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Abstract
Exploration in reinforcement learning (RL) suf-
fers from the curse of dimensionality when the
state-action space is large. A common practice
is to parameterize the high-dimensional value
and policy functions using given features. How-
ever existing methods either have no theoreti-
cal guarantee or suffer a regret that is expo-
nential in the planning horizon H . In this pa-
per, we propose an online RL algorithm, namely
the MatrixRL, that leverages ideas from linear
bandit to learn a low-dimensional representa-
tion of the probability transition model while
carefully balancing the exploitation-exploration
tradeoff. We show that MatrixRL achieves a
regret bound O

(
H2d log T

√
T
)

where d is the
number of features, independent with the num-
ber of state-action pairs. MatrixRL has an
equivalent kernelized version, which is able to
work with an arbitrary kernel Hilbert space with-
out using explicit features. In this case, the
kernelized MatrixRL satisfies a regret bound
O
(
H2d̃ log T

√
T
)
, where d̃ is the effective di-

mension of the kernel space.

1. Introduction
Reinforcement learning (RL) is about learning to make se-
quential decisions in an unknown environment through trial
and error. It finds wide applications in robotics (Kober
et al., 2013), autonomous driving (Shalev-Shwartz et al.,
2016), game AI (Silver et al., 2017) and beyond. We
consider a basic RL model - the Markov decision process
(MDP). In the MDP, an agent at a state s ∈ S is able to
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play an action a ∈ A, where S and A are the state and
action spaces. Then the system transitions to another state
s′ ∈ S according to an unknown probability P (s′ | s, a),
while returning an immediate reward r(s, a) ∈ [0, 1]. The
goal of the agent is to obtain the maximal possible return
after playing for a period of time - even though she has no
knowledge about the transition probabilities at the begin-
ning.

The performance of a learning algorithm is measured by
“regret”. Regret is the difference between the cumulative
reward obtained using the best possible policy and the cu-
mulative reward obtained by the learning algorithm. Any
algorithm that is capable of learning requires to have a re-
gret sublinear in T , the number of time steps. In the tabular
setting where S andA are finite sets, there exist algorithms
that achieve asymptotic regret ∼ poly(|S||A|) ·

√
T (e.g.

(Jaksch et al., 2010; Dann & Brunskill, 2015; Osband &
Van Roy, 2016; Osband et al., 2017; Agrawal & Jia, 2017;
Azar et al., 2017; Dann et al., 2018; Jin et al., 2018)). How-
ever, the aforementioned regret bound depends polynomi-
ally on |S| and |A|, sizes of the state and action space,
which can be very large or even infinite. For instance, the
game of Go has 3361 unique states, and a robotic arm has
infinitely many continuous-valued states. In the most gen-
eral sense, the regret poly(|S||A|) ·

√
T is nonimprovable

in the worst case (Jaksch et al., 2010). This issue is more
generally known as the “curse of dimensionality” of control
and dynamic programming (Bellman, 1966).

To tackle the dimensionality, a common practice is to use
features to parameterize high-dimensional value and policy
functions in compact presentations, with the hope that the
features can capture leading structures of the MDP. In fact,
there are phenomenal empirical successes of reinforcement
learning using explicit features and/or neural networks as
implicit features (see e.g., (Mnih et al., 2015)). However,
there is a lack of theoretical understanding about using fea-
tures for exploration in RL and its learning complexity. In
this paper, we are interested in the following theoretical
question:

How to use features for provably efficient exploration in
reinforcement learning?

Furthermore, we consider online RL in a reproducing ker-
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nel space. Kernel methods are well known to be powerful
to capture nonlinearity and high dimensionality in many
machine learning tasks (Shawe-Taylor et al., 2004). We are
interested in using kernel methods to capture nonlinearity
in the state-transition dynamics of MDP. A kernel space
may consist of infinitely many implicit feature functions.
We study the following questions: How to use kernels in
online reinforcement learning? Can one achieve low regret
even though the kernel space is infinite-dimensional? The
goal of this paper is to answer the aforementioned ques-
tions affirmatively. In particular, we would like to design
algorithms that take advantages of given features and ker-
nels to achieve efficient exploration.

1.1. Our Approach and Main Results

Consider episodic reinforcement learning in finite-horizon
MDP. The agent learns through episodes, and each episode
consists of H time steps. Here H is also called the plan-
ning horizon. Let φ(·) ∈ Rd, ψ(·) ∈ Rd′ be given feature
functions, where we usally assume d′ = O(d). We focus
on the case that the probability transition model P (· | ·) can
be fully embedded in the feature space (Assumption 1), i.e.,
there exists some core matrix M∗ such that

P (· | ·) = φ(·)>M∗ψ(·).
In the kernel setting, this condition is equivalent to that
the transition probability model P belongs to the product
space of the reproducing kernel spaces. This condition is
essentially equivalent to using the features φ to represent
value functions (Parr et al., 2008). When the probability
transition model P cannot be fully embedded using φ, then
value function approximation using φ may lead to arbitrar-
ily large Bellman error (Yang & Wang, 2019). Note that the
core matrix model is related to many statistic models, e.g.,
latent state model (Singh et al., 1995), Lumpable Markov
Chain (Weinan et al., 2008), Markov process with rich ob-
servations (Azizzadenesheli et al., 2016), and so on. For
completeness, we list their relationships to the core ma-
trix model in Section A. Moreover, the importance of sim-
ilar models have also been emphasized in (Yang & Wang,
2019) and (Jin et al., 2019).

We propose an algorithm, which is referred to as MatrixRL,
that actively explores the state-action space by estimating
the core matrix via ridge regression. The algorithm bal-
ances the exploitation-exploration tradeoff by constructing
a confidence ball of core matrix for optimistic dynamic pro-
gramming. It can be thought of as a “matrix bandit” algo-
rithm which generalizes the idea of linear bandit (e.g. (Dani
et al., 2008; Li et al., 2010; Chu et al., 2011)). It is proved
to achieve the regret bound either

Õ(H2d3/2
√
T ) or Õ(H2d

√
T )1,

1Õ(·) hides poly log factors of the input.

depending on regularity properties of the features. Ma-
trixRL can be implemented efficiently in space O(d2).
Each step can be carried out in closed form. Next we ex-
tend the MatrixRL to work with the kernel spaces with
kφ(·, ·) = 〈φ(·), φ(·)〉 and kψ(·, ·) = 〈ψ(·), ψ(·)〉, and
show that it admits a kernelized version. The kernelized
MatrixRL achieves a regret bound of

Õ(H2d̃
√
T )

where d̃ is the effective dimension of kernel space, even if
there may be infinitely many features. The regret bounds
using features or kernels do not depend on sizes of the state
and action spaces, making efficient exploration possible in
high dimensions. Very recently, (Du et al., 2019a) show
that even if the value-function of the MDP admits an ap-
proximate linear representation with features, there is still
an Ω(2H) regret lower bound. Our results complement this
lower bound by showing that feature representations of the
transition model effectively reduces the learning complex-
ity.

Note that for linear bandit, the regret lower bound is known
to be Ω̃(d

√
T ) (Dani et al., 2008). Since linear bandit is

a special case of RL, our regret bounds match the lower
bound up to polylog factors in d and T . To our best knowl-
edge, for reinforcement learning using features/kernels, our
result gives the first regret bound that is simultaneously
near-optimal in time T , polynomial in the planning hori-
zon H , and the feature dimension d.

1.2. Related Literature

In the tabular case where there are finitely many states
and actions without any structural knowledge, complexity
and regret for RL has been extensively studied. For H-
horizon episodic RL, efficient methods typically achieve
regret that scale asymptotically as O(

√
HSAT ) (see for

examples (Jaksch et al., 2010; Osband & Van Roy, 2016;
Osband et al., 2017; Agrawal & Jia, 2017; Azar et al., 2017;
Dann et al., 2018; Jin et al., 2018)). In particular, (Jaksch
et al., 2010) provided a regret lower bound Ω(

√
HSAT )

for H-horizon MDP. There is also a line of works study-
ing the sample complexity of obtaining a value or policy
that is at most ε-suboptimal (Kakade, 2003; Strehl et al.,
2006; 2009; Szita & Szepesvári, 2010; Lattimore & Hutter,
2014; Azar et al., 2013; Dann & Brunskill, 2015; Sidford
et al., 2018). The optimal sample complexity for finding an
ε-optimal policy is O

(
|S||A|(1− γ)−2ε−2

)
(Sidford et al.,

2018) for a discounted MDP with discount factor γ. The
optimal lower bound has been proven in (Azar et al., 2013).

There is also a line of works on solving MDPs with a func-
tion approximation. For instance (Baird, 1995; Tsitsiklis
& Van Roy, 1997; Parr et al., 2008; Mnih et al., 2013;
2015; Silver et al., 2017; Yang & Wang, 2019). There
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are also phenomenal empirical successes in deep reinforce-
ment learning as well (e.g., (Silver et al., 2017)). However
there are not many works on the regret analysis of RL with
function approximators. Very recently, (Azizzadenesheli
et al., 2018) studied the regret bound for linear function
approximator. However their bound has factor that can be
exponential in H . (Chowdhury & Gopalan, 2019) consid-
ers the regret bound for kernelized MDP. However, they
need a Gaussian process prior and assumes that the tran-
sition is deterministic with some controllable amount of
noise – a very restrictive setting. Another work (Modi
& Tewari, 2019) also considers the linear setting for RL.
However, the regret bound is linearly depending on the
number of states. More recently, there are several works
released after the first arXiv version of this paper, e.g. (Du
et al., 2019b; Jin et al., 2019; Zanette et al., 2020). They
study similar models as ours but with different algorithms
and from different perspectives. In particular, (Jin et al.,
2019; Zanette et al., 2020) are considering a similar low-
rank MDP model. The major distinction of our results to
theirs is that ours is a model-based one whereas theirs are
model-free. Algorithm-wise, these results together form
nice toolkits for RL on low-rank MDPs. Another important
distinction is that we require the features ψ to be known in
priori. However, as learning the representations φ and ψ
from data have the same complexity in unsupervised learn-
ing, such a requirement is not a strong requirement. To
the best of our knowledge, we are not aware of other works
that achieve regret bound for RL with function approxima-
tors that is simultaneously near optimal in T , polynomial in
H , and has no dependence with the state-action space size.

Our results are also related to the literature of linear bandits.
Bandit problems can be viewed as a special case as Markov
decision problems. There is a line of works on linear bandit
problems and their regret analysis (Dani et al., 2008; Rus-
mevichientong & Tsitsiklis, 2010; Li et al., 2010; Abbasi-
Yadkori et al., 2011; Chu et al., 2011). For a more detailed
survey, please refer to (Bubeck et al., 2012). Part of our re-
sults are inspired by the kernelization for the linear bandit
problems, e.g. (Valko et al., 2013; Chowdhury & Gopalan,
2017), who studied the regret bound when the features of
each arm lies in some reproducing kernel Hilbert space.

2. Problem Formulation
In an episodic Markov decision process (MDP for short),
there is a set of states S and a set of actions A, which
are not necessarily finite. At any state s ∈ S, an agent
is allowed to play an action a ∈ A. She receives an im-
mediate reward r(s, a) ∈ [0, 1] after playing a at s, the
process will transition to the next state s′ ∈ S with prob-
ability P (s′ | s, a), where P is the collection of transition
distributions. After H time steps, the system restarts at a

prespecified state s0. The full instance of an MDP can be
described by the tuple M = (S,A, P, r, s0, H). The agent
would like to find a policy π : S × [H] → A that max-
imizes the long-term expected reward starting from every
state s and every stage h ∈ [H], i.e.,

V πh (s) := E
[ H∑

h′=h

r(st, πh(st))|s0 = s

]
.

We call V π : S × [H]→ R the value function of policy π.
A policy π∗ is said to be optimal if it attains the maximal
possible value at every state-stage pair (s, h). We denote
V ∗ as the optimal value function. We also denote the opti-
mal action-value function (or Q-function) as

∀h ∈ [H − 1] : Q∗h(s, a) = r(s, a) + P (·|s, a)>V ∗h+1,

and Q∗H(s, a) = r(s, a).

In the online RL setting, the learning algorithm interacts
with the environment episodically. Each episode starts
from state s0 takes H steps to finish. We let n denote the
current number of episodes and denote t = (n − 1)H + h
the current time step. We equalize t and (n, h) and may
switch between the two nations. We use the following def-
inition of regret.

Definition 1. Suppose we run algorithm K in the online
environment of an MDPM = (S,A, P, r, s0, H) for T =
NH steps. We define the regret for algorithm K as

RegretK(T ) = EK
[ N∑

n=1

(
V ∗(s0)−

H∑

h=1

r
(
st, at

))]
,

(1)

where EK is taken over the random path of states under the
control of algorithm K.

Throughout this paper, we focus on RL problems where the
probability transition kernel P (· | ·) can be fully embedded
in a given feature space.

Assumption 1 (Feature Embedding of Transition Model).
For each (s, a) ∈ S × A, s̃ ∈ S, feature vectors φ(s, a) ∈
Rd, ψ(s̃) ∈ Rd′ are given as a priori. There exists an un-
known matrix M∗ ∈ Rd×d′ such that

P (s̃ | s, a) = φ(s, a)>M∗ψ(s̃).

Here, we call the matrix M∗ as a transition core.

Note that when φ, ψ are features associated with two repro-
ducing kernel spaces H1 and H2, this assumption requires
that P belong to their product kernel spaceH1 ×H2.

For simplicity of representation, we assume throughout that
the reward function r is known. This is in fact without
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loss of generality because learning about the environment
P is much harder than learning about r. In the case if r
is unknown but satisfies E[r(s, a) | s, a] = φ(s, a)>θ∗ for
some unknown θ∗ ∈ Rd, we can extend our algorithm by
adding a step of optimistic reward estimation like in Lin-
UCB (Dani et al., 2008; Chu et al., 2011). This would gen-
erate an extra Õ(d

√
T ) regret, which is a low order term

compared to our current regret bounds.

3. RL Exploration in Feature Space
In this section, we study the near optimal way to balance
exploration and exploitation in RL using a given set of fea-
tures. We aim to develop an online RL algorithm with re-
gret that depends only on the feature size d but not on the
size of the state-action space. Our algorithm is inspired by
the LinUCB algorithm (Chu et al., 2011) and its variants
(Dani et al., 2008) and can be viewed as a “matrix bandit”
method.

3.1. The MatrixRL Algorithm

The high level idea of the algorithm is to approximate the
unknown transition core M∗ using data that has been col-
lected so far. Suppose at the time step t = (n, h) (i.e.
episode n ≤ N and stage h ≤ H), we obtain the follow-
ing state-action-state transition triplet: (st, at, s̃t), where
s̃t := st+1. For simplicity, we denote the associated fea-
tures by

φt := φ(st, at) ∈ Rd and ψt := ψ(s̃t) ∈ Rd
′
.

Estimating the core matrix. Let Kψ :=∑
s̃∈S ψ(s̃)ψ(s̃)>, which we assume is given along

with the features ψ. We then construct our estimator of
M∗ as:

Mn = [An]−1
∑

n′<n,h≤H
φn′,hψ

>
n′,hK

−1
ψ , (2)

where

An = I +
∑

n′<n,h≤H
φn′,hφ

>
n′,h.

Let us explain the intuition of Mn. Note that

E
[
φn,hψ

>
n,hK

−1
ψ | sn,h, an,h

]

=
∑

s̃

φn,hP (s̃ | sn,h, an,h)ψ(s̃)>K−1
ψ

=
∑

s̃

φn,hφ
>
n,hM

∗ψ(s̃)ψ(s̃)>K−1
ψ

= φn,hφ
>
n,hM

∗.

Therefore Mn is the approximate solution to the following
ridge regression problem:

Mn = arg min
M

∑

n′<n,h≤H

∥∥∥ψ>n′,hK−1
ψ − φ>n′,hM

∥∥∥
2

2
+ ‖M‖2F .

(3)

Upper confidence RL using a matrix ball. In online
RL, a critical step is to estimate future value of the cur-
rent state and action use dynamic programming. To better
balance exploitation and exploration, we use a matrix ball
to construct optimistic value function estimator. At episode
n:

wn,H+1 = 0 ∈ Rd
′

and

∀h ∈ [H] : wn,h = αψ ·
∑

j∈[mw]

ψ(sj)

‖ψ(sj)‖1
· Vn,h(sj)

(4)

where αψ =
∑
s ‖ψ(s)‖1 is also given along with ψ, mw

is a number to be determined, and sj are picking from the
distribution generated by p(s) = ‖ψ(s)‖1/αψ , which is
also given with ψ, and, for all (s, a), we define,

Vn,h(s) := Π[0,H]

[
max
a

Qn,h(s, a)
]
,

Qn,h(s, a) := r(s, a) + max
M∈Bn

φ(s, a)>Mwn,h+1. (5)

Here the matrix ball Bn = B
(1)
n is constructed as

B(1)
n :=

{
M ∈ Rd×d

′
: ‖(An)1/2(M −Mn)‖2,1 ≤

√
dβn

}

(6)

where βn is a parameter to be determined later, and

‖Y ‖2,1 =
∑
i

√∑
j Y (i, j)

2. At time (n, h), suppose
the current state is sn,h, we play the optimistic action
an,h = arg maxaQn,h(sn,h, a).

Remark 1 (Computation in Continuous Space). Later we
will show thatmw is polynomial in the number of episodes.
Consequently, our algorithm computes wn,h efficiently in
each round. In the continuous space, the only issue is to
solve the max problem in (4). In this case, we assume there
exists an optimization oracle that solves supaQn,h(s, a)
in time O(1). Note that the time complexity of the oracle
depends subtly on the feature space structure, and there is
no general way of expressing it analytically.

The full algorithm is given in Algorithm 1.

3.2. Regret Bounds for MatrixRL

Let Ψ = [ψ(s1), ψ(s2), . . . , ψ(s|S|)]> ∈ RS×d′ be the ma-
trix of all ψ features. We first introduce some regularity
conditions of the features space.
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Algorithm 1 Upper Confidence Matrix Reinforcement Learning (UC-MatrixRL)
1: Input: An episodic MDP environment M = (S,A, P, r, s0, H);
2: Features φ : S ×A → Rd and ψ : S → Rd

′
;

3: Trotal number of episodes N ;
4: Initialize: A1 ← I ∈ Rd×d, M1 ← 0 ∈ Rd×d

′
;

5: for episode n = 1, 2, . . . , N do
6: Let {Qn,h} be given in (4) using Mn, βn;
7: for stage h = 1, 2, . . . , H do
8: Let the current state be sn,h;
9: Play action an,h = arg maxa∈AQn,h(sn,h, a)

10: Record the next state sn,h+1;
11: end for
12: An+1 ← An +

∑
h≤H φn,hφ

>
n,h;

13: Compute Mn+1 using (2);
14: end for

Assumption 2 (Feature Regularity). Let CM , Cφ, Cψ and
C ′ψ be positive parameters.

1. ‖M∗‖2F ≤ CM · d;

2. ∀ (s, a) ∈ S ×A : ‖φ(s, a)‖22 ≤ Cφd;

3. ∀v ∈ RS : ‖Ψ>v‖∞ ≤ Cψ‖v‖∞, and
‖ΨK−1

ψ ‖2,∞ ≤ C ′ψ .2

With these conditions we are ready to provide the regret
bound.

Theorem 1. Suppose Assumption 1 and Assumption 2
hold, and mw = poly(T ). Then after T = NH steps,
Algorithm 1 achieves regret bound:

Regret(T ) ≤ O
[√

Cψ(CM + C ′ψ
2)·ln(CφT )

]
·H2·
√
d2d′T ,

if we let βn = c · (CM + C ′ψ
2
) · ln(NHCφ) · d, for some

absolute constant c > 0. Moreover, for each new episode,
Algorithm 1 takes time poly(T ) to complete.

Consider the case where CM , Cφ, Cψ and C ′ψ are absolute
constants. For example, we may let Ψ,Φ,M∗ be probabil-
ity matrices. Then Assumption 2 automatically holds with
CM = Cψ = Cψ = 1. In this case, our regret bound is
simply O(d3/2H2 log(T )

√
T ). The d-dependence in such

a regret bound is consistent with the regret of the `1-ball
algorithm for linear bandit (Dani et al., 2008).

Further, if the feature space Ψ admits a tighter bound for
value function in this space, we can slightly modify our
algorithm to achieve sharper regret bound. To do this,
we need to slightly change our Assumption 2 to Assump-
tion 2′.

Assumption 2′ (Stronger Feature Regularity). Let
CM , Cφ, Cψ and C ′ψ be positive parameters.

2Here ‖Y ‖2,∞ := maxi
√∑

j Y
2(i, j) is the operator 2 →

∞ norm.

1. ‖M∗‖2F ≤ CM · d;

2. ∀ (s, a) ∈ S ×A : ‖φ(s, a)‖22 ≤ Cφd;

3. ∀v ∈ RS : ‖Ψ>v‖2 ≤ Cψ‖v‖∞, and ‖ΨK−1
ψ ‖2,∞ ≤

C ′ψ .

We modify the algorithm slightly by using a Frobenious-
norm matrix ball instead of the 2-1 norm and computing
sharper confidence bounds. Let Bn = B

(2)
n in (4), where

B(2)
n :=

{
M ∈ Rd×d

′
: ‖(An)1/2(M −Mn)‖F ≤

√
βn

}

(7)

Then a sharper regret bound can be established.

Theorem 2. Suppose Assumption 1 and Assumption 2′

hold, and mw = poly(T ). Then after T = NH steps,
Algorithm 1, with Bn = B

(2)
n applied in (4), achieves re-

gret

Regret(T ) ≤ O
[√

Cψ(CM + C ′ψ
2)·ln(CφT )

]
·dH2·

√
T ,

provided βn = c · (CM + C ′ψ
2
) · ln(NHCφ) · d, for some

absolute constant c > 0. Moreover, for each new episode,
Algorithm 1 takes time poly(T ) to complete.

The only stronger condition needed by Assumption 2′ is
‖Ψ>v‖2 ≤ Cψ‖v‖∞. It can be satisfied if Ψ is a set of
sparse features, or if Ψ is a set of highly concentrated fea-
tures. Note that a key difference of our analysis to that
of (Jin et al., 2019) is that they apply an ε-net argument to
bound the regret. Such an union bound gives a regret bound
proportional to

√
d3. In contrast, we use a model-based

method to decouple the dependence between samples and
apply a martingale concentration argument, which saves an
additional d factor under Assumption 2′.

We remark that in Theorem 1 and Theorem 2, we need to
know the value N in βn before the algorithm runs. In the
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case when N is unknown, one can use the doubling trick
to learn N adaptively: first we run the algorithm by pick-
ing N = 2, then for N = 4, 8, . . . , 2i until the true N is
reached. It is standard knowledge that this trick increase
the overall regret by only a constant factor (e.g. (Besson &
Kaufmann, 2018)).

Proof Sketch. The proof consists of two parts. We show
that when the core matrix M∗ belongs to the sequence of
constructed balls {Bn}, the estimated Q-functions provide
optimistic estimates of the optimal values, therefore the al-
gorithm’s regret can be bounded using the sum of confi-
dence bounds on the sample path. The second part con-
structs a martingale difference sequence by decomposing a
matrix into an iterative sum and uses a probabilistic con-
centration argument to show that the “good” event happens
with sufficiently high probability. In the next section, we
present the full proof for Theorems 1. The full proof of
Theorems 2 is deferred to the appendix.

Near optimality of regret bounds? The regret bound in
Theorem 2 matches the optimal regret bound Õ(d

√
T ) for

linear bandit (Dani et al., 2008). In fact, linear bandit is a
special case of RL: the planning horizon H is 1. However
the hard instance for linear bandit may not be necessarily
constructable using the core matrix model.

Closed-form confidence bounds. Equation (4) requires
maximization over a matrix ball. However, it is not nec-
essary to solve this maximization problem explicitly. The
algorithm only requires an optimistic Q value. In fact, we
can use a closed-form confidence bound instead of search-
ing for the optimal M in the confidence ball. It can be
verified that Theorem 1 still holds (by following the same
proofs of the theorem) if we replace the second equation of
(4) as the following equation (see the proof of Theorem 2)

∀h ∈ [H] : Qn,h(s, a) =

r(s, a) + φ(s, a)>MnΨ>Vn,h+1 + 2CψH
√
dβn · wn,h,

(8)

where wn,h :=
√
φ>n,h(An)−1φn,h. Similarly, Theorem 2

still holds if we replace the the second equation of 4 with

∀h ∈ [H] : Qn,h(s, a) =

r(s, a) + φ(s, a)>MnΨ>Vn,h+1 + 2Cψ
√
βn · wn,h.

(9)

Equations (8) and (9) can be computed easily. They can be
viewed as the “dualization” of (4).

3.3. Analysis and Proofs

In this section we will focus on proving Theorem 1. In
the proof we will also establish all the necessary analytical

tools for proving Theorem 2 and Theorem 9. We provide
the proofs of the last two theorems in the appendix.

To begin, we first investigate the Monte-Carlo step used
in (4). For each step, we let w̃n,h = Ψ>Vn,h. For wn,h,
we have the following guarantee, which is a simple conse-
quence of Hoeffding’s inequality.

Proposition 1. With probability at least 1− δ, we have

‖w̃n,h − wn,h‖∞ ≤ C ·
√

log δ−1/mw

for some generic constant C depends on the properties of
Ψ.

Notice that the randomness used in computing the above
equation is independent with that from other parts of the
algorithm, and can the error can be made arbitrarily small
by picking mw = poly(T ). The regret incurred by this
Monto-Carlo step can be at most

T · 1√
mw
�
√
T .

For the sake of presentation, we assume wn,h = w̃n,h in
the rest of the proof.

The proof of Theorem 1 consists of two steps: (a) We first
show that if the true transition core M∗ is always in the
confidence ball Bn, defined in Equation 6, we can then
achieve the desired regret bound; (b) We then show that
with high probability, the event required by (a) happens.
We formalize the event required by step (a) as follows.

Definition 2 (Good Estimator Event). For all n ∈ [N ], we
denote En = 1 if M∗ ∈ Bn′ for all n′ ∈ [n] and otherwise
En = 0.

Note thatEn is completely determined by the game history
up to episode n. In Section B.2, we show that En = 1 hap-
pens with high probability for all n. In the next subsection,
we show (a).

3.4. Regret Under Good Event

To better investigate the regret formulation (1), we rewrite
it according to Algorithm 1. Note that conditioning on the
history before episode n, the algorithm plays a fixed policy
πn for episode n. Therefore, we have

Regret(NH) =
N∑

n=1

E[R(n)], (10)

where R(n) = V ∗1 (s0) − V πn1 (s0). We now show that the
algorithm always plays an optimistic action (an action with
value estimated greater than the optimal value of the state).
All missing proofs can be found in Section B.1.
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Lemma 3 (Optimism). Suppose for n ∈ [N ], we have the
good estimator event, En = 1, happens. Then for h ∈ [H]
and (s, a) ∈ S ×A, we have

Q∗h(s, a) ≤ Qn,h(s, a).

Next we show that the confidence ball Bn actually gives a
strong upper bound for the estimation error: the estimation
error is “along” the direction of the exploration.

Lemma 4. For any M ∈ Bn we have

‖φ>s,a(M −Mn)‖1 ≤
√
d′βn · φ(s, a)>(An)−1φ(s, a).

Proof.

‖φ>s,a(M −Mn)‖1 = ‖φ>s,a(An)−1/2(An)1/2(M −Mn)‖1
≤ ‖φ>s,a(An)−1/2‖2 · ‖((An)1/2(M −Mn))>‖2,1
≤
√
d′βn · ‖φ>s,a(An)−1/2‖2

as desired.

Next we show that the value iteration per-step does not in-
troduce too much error.

Lemma 5. Suppose for n ∈ [N ], En = 1. Then for h ∈
[H], we have

Qn,h(sn,h, an,h)−
[
r(sn,h, an,h) + P (·|sn,h, an,h)>Vn,h+1

]

≤ 2CψH
√
d′βn · wn,h

where

wn,h :=
√
φ>n,h(An)−1φn,h. (11)

We are now ready to show the regret bound, whose proof is
presented in the appendix.

Lemma 6. Suppose Assumption 2 holds, 1 ≤ β1 ≤ β2 ≤
. . . βN , then,

Regret(NH) ≤ 2CψH
√
d′βN

· E
[ N∑

n=1

H∑

h=1

√
min(1, w2

n,h)

]
+

N∑

n=1

HP[En 6= 1]

It remains to bound

N∑

n=1

H∑

h=1

√
min(1, w2

n,h) ≤

√√√√HN ·
N∑

n=1

H∑

h=1

min(1, w2
n,h).

We provide the following lemma.

Lemma 7.
N∑

n=1

H∑

h=1

min(1, w2
n,h) ≤ 2H ln det(AN+1)

≤ 2Hd ln(NHCφ + 1).

The proof of this lemma is rather technical and requires
some new notations, we postpone it to Section B.3. We are
now ready to state the regret bound.

Lemma 8. Suppose 1 ≤ β1 ≤ β2 ≤ . . . βN and Cψ ≥ 1,
then

Regret(T ) ≤ 2CψH
√
d′βN ·

√
HN · 2Hd · ln[NHCφ + 1]

+
N∑

n=1

HP[En = 0].

We are now ready to prove Theorem 1.

Proof of Theorem 1. We let δ ≤ 1/(NH). By Lemma 13
and 15, we pick

βn ≥ cd · [CM + C ′ψ
2 · ln(nHCφ) + c · C ′ψ

2 · ln(nHCφ/δ)]

= Θ(CM + C ′ψ
2
) · ln(nHCφ) · d.

Then the following is guaranteed,

Pr[∀n ≤ N : En = 1] ≥ 1− δ.
Then by Lemma 8, we have,

Regret(T ) ≤ 2CψH
√
d′βN

·
√
HN · 2Hd · ln[NHCφ + 1] +O(1)

= O
[
Cψ

√
CM + C′ψ

2 · ln(NHCφ)
]
·
√
d2d′H3T .

4. RL Exploration in Kernel Space
In this section, we transform MatrixRL to work with ker-
nels instead of explicitly given features. Suppose we are
given two reproducing kernel Hilbert spaces Hφ,Hψ with
kernel functions kφ : (S × A) × (S × A) → R and
kψ : S × S → R, respectively. There exists implicit fea-
tures φ, ψ such that kφ(x, y) = φ(x)>φ(y) and kψ(x, y) =
ψ(x)>ψ(y), but the learning algorithm can access the ker-
nel functions only.

4.1. Kernelization of MatrixRL

The high level idea of Kernelized MatrixRL is to represent
all the features used in Algorithm 1 with their correspond-
ing kernel representations. We first introduce some nota-
tions. For episode n and T = nH , we denote Kφn ∈
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RT×T and Kψn ∈ RT×T as the Gram matrix, respectively,
i.e., for all t1 = (n1, h1), t2 = (n2, h2) ∈ [n]× [H],

Kφn [t1, t2] = kφ[(st1 , at1), (st2 , at2)],

Kψn [t1, t2] = kψ(s̃t1 , s̃t2),

where s̃t := st+1. We denote Kψn ∈ RT×|S| and
kΦn,s,a ∈ RT by

Kψn [t1, s] = kψ(s̃t1 , s),

kΦn,s,a[t] = kφ[(st, at), (s, a)].

We are now ready to kernelize Algorithm 1. The full al-
gorithm of Kernelized MatrixRL is given in Algorithm 2.
Note that the new Q function estimator (12) is the dual-
ization form of (4). Therefore Algorithm 2 is more gen-
eral but essentially equivalent to Algorithm 1 if we let
kφ(x, y) := φ(x)>φ(y) and kψ(x, y) := ψ(x)>ψ(y).

Note that the computation of (λI+KΨn−1K
>
Ψn−1

)−1KΨn

can again be performed using Monte-Carlo efficiently (as
in (4)). For the sake of representation, we assume we have
an exact computation. See Section C for the proof.

4.2. Regret Bound for Kernelized MatrixRL

We define the effective dimension of the kernel space Hφ
as

d̃ = sup
t≤NH

sup
X⊂S×A,|X|=t

log det[I + KX ]

log(1 + t)
,

where X = {xj}j∈[t], KX ∈ Rt×t with KX [i, j] =
kφ(xi, xj) is the Gram matrix over data set X . Note that
d̃ captures the effective dimension of the space spanned by
the features of state-action pairs. Consider the case when φ
are d-dimensional unit vectors, then Hφ has dimension at
most d. It can be verified that d̃ ≤ d. A similar notation of
effective dimension was introduced by (Valko et al., 2013)
for analyzing kernelized contextual bandit.

Further, we need regularity assumptions for the kernel
space.
Assumption 3. LetHψ be generated by orthonormal basis
on S, i.e., there exists ψ such that

∑
s∈S ψ(s)ψ(s)> = I

and kψ(s, s′) = ψ(s)>ψ(s′). There exists a constant Cψ
such that ∀v ∈ Hψ : ‖v‖Hψ ≤ Cψ‖v‖∞, where ‖ · ‖Hψ
denotes the Hilbert space norm.

The formal guarantee of Kernelized MatrixRL is presented
as follows.
Theorem 9. Suppose the probability transition kernelP (· |
·) belongs to the product Hilbert spaces, i.e., P ∈ Hφ ×
Hψ . Let Assumption 3 hold. Then after T = NH time
steps, the regret of Algorithm 2 satisfies

Regret(T ) ≤ O
(
Cψ · ‖P‖Hφ×Hψ · log(T ) · d̃ ·H2 ·

√
T
)

provided ηn = 2CψH
√
βn and βn = Θ(‖P‖Hφ×Hψ ·

ln(NH) · d̃).

Note that in Assumption 3, we can additionally relax the as-
sumption on the orthogonality of ψ. Similar regret bound
can be proved with Assumption 2′. The proof of Theorem
9 is very similar to that of Theorem 2. Although Kernel-
ized MatrixRL does not access the features, the proof is
based on the underlying features and the equivalence be-
tween kernel representation and feature representation. We
postpone it to Section C.

Remark. Similar as MatrixRL, Kernelized MatrixRL can
be generalized to deal with unknown reward function by
using the Kernelized Bandit (Valko et al., 2013). Again,
since linear bandit problems are special cases of kernel RL
with H = 1, our results match the linear bandit bound on
d̃ and

√
T . The computation time of Kernelized MatrixRL

scales with time T as T 2 (by applying randomized algo-
rithms, e.g. (Dani et al., 2008), in dealing with KΨ ma-
trices), still polynomial in T . We can apply the random
features or sketching techniques for kernel to additionally
accelerate the computation (e.g. (Rahimi & Recht, 2008;
Yang et al., 2017)).

5. Summary
This paper provided the algorithm MatrixRL for episodic
reinforcement learning in high dimensions. It also pro-
vides the first regret bounds that are near-optimal in time
T and feature dimension d and polynomial in the planning
horizon H . MatrixRL uses given features (or kernels) to
estimate a core transition matrix and its confidence ball,
which is used to compute optimistic Q-functions for bal-
ancing the exploitation-exploration tradeoff. We prove that
the regret of MatrixRL is bounded by O

(
H2d log T

√
T
)

where d is the number of features, provided that the feature
space satisfies some regularity conditions. MatrixRL has
an equivalent kernel version, which does not require ex-
plicit features. The kernelized MatrixRL satisfies a regret
bound O

(
H2d̃ log T

√
T
)
, where d̃ is the effective dimen-

sion of the kernel space. For future work, it remains open
if the regularity condition can be relaxed and if there is a
more efficient way for constructing confidence balls in or-
der to further reduce the regret.
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Algorithm 2 KernelMatrixRL: Reinforcement Learning with Kernels
1: Input: An episodic MDP environment M = (S,A, P, s0, r,H), kernel functions kφ, kψ;
2: Total number of episodes N ;
3: Initialize: empty reply buffer B = {};
4: for episode n = 1, 2, . . . , N do
5: For (s, a) ∈ S ×A, let

wn(s, a) :=
√
kφ[(s, a), (s, a)]− k>Φn−1,s,a

(I + KΦn−1)−1kΦn−1,s,a;

xn(s, a) := k>Φn−1,s,a(I + KΦn−1)−1KΨn−1(λI + KΨn−1K
>
Ψn−1

)−1KΨn ;

where λ > 0 is a parameter to be adjusted;
6: Let {Qn,h} be defined as follows:

∀(s, a) ∈ S ×A : Qn,H+1(s, a) := 0 and

∀h ∈ [H] : Qn,h(s, a) := r(s, a) + xn(s, a)>Vn,h+1 + ηnwn(s, a), (12)

where
Vn,h(s) = Π[0,H]

[
max
a

Qn,h(s, a)
]

∀s, a, n, h;

and ηn is a parameter to be determined;
7: for stage h = 1, 2, . . . , H do
8: Let the current state be sn,h;
9: Play action an,h = arg maxa∈AQn,h(sn,h, a);

10: Record the next state sn,h+1: B ← B ∪ {(sn,h, an,h, sn,h+1)};
11: end for
12: end for
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