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Abstract
The classical bias-variance trade-off predicts that
bias decreases and variance increases with model
complexity, leading to a U-shaped risk curve.
Recent work calls this into question for neural
networks and other over-parameterized models,
for which it is often observed that larger models
generalize better. We provide a simple explana-
tion for this by measuring the bias and variance
of neural networks: while the bias is monoton-
ically decreasing as in the classical theory, the
variance is unimodal or bell-shaped: it increases
then decreases with the width of the network. We
vary the network architecture, loss function, and
choice of dataset and confirm that variance uni-
modality occurs robustly for all models we con-
sidered. The risk curve is the sum of the bias
and variance curves and displays different qual-
itative shapes depending on the relative scale of
bias and variance, with the double descent curve
observed in recent literature as a special case. We
corroborate these empirical results with a theo-
retical analysis of two-layer linear networks with
random first layer. Finally, evaluation on out-of-
distribution data shows that most of the drop in ac-
curacy comes from increased bias while variance
increases by a relatively small amount. More-
over, we find that deeper models decrease bias
and increase variance for both in-distribution and
out-of-distribution data.

1. Introduction
Bias-variance trade-off is a fundamental principle for un-
derstanding the generalization of predictive learning models
(Hastie et al., 2001). The bias is an error term that stems
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from a mismatch between the model class and the under-
lying data distribution, and is typically monotonically non-
increasing as a function of the complexity of the model. The
variance measures sensitivity to fluctuations in the training
set and is often attributed to a large number of model pa-
rameters. Classical wisdom predicts that model variance
increases and bias decreases monotonically with model com-
plexity (Geman et al., 1992). Under this perspective, we
should seek a model that has neither too little nor too much
capacity and achieves the best trade-off between bias and
variance.

In contrast, modern practice for neural networks repeat-
edly demonstrates the benefit of increasing the number of
neurons (Krizhevsky et al., 2012; Simonyan & Zisserman,
2015; Zhang et al., 2017), even up to the point of saturat-
ing available memory. The inconsistency between classical
theory and modern practices suggests that some arguments
in the classical theory can not be applied to modern neural
networks.

Geman et al. (1992) first studied the bias and variance of
the neural networks and give experimental evidence that
the variance is indeed increasing as the width of the neu-
ral network increases. Since Geman et al. (1992), Neal
et al. (2019) first experimentally measured the variance of
modern neural network architectures and shown that the
variance can actually be decreasing as the width increases to
a highly overparameterized regime. Recently, Belkin et al.
(2019a; 2018; 2019b) directly studied the risk of modern
machine learning models and proposed a double descent risk
curve, which has also been analytically characterized for cer-
tain regression and classification models (Mei & Montanari,
2019; Hastie et al., 2019; Spigler et al., 2019; Deng et al.,
2019; Advani & Saxe, 2017; Bartlett et al., 2020; Chatterji
& Long, 2020). However, there exists two mysteries around
the double descent risk curve. First, the double descent
phenomenon can not be robustly observed (Nakkiran et al.,
2019; Ba et al., 2020). In particular, to observe it in modern
neural network architectures, we sometimes have to arti-
ficially inject label noise (Nakkiran et al., 2019). Second,
there lacks an explanation for why the double descent risk
curve should occur. In this work, we offer an simple expla-
nation for these two mysteries by proposing an unexpected
unimodal variance curve.
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(a) Case 1 (b) Case 2 (c) Case 3
Figure 1. Typical cases of expected risk curve (in black) in neural networks. Blue: squared bias curve. Red: variance curve.

Specifically, we measure the bias and variance of modern
deep neural networks trained on commonly used computer
vision datasets. Our main finding is that while the bias
is monotonically decreasing with network width as in the
classical theory, the variance curve is unimodal or bell-
shaped: it first increases and then decreases (see Figure
2). Therefore, the unimodal variance is consistent with the
finding of Neal et al. (2019), who observed that the variance
eventually decreases in the overparameterized regime. In
particular, the unimodal variance curve can also be observed
in Neal et al. (2019, Figure 1, 2, 3). However, Neal et al.
(2019) did not point out the characteristic shape of the vari-
ance or connect it to double descent. More importantly, we
demonstrate that the unimodal variance phenomenon can
be robustly observed for varying network architecture and
dataset. Moreover, by using a generalized bias-variance
decomposition for Bregman divergences (Pfau, 2013), we
verify that it occurs for both squared loss and cross-entropy
loss.

This unimodal variance phenomenon initially appears to
contradict recent theoretical work suggesting that both bias
and variance are non-monotonic and exhibit a peak in some
regimes (Mei & Montanari, 2019; Hastie et al., 2019) . The
difference is that this previous work considered the fixed-
design bias and variance, while we measure the random-
design bias and variance (we describe the differences in
detail in §2.1). Prior to our work, Nakkiran (2019) also
considered the variance of linear regression in the random-
design setting, and Rosset & Tibshirani (2017) discussed
additional ways to decompose risk into the bias and the
variance term.

A key finding of our work is that the complex behavior of
the risk curve arises due to the simple but non-classical vari-
ance unimodality phenomenon. Indeed, since the expected
risk (test loss) is the sum of bias and variance, monotonic
bias and unimodal variance can lead to three characteristic
behaviors, illustrated in Figure 1, depending on the relative
size of the bias and variance. If the bias completely domi-
nates, we obtain monotonically decreasing risk curve (see
Figure 1(a)). Meanwhile, if the variance dominates, we
obtain a bell-shaped risk curve that first increases then de-

creases (see Figure 1(c)). The most complex behavior is
if bias and variance dominate in different regimes, leading
to the double-descent risk curve in Figure 1(b). All three
behaviors are well-aligned with the empirical observation
in deep learning that larger models typically perform bet-
ter. The most common behavior in our experiments is the
first case (monotonically decreasing risk curve) as bias is
typically larger than variance. We can observe the double-
descent risk curve when label noise is added to the training
set (see §3.3), and can observe the unimodal risk curve
when we use the generalized bias-variance decomposition
for cross-entropy loss (see §3.2).

Further Implications. The investigations described
above characterize bias and variance as a function of net-
work width, but we can explore the dependence on other
quantities as well, such as model depth (§4.2). Indeed, we
find that deeper models tend to have lower bias but higher
variance. Since bias is larger at current model sizes, this
confirms the prevailing wisdom that we should generally
use deeper models when possible. On the other hand, it
suggests that this process may have a limit—eventually very
deep models may have low bias but high variance such that
increasing the depth further harms performance.

We also investigate the commonly observed drop in accu-
racy for models evaluated on out-of-distribution data, and at-
tribute it primarily to increased bias. Combined with the pre-
vious observation, this suggests that increasing model depth
may help combat the drop in out-of-distribution accuracy,
which is supported by experimental findings in Hendrycks
& Dietterich (2019).

Theoretical Analysis of A Two-Layer Neural Network.
Finally, we conduct a theoretical study of a two-layer lin-
ear network with a random Gaussian first layer. While this
model is much simpler than those used in practice, we never-
theless observe the same characteristic behaviors for the bias
and variance. In particular, by working in the asymptotic
setting where the input data dimension, amount of training
data, and network width go to infinity with fixed ratios, we
show that the bias is monotonically decreasing while the
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variance curve is unimodal. Our analysis also character-
izes the location of the variance peak as the point where
the number of hidden neurons is approximately half of the
dimension of the input data.

2. Preliminaries
In this section we present the bias-variance decomposition
for squared loss. We also present a generalized bias-variance
decomposition for cross-entropy loss in §2.2. The task is
to learn a function f : Rd → Rc, based on i.i.d. train-
ing samples T = {(xi,yi)}ni=1 drawn from a joint dis-
tribution P on Rd × Rc, such that the mean squared er-
ror Ex,y

[
‖y − f(x, T )‖22

]
is minimal, where (x,y) ∼ P .

Here we denote the learned function by f(x; T ) to make
the dependence on the training samples clear.

Note that the learned predictor f(x; T ) is a random
quantity depending on T . We can assess its perfor-
mance in two different ways. The first way, random-
design, takes the expectation over T such that we con-
sider the expected error ET

[
‖y − f(x, T )‖22

]
. The

second way, fixed-design, holds the training covariates
{xi}ni=1 fixed and only takes expectation over {yi}ni=1,
i.e., ET

[
‖y − f(x, T )‖22 | {xi}ni=1

]
. The choice of

random/fixed-design leads to different bias-variance de-
compositions. Throughout the paper, we focus on random-
design, as opposed to fixed-design studied in Mei & Monta-
nari (2019); Hastie et al. (2019); Ba et al. (2020).

2.1. Bias Variance Decomposition

Random Design. In the random-design setting, decom-
posing the quantity ET

[
‖y − f(x, T )‖22

]
gives the usual

bias-variance trade-off from machine learning, e.g. Geman
et al. (1992); Hastie et al. (2001).

Ex,yET
[
‖y − f(x, T )‖22

]
=

Ex,y
[
‖y − f̄(x)‖22

]︸ ︷︷ ︸
Bias2

+ExET
[
‖f(x, T )− f̄(x)‖22

]︸ ︷︷ ︸
Variance

,

where f̄(x) = ET f(x, T ). Here ET
[
‖(y − f(x, T )‖22

]
measures the average prediction error over different realiza-
tions of the training sample. In addition to take the expecta-
tion ET , we also average over Ex,y , as discussed in Bishop
(2006, §3.2). For future reference, we define

Bias2 = Ex,y
[
‖y − f̄(x)‖22

]
, (1)

Variance = ExET
[
‖f(x, T )− f̄(x)‖22

]
. (2)

In §2.2, we present our estimator for bias and variance in
equation (1) and (2).

Fixed Design. In fixed-design setting, the covariates
{xi}ni=1 are held be fixed, and the only randomness in the

training set T comes from yi ∼ P (Y | X = xi). As
presented in Mei & Montanari (2019); Hastie et al. (2019);
Ba et al. (2020), a more natural way to present the fixed-
design assumption is to hold {xi}ni=1 to be fixed and let
yi = f0(x) + εi for i = 1, . . . , n, where f0(x) is a ground-
truth function and εi are random noises. Under this assump-
tion, the randomness in T all comes from the random noise
εi. To make this clear, we write T as Tεi . Then, we obtain
the fixed-design bias-variance decomposition

Eεi
[
‖(y − f(x, Tεi)‖22

]
=[

‖(y − f̄(x)‖22
]︸ ︷︷ ︸

Bias2

+Eεi
[
‖(f(x, Tεi)− f̄(x)‖22

]︸ ︷︷ ︸
Variance

,

where f̄(x) = Eεif(x, Tεi). In most practical settings, the
expectation Eεif(x, Tεi) cannot be estimated from training
samples T = {(xi,yi)}ni=1, because we do not have access
to independent copies of f(xi) + εi. In comparison to the
random-design setting, the fixed-design setting tends to have
larger bias and smaller variance, since more “randomness”
is introduced into the variance term.

2.2. Estimating Bias and Variance

In this section, we present the estimator we use to estimate
the bias and variance as defined in equation (1) and (2). The
high level idea is to approximate the expectation ET by
computing the sample average using multiple training sets
T1, . . . , TN . When evaluating the expectation ET , there is a
trade-off between having larger training sets (n) within each
training set and having larger number of splits (N ), since
n×N = total number of training samples.

Mean Squared Error (MSE). To estimate bias and vari-
ance in equation (1) and (2), we introduce an unbiased
estimator for variance, and obtain bias by subtracting the
variance from the risk. Let T = T1 ∪ · · · ∪ TN be a random
disjoint split of training samples. In our experiment, we
mainly take N = 2 (for CIFAR10 each Ti has 25k samples).
To estimate the variance, we use the unbiased estimator

v̂ar(x, T ) =
1

N − 1

N∑
j=1

∥∥∥f(x, Tj)−
N∑
j=1

1

N
f(x, Tj)

∥∥∥2

2
,

where var depends on the test point x and on the random
training set T . While var is unbiased, its variance can be
reduced by using multiple random splits to obtain estimators
v̂ar1, . . . , v̂ark and taking their average. This reduces the
variance of the variance estimator since:

VarT
(1

k

k∑
i=1

v̂ari
)

=

∑
ij CovT (v̂ari, v̂arj)

k2
≤ VarT (v̂ar1),

where the {v̂ari}ki=1 are identically distributed but not inde-
pendent, and we used the Cauchy-Schwarz inequality.
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Algorithm 1 Estimating Generalized Variance
Input: Test point x, Training set T .
for i = 1 to k do

Split the T into T (i)
1 , . . . , T (i)

N .
for j = 1 to N do

Train the model using T (i)
j ;

Evaluate the model at x; call the result π(i)
j ;

end for
end for
Compute π̂ = exp

{
1
N ·k

∑
ij log

(
π

(i)
j

)}
(using element-wise log and exp; π̂ estimates π̄).
Normalize π̂ to get a probability distribution.
Compute the variance 1

N ·k
∑
ij DKL

(
π̂‖π(i)

j

)
.

Cross-Entropy Loss (CE). In addition to the classical
bias-variance decomposition for MSE loss, we also consider
a generalized bias-variance decomposition for cross-entropy
loss. Let π(x, T ) ∈ Rc be the output of the neural network
(a probability distribution over the class labels). π(x, T ) is
a random variable since the training set T is random. Let
π0(x) ∈ Rc be the one-hot encoding of the ground-truth
label. Then, omitting the dependence of π and π0 on x and
T , the cross entropy loss

H(π0, π) =

c∑
l=1

π0[l] log(π[l])

can be decomposed as

ET [H(π0, π)] = DKL(π0‖π̄)︸ ︷︷ ︸
Bias2

+ET [DKL(π̄‖π)]︸ ︷︷ ︸
Variance

, (3)

where π[l] is the l-th element of π, and π̄ is the average of
log-probability after normalization, i.e.,

π̄[l] ∝ exp{ET log(π[l])} for l = 1, . . . , c.

This decomposition is a special case of the general decom-
position for Bregman divergence discussed in Pfau (2013).

We apply Algorithm 1 to estimate the generalized variance
in (3). Here we could not obtain an unbiased estimator, but
the estimate is better if we take more random splits (larger
k). In practice, we choose k to be large enough so that the
estimated variance stabilizes when we further increase k
(see §3.4). Similar to the case of squared loss, we estimate
the bias by subtracting the variance from the risk.

3. Measuring Bias and Variance for Neural
Networks

In this section, we study the bias and variance (equations (1)
and (2)) of deep neural networks. While the bias is mono-
tonically decreasing as folk wisdom would predict, the

variance is unimodal (first increases to a peak and then
decreases). We conduct extensive experiments to verify
that this phenomenon appears robustly across architec-
tures, datasets, optimizer, and loss function. Our code
can be found at https://github.com/yaodongyu/
Rethink-BiasVariance-Tradeoff.

3.1. Mainline Experimental Setup

We first describe our mainline experimental setup. In the
next subsection, we vary each design choice to check ro-
bustness of the phenomenon. More extensive experimental
results are given in the appendix.

For the mainline experiment, we trained a ResNet34 (He
et al., 2016) on the CIFAR10 dataset (Krizhevsky et al.,
2009). We trained using stochastic gradient descent (SGD)
with momentum 0.9. The initial learning rate is 0.1. We
applied stage-wise training (decay learning rate by a factor
of 10 every 200 epochs), and used weight decay 5× 10−4.
To change the model complexity of the neural network, we
scale the number of filters (i.e., width) of the convolutional
layers. More specifically, with width = w, the number of
filters are [w, 2w, 4w, 8w]. We vary w from 2 to 64 (the
width w of a regular ResNet34 designed for CIFAR10 in He
et al. (2016) is 16).

Relative to the standard experimental setup (He et al., 2016),
there are two main differences. First, since bias-variance
is usually defined for the squared loss (see (1) and (2)),
our loss function is the squared error (squared `2 distance
between the softmax probabilities and the one-hot class
vector) rather than the log-loss. In the next section we
also consider models trained with the log-loss and estimate
the bias and variance by using a generalized bias-variance
decomposition, as described in §2.2. Second, to measure
the variance (and hence bias), we need two models trained
on independent subsets of the data as discussed in §2.2.
Therefore, the training dataset is split in half and each model
is trained on only n = 25, 000 = 50, 000/2 data points. We
estimate the variance by averaging overN = 3 such random
splits (i.e., we train 6 = 3× 2 copies of each model).

In Figure 2, we can see that the variance as a function of the
width is unimodal and the bias is monotonically decreasing.
Since the scale of the variance is small relative to the bias,
the overall behavior of the risk is monotonically decreasing.

3.2. Varying Architectures, Loss Functions, Datasets

Architectures. We observe the same monotonically de-
screasing bias and unimodal variance phenomenon for
ResNext29 (Xie et al., 2017). To scale the “width” of the
ResNext29, we first set the number of channels to 1 and
increase the cardinality, defined in (Xie et al., 2017), from
2 to 4, and then fix the cardinality at 4 and increase channel

https://github.com/yaodongyu/Rethink-BiasVariance-Tradeoff
https://github.com/yaodongyu/Rethink-BiasVariance-Tradeoff
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Figure 2. Mainline experiment on ResNet34, CIFAR10 dataset (25,000 training samples). (Left) Risk, bias, and variance for ResNet34.
(Middle) Variance for ResNet34. (Right) Train error and test error for ResNet34.
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Figure 3. Risk, bias, and variance with respect to different network architectures, training loss functions, and datasets. (a). ResNext29
trained by MSE loss on CIFAR10 dataset (25,000 training samples). (b). ResNet34 trained by CE loss (estimated by generalized
bias-variance decomposition using Bregman divergence) on CIFAR10 dataset (10,000 training samples). (c). Fully connected network
with one hidden layer and ReLU activation trained by MSE loss on MNIST dataset (10,000 training samples).

size from 1 to 32. Results are shown in Figure 3(a), where
the width on the x-axis is defined as the cardinality times
the filter size.

Loss Function. In addition to the bias-variance decompo-
sition for MSE loss, we also considered a similar decom-
position for cross-entropy loss as described in §2.2. We
train with cross-entropy loss and use n = 10, 000 training
samples (5 splits), repeating N = 4 times with independent
random splits. As shown in Figure 3(b), the behavior of the
generalized bias and variance for cross entropy is consis-
tent with our earlier observations: the bias is monotonically
decreasing and the variance is unimodal. The risk first in-
creases and then decreases, corresponding to the unimodal
risk pattern in Figure 1(c).

Datasets. In addition to CIFAR10, we study bias and vari-
ance on MNIST (LeCun, 1998) and Fashion-MNIST (Xiao
et al., 2017). For these two datasets, we use a fully con-
nected neural network with one hidden layer with ReLU ac-
tivation function. The “width” of the network is the number
of hidden nodes. We use 10,000 training samples (N = 5).
As seen in Figure 3(c) and 10 (in Appendix B), for both
MNIST and Fashion-MNIST, the variance is again unimodal
and the bias is monotonically decreasing.

In addition to the above experiments, we also conduct ex-
periments on the CIFAR100 dataset, the VGG network ar-

chitecture (Simonyan & Zisserman, 2015), various training
sample sizes, and different weight decay regularization and
present the results in Appendix B. We observe the same
monotonically descreasing bias and unimodal variance phe-
nomenon in all of these experiments.

3.3. Connection to Double-Descent Risk

When the relative scale of bias and variance changes, the risk
displays one of the three patterns, monotonically decreasing,
double descent, and unimodal, as presented in Figure 1(a),
1(b) and 1(c). In particular, the recent stream of observa-
tions on double descent risk (Belkin et al., 2019a) can be
explained by unimodal variance and monotonically decreas-
ing bias. In our experiments, including the experiments
in previous sections, we typically observe monotonically
decreasing risk; but with more label noise, the variance will
increase and we observe the double descent risk curve.

Label Noise. Similar to the setup in Nakkiran (2019), for
each split, we sample training data from the whole training
dataset, and replace the label of each training example with a
uniform random class with independent probability p. Label
noise increases the variance of the model and hence leads
to double-descent risk as seen in Figure 4. If the variance
is small, the risk does not have the double-descent shape
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Figure 4. Increasing label noise leads to double-descent. (Left) Bias and variance under different label noise percentage. (Right) Training
error and test error under different label noise percentage.

because the variance peak is not large enough to overwhelm
the bias, as observed in Figures 2, 3(a), 3(c) and 10.

3.4. Discussion of Possible Sources of Error

In this section, we briefly describe the possible sources of
error in our estimator defined in §2.2.

Mean Squared Error. As argued in §2.2, the variance
estimator is unbiased. To understand the variance of the
estimator, we first split the data into two parts. For each part,
we compute the bias and variance for varying network width
by using our estimator. Averaging across different model
width, the relative difference between the two parts is 0.6%
for bias and 3% for variance, so our results for MSE are
minimally sensitive to finite-sample effects. The complete
experiments can be found in the appendix (see Figure 17).

Cross Entropy Loss. For cross entropy loss, we are cur-
rently unable to obtain an unbiased estimator. We can assess
the quality of our estimator using the following scheme.
We partition the dataset into five parts T1, . . . , T5, i.e., set
N = 5 in Algorithm 1. Then, we sequentially plot the esti-
mate of bias and variance using k = 1, 2, 3, 4 as described
in Algorithm 1. We observe that using larger k gives better
estimates. In Figure 18 of Appendix B.9, we observe that
as k increases, the bias curve systematically decreases and
the variance curve increases. Therefore our estimator over-
estimates the bias and under-estimates the variance, but the
overall behaviors of the curves remain consistent.

4. What Affects the Bias and Variance?
In this section, through the Bias-Variance decomposition
analyzed in §3, we investigate the role of depth for neural
networks and the robustness of neural networks on out-of-
distribution examples.

4.1. Bias-Variance Tradeoff for Out-of-Distribution
(OOD) Example

For many real-world computer vision applications, inputs
can be corrupted by random noise, blur, weather, etc.
These common occurring corruptions are shown to signifi-
cantly decrease model performance (Azulay & Weiss, 2019;
Hendrycks & Dietterich, 2019). To better understand the
“generalization gap” between in-distribution test examples
and out-of-distribution test examples, we empirically evalu-
ate the bias and variance on the CIFAR10-C dataset devel-
oped by Hendrycks & Dietterich (2019), which is a common
corruption benchmark and includes 15 types of corruption.

By applying the models trained in the mainline experiment,
we are able to evaluate the bias and variance on CIFAR10-C
test dataset according to the definitions in (1) and (2). As we
can see from Figure 5(a), both the bias and variance increase
relative to the original CIFAR10 test set. Consistent with
the phenomenon observed in the mainline experiment, the
bias dominates the overall risk. The results indicate that
the “generalization gap” mainly comes from increased bias,
with relatively less contribution from variance as well.

4.2. Effect of Model Depth on Bias and Variance

In addition to the ResNet34 considered in the mainline
experiment, we also evaluate the bias and variance for
ResNet18 and ResNet50. Same as the mainline experi-
ment setup, we estimate the bias and variance for ResNet
using 25,000 training samples (N = 2) and three indepen-
dent random splits (k = 3). The standard building block of
ResNet50 architecture in He et al. (2016) is bottleneck block,
which is different from the basic block used in ResNet18 and
ResNet34. To ensure that depth is the only changing vari-
able across three architectures, we apply the basic block for
ResNet50. Same training epochs and learning rate decays



Rethinking Bias-Variance Trade-off for Generalization of Neural Networks

101

ResNet34 Width

0.1

0.2

0.3

0.4

0.5

0.6
Ri

sk
/B

ia
s2 /V

ar
ia

nc
e

Risk (Clean)
Bias2 (Clean)
Variance (Clean)
Risk (OOD)
Bias2 (OOD)
Variance (OOD)

(a) OOD Example

101

ResNet Width

0.10

0.15

0.20

0.25

0.30

0.35

Bi
as

2

Bias2 (ResNet18)
Bias2 (ResNet34)
Bias2 (ResNet50)

(b) Bias of model with different depth

101

ResNet Width
0.03

0.04

0.05

0.06

0.07

0.08

0.09

Va
ria

nc
e

Variance (ResNet18)
Variance (ResNet34)
Variance (ResNet50)

(c) Variance of model with different depth

Figure 5. (a). Risk, bias, and variance for ResNet34 on out-of-distribution examples (CIFAR10-C dataset). (b)-(c). Bias and variance for
ResNet with different depth trained by MSE loss on CIFAR10 (25,000 training samples).

are applied to three models.

From Figure 5(b) and 5(c), we observe that the bias de-
creases as the depth increases, while the variance increases
as the depth increases. For each model, the bias is monoton-
ically decreasing and the variance is unimodal. The differ-
ences in variance are small (around 0.01) compared with the
changes in bias. Overall, the risk typically decreases as the
depth increases. Our experimental results suggest that the
improved generalization for deeper models, with the same
network architecture, are mainly attributed to lower bias.

For completeness, we also include the bias and variance
versus depth when basic blocks in ResNet are replaced by
bottleneck blocks (see Figure 20 in the appendix). We
observe similar qualitative trend of bias and variance.

Note that at high width, the bias of ResNet50 is slightly
higher than the bias of ResNet18 and ResNet34. We
attribute this inconsistency to difficulties when training
ResNet50 without bottleneck blocks at high width. Lastly,
we also include the bias and variance versus depth for out-
of-distribution test samples, in which case we also observed
decreased bias and increased variance as depth increases, as
shown in Figure 19 of Appendix B.10.

5. Theoretical Insights from a Two-layer
Linear Model

While the preceding experiments show that the bias and
variance robustly exhibit monotonic-unimodal behavior in
the random-design setting, existing theoretical analyses hold
instead for the fixed-design setting, where the behavior of the
bias and variance are more complex, with both the bias and
variance exhibiting a peak and the risk exhibiting double
descent pattern (Mei & Montanari (2019, Figure 6)). In
general, while the risk should be the same (in expectation)
for the random and fixed design setting, the fixed-design
setting has lower bias and higher variance.

Motivated by the more natural behavior in the random-

design setting, we work to extend the existing fixed-design
theory to the random-design case. Our starting point is Mei
& Montanari (2019), who consider two-layer non-linear
networks with random hidden layer weights. However, the
randomness in the design complicates the analysis, so we
make two points of departure to help simplify: first, we
consider two-layer linear rather than non-linear networks,
and second, we consider a different scaling limit (n/d→∞
rather than n/d going to some constant). In this setting, we
rigorously show that the variance is indeed unimodal and
the bias is monotonically decreasing (Figure 6). Our precise
assumptions are given below.

5.1. Model Assumptions

We consider the task of learning a function y = f(x) that
maps each input vector x ∈ Rd to an output (label) value
y ∈ R. The input-output pair (x, y) is assumed to be drawn
from a distribution where x ∼ N (0, Id/d) and

y = f0(x) := x>θ, (4)

where θ ∈ Rd is a weight vector. Given a training set T :=
{(xi, yi)}ni=1 with training samples drawn independently
from the data distribution, we learn a two-layer linear neural
network parametrized byW ∈ Rp×d and β ∈ Rp as

f(x) = (Wx)>β,

where p is the number of hidden units in the network. In
above, we takeW as a parameter independent of the train-
ing data T whose entries are drawn from i.i.d. Gaussian
distribution N (0, 1/d). GivenW , the parameter β is esti-
mated by solving the following ridge regression1 problem

βλ(T ,W ) = arg min
β∈Rp

‖(WX)>β − y‖22 + λ‖β‖22, (5)

1`2 regularization on weight parameters is arguably the most
widely used technique in training neural network, known for im-
proving generalization (Krogh & Hertz, 1992). Other regulariza-
tion such as `1 can also be used and leads to qualitatively similar
behaviors.
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Figure 6. Risk, bias, and variance for a two-layer linear neural network.

where X = [x1, . . . ,xn] ∈ Rd×n denotes a matrix
that contains training data vectors as its columns, y =
[y1, . . . , yn] ∈ Rn denotes a vector containing training la-
bels as its entries, and λ ∈ R+ is the regularization parame-
ter. By noting that the solution to (5) is given by

βλ(T ,W ) = (WXX>W> + λI)−1WXy,

our estimator f : Rd → R is given as

fλ(x; T ,W ) = x>W>βλ(T ,W ). (6)

5.2. Bias-Variance Analysis

We may now calculate the bias and variance of the model
described above via the following formulations:

Biasλ(θ)2 = Ex [ET ,W fλ(x; T ,W )− f0(x)]
2
,

Varianceλ(θ) = ExVarT ,W [fλ(x; T ,W )] ,

where f0(x) and fλ(x; T ,W ) are defined in (4) and (6),
respectively. Note that the bias and variance are functions
of the model parameter θ. To simplify the analysis, we
introduce a prior θ ∼ N (0, Id) and calculate the expected
bias and expected variance as

Bias2
λ := EθBiasλ(θ)2, (7)

Varianceλ := EθVarianceλ(θ). (8)

The precise formulas for the expected bias and the expected
variance are parametrized by the dimension of the input
feature d, the number of training points n, the number of
hidden units p and also λ.

Previous literatures (Mei & Montanari, 2019) suggests that
both the risk and the variance achieves a peak at the inter-
polation threshold (n = p). In the regime when n is very
large, the risk no longer exhibits a peak, but the unimodal
pattern of variance still holds. In the rest of the section, we
consider the regime where the n is large (monotonically de-
creasing risk), and derive the precise expression for the bias
and variance of the model. From our expression, we obtain

the location where the variance achieves the peak. For this
purpose, we consider the following asymptotic regime of
n, p and d:

Assumption 1. Let {(d, n(d), p(d))}∞d=1 be a given se-
quence of triples. We assume that there exists a γ > 0
such that

lim
d→∞

p(d)

d
= γ, and lim

d→∞

n(d)

d
=∞.

For simplicity, we will write n := n(d) and p := p(d).

With the assumption above, we have the expression of the
expected bias, variance and risk as a function of γ and λ.

Theorem 1. Given {(d, n(d), p(d))}∞d=1 that satisfies As-
sumption 1, let λ = n

dλ0 for some fixed λ0 > 0. The
asymptotic expression of expected bias and variance are
given by

lim
d→∞

Bias2
λ =

1

4
Φ3(λ0, γ)2, (9)

lim
d→∞

Varianceλ =
Φ1(λ0,

1
γ )

2Φ2(λ0,
1
γ )
− (1−γ)(1−2γ)

2γ − 1
4Φ3(λ0, γ)2, γ ≤ 1,

Φ1(λ0,γ)
2Φ2(λ0,γ) −

γ−1
2 −

1
4Φ3(λ0, γ)2, γ > 1,

where

Φ1(λ0, γ) = λ0(γ + 1) + (γ − 1)2,

Φ2(λ0, γ) =
√

(λ0 + 1)2 + 2(λ0 − 1)γ + γ2,

Φ3(λ0, γ) = Φ2(λ0, γ)− λ0 − γ + 1.

The proof is given in Appendix C.

The risk can be obtained through Bias2
λ + Varianceλ.

The expression in Theorem 1 is plotted as the red curves
in Figure 6. In addition to the case when n/d → ∞,
we also plot the shape of bias, variance and risk when
n/d→ {0.15, 0.25, 0.35, . . . , 1.00, 1.50}. We find that the
risk of the model grows from unimodal to monotonically
decreasing as the number of samples increased (see Figure
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6(a)). Moreover, the bias of the model is monotonically
decreasing (see Figure 6(b)) and the variance is unimodal
(see Figure 6(c)).

Corollary 1 (Monotonicity of Bias). The derivative of the
limiting expected Bias in (9) can be calculated as

−

(√
2(γ + 1)λ0 + (γ − 1)2 + λ2

0 − γ − λ0 + 1
)2

2
√
γ2 + 2γ (λ0 − 1) + (λ0 + 1) 2

.

(10)

When λ0 ≥ 0, the expression in (10) is strictly non-positive,
therefore the limiting expected bias is monotonically non-
increasing as a function of γ, as classical theories predicts.

To gain further insight into the above formulas, we also
consider the case when the ridge regularization amount λ0

is small. In particular, we consider the first order effect of
λ0 on the bias and variance term, and compute the value of
γ where the variance attains the peak.

Corollary 2 (Unimodality of Variance – small λ0 limit).
Under the assumptions of Theorem 1, the first order effect
of λ0 on variance is given by

lim
d→∞

EVarianceλ =

{
O
(
λ2

0

)
, γ > 1,

−(γ − 1)γ − 2γλ0 +O
(
λ2

0

)
, o.w.

and the risk is given by

lim
d→∞

ERiskλ =

{
1− γ +O

(
λ2

0

)
, γ ≤ 1,

O
(
λ2

0

)
, γ > 1.

Moreover, up to first order, the peak in the variance is

Peak =
1

2
− λ0 +O

(
λ2

0

)
.

Theorem 2 suggests that when λ0 is sufficiently small, the
variance of the model is maximized when p = d/2, and the
effect of λ0 is to shift the peak slightly to d/2− λ0d.

From a technical perspective, to compute the variance in
the random-design setting, we need to compute the element-
wise expectation of certain random matrix. For this purpose,
we apply the combinatorics of counting non-cross partitions
to characterize the asymptotic expectation of products of
Wishart matrices.

6. Conclusion and Discussion
In this paper we re-examine the classical theory of bias and
variance trade-off as the width of a neural network increases.
Through extensive experimentation, our main finding is
that, while the bias is monotonically decreasing as classi-
cal theory would predict, the variance is unimodal. This

combination leads to three typical risk curve patterns, all ob-
served in practice. Theoretical analysis of a two-layer linear
network corroborates these experimental observations.

The seemingly varied and baffling behaviors of modern neu-
ral networks are thus in fact consistent, and explainable
through classical bias-variance analysis. The main unex-
plained mystery is the unimodality of the variance. We
conjecture that as the model complexity approaches and
then goes beyond the data dimension, it is regularization in
model estimation (the ridge penalty in our theoretical exam-
ple) that helps bring down the variance. Under this account,
the decrease in variance for large dimension comes from
better conditioning of the empirical covariance, making it
better-aligned with the regularizer.

In the future, it would be interesting to see if phenomena
characterized by the simple two-layer model can be rigor-
ously generalized to deeper networks with nonlinear acti-
vation, probably revealing other interplays between model
complexity and regularization (explicit or implicit). Such
a study could also help explain another phenomenon we
(and others) have observed: bias decreases with more layers
as variance increases. We believe that the (classic) bias-
variance analysis remains a powerful and insightful frame-
work for understanding the behaviors of deep networks;
properly used, it can guide practitioners to design more
generalizable and robust networks in the future.
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