
Searching to Exploit Memorization Effect in Learning with Noisy Labels

A. Experimental Details
A.1. Data Sets and Network Architectures

The MNIST, CIFAR-10, CIFAR-100 data sets are obtained
from PyTorch’s torchvision package.1 A summary is shown
in Table 3. The networks (MLP on MNIST, and CNN on
CIFAR-10, CIFAR-100) used are shown in Table 4. Models
1 and 2 have been used in (Yu et al., 2019) on CIFAR-10
and CIFAR-100, respectively. Model 3 has been used in
(Han et al., 2018).

Table 3. Data sets with artificial label noise.
#tra #val #test #classes

MNIST 60,000 5,000 5,000 10
CIFAR-10 50,000 5,000 5,000 10
CIFAR-100 50,000 5,000 5,000 100

A.2. Details for Figure 1

A.2.1. FIGURE 1(A)

We use the CIFAR-10 dataset (Table 3), and model 1 in
Table 4. The number of training epochs is 200. We use
the Adam optimizer (Kingma & Ba, 2014) with momentum
0.9 and batch size 128. The initial learning rate is 0.001,
and is linearly decayed to zero from the 80th epoch. The 5
random R(T )s (denoted “Random R(T)” 1-5) are generated
by uniform sampling the corresponding hyperparameter
x = {α,β}.

Besides the test accuracies shown in Figure 1(a), we also
show in Figure 8 the randomR(T )s, the originalR(T ) used
in Co-teaching (Han et al., 2018), theR(T ) obtained by S2E
(denoted “Searched”), and the implicit R(T ) corresponding
to training on the whole noisy dataset (denoted “Baseline”).

Figure 8. R(t) used in Figure 1(a).

A.2.2. FIGURES 1(B)-1(C)

Experiment is performed on the MNIST/CIFAR-10/CIFAR-
100 datasets (Table 3). The number of training epochs,
batch size, and learning rate schedule are the same as that

1https://pytorch.org/docs/stable/
torchvision/datasets.html

in Figure 1(a).

A.2.3. FIGURE 1(D)

We use the CNN models 1-3 in Table 4. As CIFAR-100 has
100 outputs, we also change the number of outputs of model
1 to 100. The number of training epochs, batch size, and
learning rate schedule are the same as that in Figure 1(a).

A.2.4. FIGURE 1(E)

We use model 1 in Table 4. For Adam, the learning rate
schedule is the same as that in Figure 1(a). For SGD, the
initial learning rate is 0.1, and decayed to 0.01 and 0.001
at the 500th and 750th epoch, respectively. Moreover, the
number of training epochs is 1000 instead of 200. For
RMSProp, the learning rate is fixed at 0.01.

A.2.5. FIGURE 1(F)

The number of training epochs, batch size, and learning
rate schedule are the same as that in Figure 1(a). We only
change the batch size and initial learning rate as shown in
the figure of Figure 1(f). Moreover, to better demonstrate
the memorization effect for small learning rates, the number
of training epochs is set to 1000 instead of 200.

A.3. Additional Plots for Section 4.1.2

Figure 9 compares the label precisions of the various
methods on CIFAR-10 and CIFAR-100.

B. Additional Experiments
B.1. Approximation to R(·) in Co-teaching

Recall thatR(t) in Co-teaching is generated from (1). As all
basis functions in Table 1 are smooth, it is not possible for
(4) to exactly subsume (1). However, R(t) in (4) can well
approximate (1). to illustrate this, we randomly generate
three R(t)’s in Co-teaching’s search space by uniform
sampling the corresponding hyperparameters τ ∈ (0, 1),
c ∈ {0.5, 1, 2} and tk ∈ (0, 200). Figure 10 shows the
function in (4) that best approximates each of these R(t)’s
with the least squared error.

Figure 10. R(t) in Co-teaching and the best approximation from
the proposed search space.
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Table 4. MLP and CNN models used in the experiments.
MLP on MNIST CNN on CIFAR-10 CNN on CIFAR-100 CNN

(Model 1) (Model 2) (Model 3)
28×28 gray image 32×32 RGB image 32×32 RGB image 32×32 RGB image

3×3 Conv, 64 3×3 Conv, 128 BN, LReLU

Dense

5×5 Conv, 6 BN, ReLU 3×3 Conv, 128 BN, LReLU
ReLU 3×3 Conv, 64 3×3 Conv, 128 BN, LReLU

2×2 Max-pool BN, ReLU 2×2 Max-pool, stride 2
2×2 Max-pool Dropout, p=0.25
3×3 Conv, 128 3×3 Conv, 256 BN, LReLU

5×5 Conv, 16 BN, ReLU 3×3 Conv, 256 BN, LReLU
ReLU 3×3 Conv, 128 3×3 Conv, 256 BN, LReLU

28×28→256 2×2 Max-pool BN, ReLU 2×2 Max-pool, stride 2
ReLU 2×2 Max-pool Dropout, p=0.25

Dense 3×3 Conv, 196 3×3 Conv, 512 BN, LReLU
16×5×5→120 BN, ReLU 3×3 Conv, 256 BN, LReLU

ReLU 3×3 Conv, 196 3×3 Conv, 128 BN, LReLU
Dense 120→84 BN, ReLU Avg-pool

ReLU 2×2 Max-pool
Dense 256→10 Dense 84→10 Dense 256→100 Dense 128→ 10

B.2. Comparison with Weight Sharing

Weight sharing (Pham et al., 2018; Liu et al., 2019) is a
popular method to speed up the search in NAS. In this
experiment, we study if weight-sharing is also beneficial to
the search of R(·). We compare S2E with ASNG (Akimoto
et al., 2019), which is a weight-sharing version of NG.
Specifically, ASNG optimizes

min
θ,w
G(θ,w) ≡

∫
x∈F
Lval(f(w;R(x)),Dval)pθ(x) dx,

by alternating the updates ofw (using gradient descent) and
θ (using natural gradient descent). Unlike S2E in (6), in
which each θ has its own optimal w∗, ASNG only uses one
w that is shared by all θ.

Table 5 compare the test accuracies of S2E and ASNG. As
can be seen, the R(·) obtained by ASNG is much worse
than that from S2E, indicating weight-sharing is not a good
choice here. Recently, the problem of weight sharing is also
discussed in (Sciuto et al., 2020), which shows that it is not
useful in NAS for convolutional and recurrent neural works.

Table 5. Testing accuracies (%) obtained on CIFAR-10 by ASNG
and S2E.

sym-20% sym-50% pair-45%
ASNG 57.82 47.34 41.46

S2E 58.73 50.82 47.58

C. Proofs
C.1. Proposition 1

Proof. By definition,

∇2J (θ) =

∫
f̄(x)∇2pθ(x)dx

= Epθ
[
f̄(x)

∇2pθ(x)

pθ(x)

]
. (10)

Now,

∇2 log pθ(x) = ∇
(
∇pθ(x)

pθ(x)

)
=
∇2pθ(x)

pθ(x)
− ∇pθ(x)∇pθ(x)>

p2θ(x)
.

Thus,

∇2pθ(x)

pθ(x)
= ∇2 log pθ(x) +

∇pθ(x)∇pθ(x)>

p2θ(x)

= ∇2 log pθ(x) +

(
∇pθ(x)

pθ(x)

)(
∇pθ(x)

pθ(x)

)>
= ∇2 log pθ(x) + p̄θp̄

>
θ ,

Result follows on substituting this into (10).

C.2. Proposition 2

Proof. First, we introduce the following Lemma 1 which
results from Assumption 2.
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(a) symmetry flipping (20%). (b) symmetry flipping (50%). (c) pair flipping (45%).

Figure 9. Label precisions of MentorNet, Co-teaching, Co-teaching+ and S2E on CIFAR-10 (top) and CIFAR-100 (bottom).

Lemma 1 ((Rockafellar, 1970)). Since J is L-Lipschitz
smooth, we have J (y) ≤ J (x) + 〈∇J (x),y − x〉 +
L ‖y − x‖2 for any x and y.

Define a function g as

g(θ;y, z,H) = (θ − y)>z +
1

2
(θ − y)>H(θ − y).

Due to (9), we can express θm+1 as

θm+1 = arg min
θ
g(θ;y, z,H), (11)

where

y = θm, z = ∇J (θm)− em and H = ∆m. (12)

Note that ∆m is a positive definite matrix, thus g is a convex
function on θ. Consider the directional derivative of g w.r.t.
θ at the optimal point θ = θm+1, and using the fact that g
is a convex function, we have〈

z +H(θm+1 − y),wm
〉
≥ 0 (13)

for any direction w.

Let w = θm − θm+1. Combining (12) and (13), we have

〈∇J (θm)− em,γm〉 ≤ −(γm)>∆mγm. (14)

Next, using Lemma 1, we have

J (θm+1) ≤J (θm) +
〈
∇J (θm),θm+1 − θm

〉
+
L

2

∥∥θm+1 − θm
∥∥2 . (15)

Now, we add the error term em in (15), i.e.,

J (θm+1) ≤ J (θm) +
〈
∇J (θm)− em,θm+1 − θm

〉
+
L

2

∥∥θm+1 − θm
∥∥2 +

〈
em,θm+1 − θm

〉
,

≤J (θm)− (γm)>∆mγm +
L

2

∥∥θm+1 − θm
∥∥2

+
〈
em,θm+1 − θm

〉
, (16)

= J (θm)− (γm)>∆mγm +
L

2
‖γm‖2 + 〈em,γm〉 ,

≤J (θm)− (γm)>∆mγm +
L

2
‖γm‖2

+ ‖em‖2 ‖γ
m‖2 , (17)

≤J (θm)− 1

η
‖γm‖2 +

L

2
‖γm‖2

+ ‖em‖2 ‖γ
m‖2 , (18)

=J (θm) +
ηL− 2η

2η
‖γm‖2 + ‖em‖2 ‖γ

m‖2 , (19)

where (16) is from (14), (17) is from inequality 〈α,β〉 ≤
‖α‖ ‖β‖, (18) results from Assumption 3, i.e., the smallest
eigen value of ∆m is not smaller than η. Finally, rearrang-
ing terms in (19), we will obtain the Proposition.

C.3. Theorem 1

Before proving this Theorem 1, we first introduce the
following Lemma 1.
Lemma 2. Define

εm =
∥∥∥(∆m)

−1
em
∥∥∥ and ρm = (∆m)

−1 J (θm).
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We have

cm ≤ ‖γm‖ ≤ ‖ρm‖ + εm,

where cm = max (‖ρm‖ − εm, εm − ‖ρm‖).

Proof. Since θm+1 is generated by (9), thus

‖γm‖ =
∥∥∥(∆m)

−1
(∇J (θm)−em)

∥∥∥ ,
=
∥∥∥(∆m)

−1
em + ρm

∥∥∥ .
Then, the Lemma follows from Cauchy inequality.

Now, we start to prove Theorem 1.

Proof of Theorem 1. Since the eigen values of ∆m are in
[η, L] (by Assumption 3), we have

1

L
‖em‖ ≤

∥∥∥(∆m)
−1
em
∥∥∥ ≤ 1

η
‖em‖ . (20)

Combining (20) and Proposition 2, we obtain

J (θm)−J (θm+1) ≥ 2−Lη
2η

‖γm‖2−‖em‖ ‖γm‖ ,

≥ 2−Lη
2η

‖γm‖2 − η(εm)2 ‖γm‖ . (21)

Next, using Lemma 2 in (21), we have

J (θm)− J (θm+1) ≥ 2−Lη
2η

(‖ρm‖ − εm)
2

− η(εm)2 (‖ρm‖ + εm) .

Rearranging teams in the above inequality, we have where

b1 =
2− Lη

2η
,

b2 =
2− Lη + η2

η
,

and b3 =
2η2 + Lη − 2

2η
.

First Assertion. Define the following auxiliary function

ψ(θm) = b1 ‖ρm‖2 − b2 ‖ρm‖ ε− b3(εm)2.

With this definition, we have

J (θm)− J (θm+1) ≥ ψ(θm). (22)

It is easy to see that since ‖ρm‖ and ε are continuous,
b1, b2 and b3 are non-negative, then ψ(θm) is lower semi-
continuous. Let the sub-level set of ψ be

L(ψ, a) ≡ {θ | ψ(θ) ≤ a} , a ≥ 0.

Note that the sub-level set of L(ψ, a) is closed for any a ≥ 0
(see Theorem 7.1 in (Rockafellar, 1970)). Denote u =
‖ρm‖, and resolving the quadratic inequality in u:

b1u
2 − b2εmu− b3(εm)2 − t ≤ 0,

we conclude

u ≤ b2ε
m

2b1
+

1

2b1

√
(b22 + 4b1b3)(εm)2 + 4b1a.

Thus,

L(ψ, a) =
{
θ | ‖ρm‖ ≤ b2ε

m

2b1

+
1

2b1

√
(b22 + 4b1b3)(εm)2 + 4b1a

}
,

In particular,

L(ψ, 0) =

{
θ | ‖ρm‖ ≤ b2 +

√
(b22 + 4b1b3)

2b1
ε

}
.

Define

d1 =
b2 +

√
b22 + 4b1b3
2b1

and d2 = b−11 .

We conclude

L(ψ, a) ⊆
{
θ | ‖ρm‖ ≤ d1εm + d2a

1
}
,

and

L(ψ, 0) ⊆ {θ | ‖ρm‖ ≤ d1εm} . (23)

Next, we prove that there exists a limit point θ̄ of {θm}
such that θ̄ ∈ L(ψ, 0). Suppose the opposite holds. By (22),
we have

J (θm)− J (θm+1) ≥ ψ(θm), ∀m ≥ m1. (24)

By Assumption lim
m→∞

{θm} ∩ L(ψ, 0) = ∅. Then, since ψ
is lower semi-continuous, we have

ψ(θm) ≥ c > 0,

when m ≥ m2 for some sufficiently large m2 and a positive
constant c.

Denote k = max{m1,m2}, for any m ≥ k, we have

J (θk)− J (θm) =

k∑
j=m

(
J (θj)− J (θj+1)

)
,

≥ (k −m)c.

Let k → ∞, we have lim
m→∞

J (θm) = −∞, which
contradicts with Assumption 2, i.e., inf J > −∞. Thus,
from (23), for every limit point θ̄ of {θm}, we must have

‖ρm‖ ≤ d1εm.
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Recall the definition of ρm in Lemma 2, and by Assump-
tion 3 that the error εm on gradient is upper-bounded by ε̄,
we obtain the first assertion.

Second Assertion. If the sequence {θm} converges, then
for every sub-sequence {θmi} of {θm} it follows

lim
i→∞

supJ (θmi) = lim
m→∞

inf J (θm),

Thus,

lim
m→∞

θm ⊆ L(ψ, 0), (25)

where L(ψ, 0) is in (23). Combing (25) with the first
assertion, we then have

lim
m→∞

‖εm‖ ≤ c1ε̄.

Finally, by (i) in Assumption 2 and definition of εm in
Lemma 2, we have

lim
m→∞

‖em‖ ≤ c2ε̄,

for a positive constant c2, which proves the second assertion.


