for
1 ≤ i ≤ g(n) and runs Mi on the input n (with the random

bits Mi needs) for O(nlog
0.5 n) steps. If Mi returned a word

w < n, P pads it with n− |w| zeros and returns the result.
If Mi returned a word w > n, P trims |w| − n characters
from w and returns it. Finally, if Mi did not halt, P returns
w = 1n.

P satisfies the following properties:

1. For every randomized polynomial algorithm P ′ and
for every w ∈ {0, 1}n when n is large enough,

Pr[Pn = w] ≥ 1

g(n)
Pr[P ′n = w] .

2. P runs in time O(nlog
0.5 n).

We show that the first property holds as follows. Let P ′ be a
randomized polynomial algorithm that runs in time O(nc),
and let n0 be the first index that P ′ appears in the enumer-
ationM. For w, |w| = n ≥ g(n0) and nlog

0.5 n ≥ nc, the
probability of P to generate w is at least the probability to
choose the machine P ′, 1

g(n) , multiplied by the probabil-
ity that the machine P ′ generates w: Pr[P ′n = w]. Note
we give P ′ enough time to complete the computation by
choosing n such that nlog

0.5 n ≥ nc.

The second property holds by the definition of P .

By Corollary 6 there exists a randomized algorithm P ∗

such that for infinitely many n’s n1, n2, n3, ..., it holds that
∆(P ∗n , Pn) ≥ 1− ε(n). It means that for each such n, there
exists a set of strings Kn such that Pr[Pn ∈ Kn] ≤ ε(n).

Define L1 as the union of all Kn.

Let w ∈ L1 of length n for sufficiently large n, and let P ′

be a randomized polynomial algorithm.

Pr[w = P ′n] ≤ g(n) Pr[w = Pn] (1)
≤ g(n)ε(n) (2)
= δ(n)→ 0 . (3)

Where (1) follows from the first property of P , (2) follows
from the definition of L, and (3) is the definition of δ(n).

It’s Not What Machines Can Learn, It’s What We Cannot Teach – Supplemental Material

Additional Details on CQC
For reproducibility, we include full details of our case study
on Conjunctive Query Containment (CQC).

Encoding Query Tokens Table 1 shows the mapping be-
tween query tokens and their representation as one-hot vec-
tors.

Table 1. Token representation. Each token with index j is mapped
to a vector with 1 in position j and all other elements are zero. The
dictionary size and the length of the vectors is d = 42.

Type Tokens Index range

Variables x0 . . . x32 6–11, 14-40
Relations Q R0 R1 12, 5, 4
Operators ∧ : 1, 13
Parentheses () 2, 3
Constants 0 1 41, 42

Sampling Balanced Query Pairs from µ We exploit the
the phase transition phenomenon to define a parametric
family of query pairs µ(m1,m2) such that sampling (p, q)
from µ(m1,m2) with m1 ≥ m2 guarantees the following:

• p has m1 conjunctions and q has m2 conjunctions.
• The probability that p ⊂ q is approximately 0.5.
• The process for generating positive and negative exam-

ples is the same.

Intuitively, for a conjunctive query p with a fixed number
of conjunctions, the fewer variables is uses, the more “con-
strained” it is. For example, let p(x1) = R1(x1, x2, x3)
and q(x1) = R1(x1, x1, x2). While every tuple in R1 will
satisfy p, only tuples whose first and second element are the
same will satisfy q.

Given a fixed set of relations R, we define the distribution
G(X,m) over conjunctive queries with m conjunctions,
where X is a set of variables as follows: first, choose m
relations from R uniformly and with repetitions; then, con-
junction variables for each conjunction uniformly and with
repetitions from X . The constraintness of G(X,m) is de-
fined as α = m

n .

Let p ∼ G(X1,m1) and q ∼ G(X2,m2) be a query pair,
and let α1 and α2 be the respective constraintness. We ob-
serve that the probability of p ⊆ q depends on the ratio of
α2 and α1. When α2

α1
� c for a constant c, with high prob-

ability p ⊆ q, when α2

α1
� c with high probability p 6⊆ q,

and when α2

α1
≈ c, the probability of p ⊆ q is approximately

0.5. We empirically determined that for m1 ≥ m2, c ≈ 2
15 .

Finally, we define the distribution µ(m1,m2) over pairs of
conjunctive queries (p, q) as sampling p ∼ G(X1,m1) and
q ∼ G(X2,m2) with X1 and X2 such that α2

α1
≈ c. Since

positive and negative samples are generated with the same

structure and the same constraintness, syntactic features
alone are unlikely to help classification.

Data Augmentation for Conjunctive Query Pairs
Given a query q, we define the following rewrites:

• MergeVar(q): Pick two variables x, y ∈ vars(q),
replace every occurrence of y by x.

• SplitVar(q): Pick a new variable w 6∈ vars(q),
and a variable x ∈ vars(q). Each occurrence of x is
unchanged with probability 0.5 or replaced with w.

• AddConj(q): Pick a conjunction R(`1, `2, `3) and
add it to q.

• DelConj(q): Pick a conjunction in p and remove it.
• Shuffle(q): Shuffle the order of conjunctions in p.

For (p, q) where p ⊆ q, we use the following set
of class-preserving rewrites: (MergeVar(p), q),
(p,SplitVar(q)), (AddConj(p), q), (p,DelConj(q)),
(Shuffle(p), q), and (p,Shuffle(q)). For
(p, q) where p 6⊆ q, we use the following
class-preserving rewrites: (p,MergeVar(q)),
(SplitVar(p), q), (p,AddConj(q)), (Shuffle(p), q),
and (p,Shuffle(q)).

