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Abstract

The top-k error is often employed to evaluate
performance for challenging classification tasks
in computer vision as it is designed to compen-
sate for ambiguity in ground truth labels. This
practical success motivates our theoretical anal-
ysis of consistent top-k classification. Surpris-
ingly, it is not rigorously understood when taking
the k-argmax of a vector is guaranteed to return
the k-argmax of another vector, though doing so
is crucial to describe Bayes optimality; we do
both tasks. Then, we define top-k calibration
and show it is necessary and sufficient for con-
sistency. Based on the top-k calibration analysis,
we propose a class of top-k calibrated Bregman
divergence surrogates. Our analysis continues by
showing previously proposed hinge-like top-% sur-
rogate losses are not top-k calibrated and suggests
no convex hinge loss is top-k calibrated. On the
other hand, we propose a new hinge loss which
is consistent. We explore further, showing our
hinge loss remains consistent under a restriction
to linear functions, while cross entropy does not.
Finally, we exhibit a differentiable, convex loss
function which is top-k calibrated for specific k.

1. Introduction

Consider a multiclass classifier which is granted k guesses,
so its prediction is declared error-free only if any one of
the guesses is correct. This conceptually defines the top-
k error (Akata et al., 2012). Top-k error! is popular in
computer vision, natural language processing, and other
applied problems where there are a large number of possible
classes, along with potential ambiguity regarding the label of
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!The top-k error is simply 1 - top-k accuracy, thus the metrics
are equivalent.

a sample and/or when a sample may correspond to multiple
labels, e.g., when an image of a park containing a pond may
be correctly labeled as either a park or a pond Russakovsky
et al. (2015); Xiao et al. (2010); Zhou et al. (2018).

Like the zero-one loss for binary classification, the top-k
error is computationally hard to minimize directly because
it is discontinuous and only has zero gradients. Instead,
practical algorithms depend on minimizing a surrogate loss,
often a convex upper bound (Lapin et al., 2015; 2016). To
this end, the corresponding predictive model is most often
trained to output a continuous-valued score vector, and the
classes corresponding to the top k entries of the score vector
constitute the classification prediction (Lapin et al., 2018).
While popular in practice, there is limited work on the theo-
retical properties of top-£ error and its surrogate losses. We
are particularly interested in the consistency of surrogate
losses, which states whether the learned classifier converges
to the population optimal prediction (commonly known as
the Bayes optimal) in the infinite sample limit.

Main Contributions. Our contributions are primarily the-
oretical, and are outlined as follows:

e We characterize Bayes-optimal scorers for the
weighted top-k error, i.e., a slight generalization top-
k error with class-specific weights. The scorers are
functions which predict continuous vectors, so the k
maximum arguments define the prediction. Our analy-
sis highlights the top-k preserving property as funda-
mental to top-k consistency, then outlines the notion
of calibration which is necessary and sufficient to con-
struct consistent top-k surrogate losses.

e We propose a family of consistent (weighted) top-k
surrogate losses based on Bregman divergences. We
show the inconsistency of previously proposed top-k
hinge-like surrogate losses and propose new ones, one
of which is (weighted) top-k consistent. Since any
convex hinge loss must have form similar to the ones
proved inconsistent, this suggests that consistent hinge
losses must be nonconvex.

e We further prove the consistency of the new hinge
loss when given top-k separable data and restricted to
linear predictors. On the other hand, we also show
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that cross entropy, while being top-k consistent in the
unrestricted setting, is not consistent when restricted
to linear models.

e A loss being convex and differentiable can often lead
to strong guarantees. Investigating this, we find that
while a convex and differentiable top-k calibrated loss
function must also be calibrated for k' < k, but by
exhibiting a counterexample we show that it need not
be calibrated for k' > k.

e We employ these losses in synthetic experiments, ob-
serving aspects of their behavior which reflect our the-
oretical analysis.

Taken together, our results contribute to the fundamental un-
derstanding of top-k error and its (in)consistent surrogates.

1.1. Notation

For any N € Z*, we use the notation [N] = {1,...,N}.
We assume there are M classes and denote the input space
as X. We also denote the ith coordinate basis vector as ¢;;
the dimension should be clear from context. ) = [M] is the
discrete label space. The data is assumed to be generated
1.1.d. from some distribution P over X x V.

Define the probability simplex Ay := {v € RM | ¥m €
[M], vy > 0, Z%Zlvm = 1}, and let n(x) € Aps be
the conditional distribution of y € ) given x € X, i.e.
1n(z)m = P(y = m | X = z). Furthermore, given a vector
v € R™, let vf; denote the jth greatest entry of v. For
example, if v = (1,4,4,2), then vy = 4,vjg) = 4,v[3) =
2, U[4] =1.

1.2. Related Work

The statistical properties of surrogates for binary classifica-
tion are well-studied (Zhang, 2004b; Bartlett et al., 2003a).
Furthermore, many of these results have been extended to
multiclass classification with the accuracy metric (Zhang,
2004a; Tewari & Bartlett, 2005). Usually, y € {1,..., M},
s € RM is a vector-valued score, and the prediction is the
index of the entry of s with the highest value. There have
also been recent studies on a general framework for consis-
tent classification with more general concave and fractional
linear multiclass metrics (Narasimhan et al., 2015). In the
realm of multilabel classification, there is work on extend-
ing multiclass algorithms to multilabel classification (Lapin
et al., 2018), characterizing consistency for multilabel clas-
sification (Gao & Zhou, 2013), and constructing a general
framework for consistent classification with multilabel met-
rics (Koyejo et al., 2015).

On the other hand, statistical properties such as consistency
of surrogate loss functions for the top-k error are not so

thoroughly characterized. It is known that softmax loss
—log (Z:Meijem) is top-k consistent and that the multi-
m=1

class hinge loss max,, e[ {1[m # y]+sm — s, } proposed
by Crammer & Singer (2001) is top-k inconsistent (Zhang,
2004a). However, the consistency of recently proposed im-
proved top-k surrogates such as proposals in Berrada et al.
(2018); Lapin et al. (2015; 2016; 2018) has so far remained
unresolved. Our work resolves some of these open questions
by showing their inconsistency, in addition to providing a
more robust framework for top-k consistency.

2. Top-k consistency

We begin by formally defining the top-k error.

Definition 2.1 (Top-k error). Given label vector y € ) with
y; = 1 and prediction s € RM | the top-k error is defined as

errg(s,y) = 1[I & ri(s)], (1)

where 7, : RM — {J : J C [M], |J| = k} is a top-k
selector which selects the k indices of the greatest entries of
the input, breaking ties arbitrarily. Different s correspond
to different ways of breaking ties; we will take a worst-case
perspective for ensuring Bayes optimality.

In general, s is the output of some predictor § given a sample
x € X. The goal of a classification algorithm under the top-
k metric is to learn a predictor § : X — R that minimizes
the risk

Lerrk (9) = E(r,y)NP’[errk (0(%), y)] .

Given s € RM and ) € Ay, we may define the conditional
risk
Lerr, (5,m) :=Eyplerri(s, y)].

Furthermore, we define optimal risk and conditional risk

L:I’I’k = Q:QQE)fRAf Lerrk (0)7
Lerk (77) = sielﬂlﬁgw Lerrk (37 77)

Analogous population statistics for arbitrary loss functions
1 : RM x ) — R are denoted by swapping the metrics, e.g.
Y risk is defined as Ly (0) := E(, )~p[1(0(2), y)].

2.1. Bayes Optimality

Here we define and characterize Bayes optimal predictors
for the top-k error.

Definition 2.2 (Top-k Bayes optimal). The predictor 6* :
X — RM is top-k Bayes optimal if

Lo, (07) = L

erry*
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We remark that it is much less obvious which s, given 7, are
optimal for (minimize) the top-k conditional risk Leyy, (s, 7)
than for the binary conditional risk, where s € R is optimal
(for a worst case selector) iff n > 1/2 = s > 0 and
17 < 1/2 = s < 0. This has led to seemingly natural but
incorrect statements in prior work. For example, Lapin et al.
(2016; 2018) write

s € argmin Leyy, (5,7) <

S

{y | Sy > S[k]} CH{y | Ny = W[k]}’

which says that the top-£ indices of s are contained in the
top-k indices of 7. However, consider the following counter-
example. Let s = (0,1,1),n = (1,0,0) and & = 2. Note
sk = L,m) = 0. Then, {y | sy > S[k]} = {2,3} C
{v | ny = nw} = {1,2,3}. By the above definition, s
is considered optimal. Yet, it is not, because for any top
2-selector 73(s) = {2, 3}, which has 100% top-k error. On
the other hand, s* = (1,0, 0) has 0 top-k error.

One of our main contributions is to define the top-k preserv-
ing property, a necessary and sufficient property for top-k
optimality that solves this difficulty.

Definition 2.3 (Top-k preserving property). Given 2z € RM
and y € RM, we say that y is top-k preserving with respect
to x, denoted Py (y, x), if for all m € [M],

Tm > Z[k+1] = Ym > Ylk+1)
Tm < Xk = Ym < Y[k]-

The negation of this statement is =Py (y, ).

This is not a symmetric condition. For example, although
y = (4,3,2,1) is top-2 preserving with respect to x =
(4,2,2,1), x is not top-2 preserving with respect to y. The
following proposition and its proof illuminate the connec-
tion between top-k preserving and top-k optimality.
Proposition 2.1. 0 : X — RM is top-k Bayes optimal for
any top-k selector i, if and only if 0(X) is top-k preserving
with respect to n(X) almost surely.

Proof. Fix x € X and s € RM, with n = n(x). We have

Lerrk (Sa 77) = EyNn[errk(S7 y)] = Z Tim
me[M]\rk(s)

k
R S
m=1

merg(s)

k, so
Zmerk(s) Nm < an;l Nim)- Equality occurs if and only
i3 e () I = Yoy i) If equality does not hold,
there exists ¢ € r(s), j € [M] \ r(s) such that n; > n;.
If 7, > M4, then since s; & 74(s), s # Spg). If

The last inequality holds because |ri(s)] =

n; < Nk+1]> then n; < Nk+1] < (k] - However, s; % S[k]»
because ¢ € 7 (s). Either way, =Py (s, n).

If =P\ (s,7), then there exists 4 € [M] such that n; > 141
but s; < S[k+1]> OF i < T[x] but s; > s[k- In the first case,
there is an ry, such that i & r(s), because there are at least
k indices j € [M], j # ¢ such that s; > s;. In the second
case, there is an 7y, such that i € r(s), because s; is one of
the top k values of s. In either case, there is an r such that
2omer(s) I < 22:1 Nim)- Thus, Lerr, (8,7) is optimal
for any selector 7y, if and only if Py(s,n), i.e. s is top-k
preserving with respect to 1.

Finally, we note that

Lelrlr;C (9) = EXN;L[Lerrk (Q(X)a n(X))]?

where p is the conditional distribution of X. It fol-
lows that § minimizes Le,y, () if and only if (X) min-
imizes Leyr, (0(X),n(X)) almost surely. In other words,
0 is a Bayes optimal predictor for any rj if and only if
Pk(8(X),n(X)) almost surely. O

2.2. Top-k calibration

Top-k calibration characterizes when minimizing 1 for a
fixed x leads to the Bayes decision for that z. Analogous
notions have been defined for binary classification, (Bartlett
et al., 2003a) multiclass classification, (Zhang, 2004a), and
ranking (Calauzenes et al., 2013).

Definition 2.4 (Top-k calibration). A loss function ) :
RM x Y — R is top-k calibrated if for all n € Ay,

inf  Ly(s,n) > inf Ly(s,n) = L% (n).
- w(8:m) f, w(8,m) = Ly, (n)

If a minimizer s* of Ly (s,n) exists, this implies that s*
must be top-k preserving with respect to . By Proposi-
tion 2.1, top-k calibration is necessary for minimizing L.,
to guarantee minimizing Le;y, .

More generally, if {s(™} is a sequence such that
Ly(s™,m) — infs Ly (s,n), then it is eventually top-k
preserving, i.e. for all n greater than some N, Py (s(™), 7).

2.3. Obtaining consistency

We can convert top-k calibration into top-k consistency
for all lower bounded loss functions. By Corollary 4.5 of
Calauzenes et al. (2013), since minimizing erry is equiva-
lent to maximizing recall at k, and || = M is finite, if ¢ is
continuous and nonnegative then top-k calibration implies
uniform calibration, which implies the existence of a sur-
rogate regret bound Leyr, (f) — Lgy, < T'(Ly(f) — L),
where I' : R>g — Rx¢ is continuous at 0, and I'(0) = 0.
Then continuity of I" at 0 implies consistency: Ly (f(™) —
L, = Lo, (f™) = LZ,,. As an aside, we note

erry*
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that before we were aware of Calauzenes et al. (2013), we
proved a slightly generalized version of this result without
the additional assumption that v is continuous. Details are
included in the appendix for completeness.

Theorem 2.2. Suppose 1 is a nonnegative top-k calibrated
loss function. Then ) is top-k consistent, i.e., for any se-
quence of measurable functions ) : X — RM we have

Ly(f™) = L}, = Lew, (f™) = L

erry *

Proof. See appendix. O

3. Bregman Divergence Top-. Consistent
Surrogates

Next, we outline top-k consistent surrogates based on Breg-
man divergences. Given a convex, differentiable function
¢ : RM x RM — R, define the Bregman divergence D, by

Dy(s,t) = 6(t) = 6(5) = Vo(s) (L —5). ()
Dy(s,-) can be interpreted as the error when approximat-
ing ¢(-) by the first order Taylor expansion of ¢ centered
at s. Bregman divergences include squared loss and KL
divergence as special cases.

Here, we present the result that any Bregman divergence
composed with an inverse top-k preserving function is top-k
calibrated. First we define inverse top-k preserving func-
tions, then give the theorem.

Definition 3.1 (Inverse top-k preserving function.). Given
ACRMand B C RM, f : A — B is inverse top-k
preserving if Vo € A, Py(z, f(x)).

Theorem 3.1. Suppose ¢ : RM — RM s strictly convex
and differentiable. If g : RM — RM s inverse top-k
preserving, continuous, and Ay; C range(g), then ¢ :
RM x Y — R defined by

P(s,y) = Dy(g(s), ey)
is top-k calibrated.

Proof. See Appendix. O

Theorem 3.1 is similar to one of the main results (Theo-
rem 8) in Ravikumar et al. (2011), except inverse order-
preserving is relaxed to inverse top-k preserving, the above
is only a sufficient condition for top-k calibration, and we
make no invertibility assumptions.

3.1. Cross entropy is top-% calibrated

By Theorem 3.1, the commonly used softmax with cross-
entropy loss is top-k calibrated:

e’y
Ent(s,y) = —In <M
e

can be rewritten as Ent(s, y) = Dg(g(s), ey) with ¢(z) =

Zj\m/f:l T In 2y, and g(s),, = Eifime? ¢ is strictly con-
=1 )

vex and differentiable, and g satisfies the assumptions of

Theorem 3.1. In fact, g satisfies the stronger rank preserving

condition,
VZ,j € [M]a §; > Sj — g(s)l > g(s)j'

As a result, Ent(s, y) is top-k calibrated for every k, i.e.
rank consistent. An interesting question is whether there
is a surrogate loss which does not satisfy such a strong
property, and is top-k calibrated for just a specific k. We
answer in the affirmative in the sequel.

4. Top-k hinge-like losses

Hinge-like losses for top-k classification have been pro-
posed by Lapin et al. (2015; 2016), inspired by ranking
losses in Usunier et al. (2009), and minimized via SDCA.
They note that cross entropy is competitive across datasets
and values of k£, but slight improvement is attainable with
hinge losses. We list these losses as well as new ones we
propose, 14, V5, in Table 1.

Table 1. Discussed hinge-like top-k loss functions along with
whether they are top-k calibrated. We use the notation (x)4 =
max{z,0}.

Loss fn. Loss eqn. Ref. Calib.
U1 (1+ (s\y)) — sy)+ 10; 5 No
ba (% S s+ 1) — sy> 10;11;12 No
Vs A [+ 1) —sy],  10:11512 No
b (FSL+ Gy —s) - New  No
Vs (1 + S[k+1) — Sy» 0)+ New Yes

The motivation of these losses is as follows. ) is a

generalization of multiclass SVM (Crammer & Singer,
2001). 15 and 13 are convex upper bounds on ).

We propose 14 as a tighter convex upper bound on ; and
15 as the tightest bound on erry, of all, and the only top-k
calibrated loss. Next, we show that 15 is top-k calibrated
and the rest, ¥1, Y9, 13, 14, are not top-k calibrated. These
facts are not in previous literature.

4.1. Characterization of hinge-like losses

We compute the minimizers of the expected loss
Ly, (s,m) = Eyp[t)1(s,y)] given a conditional distribu-
tion n € Ajp;. Though we arrive at inconsistency, our
results also indicate that if 7 is from the restricted prob-
ability simplex {n € Anr | mpy > Sile 1 migts ¥r s
calibrated/consistent.

Theorem 4.1 (Abridged). Letn € Ay and suppose 1 >
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Ny > ... > nn. Then,
M k—1
> Yy mio = [11...100...0]
i=k+1
€ argmin Ly, (s,n)
M k
< > m o= [11...110...0]
i=k+1

€ argmin Ly, (s, 7).
S

Proof. See appendix for the exact set of minimizers when
71 has no zero entries, and proof. O

This implies that v is not top-k calibrated: if 7, > ... >
1 then in the first case of the above theorem, s* is not top-
k preserving with respect to n: forany m € {k+1,..., M},
Nm < 7k, and yet s, £ sx) = 0. Yet, s™ is a minimizer of
Ly, (s,m), so 9y is not top-k calibrated.

The following proposition implies that {12, ¥, 14} are not
top-k calibrated, and are thus inconsistent.

Proposition 4.2. For any v € {9, 3,04}, if

Zn]\f:kﬂ Nm] > g, we have 0 € argming Ly(s, n),
and thus L}, (1) = ming Ly (s,n) = Ly(0,7) = 1.

Proof. See Appendix. O

To show this leads to inconsistency, take n =
(1/8,1/8,1/12,1/12,...,1/12) € Ay with k = 2. 7
satisfies 300, 7 = 2 > 2 = X4, so the optimal is
s* = 0. But, s* is not top-k preserving wrt 7. This implies
that ¢ € {12, 13,14} is not top-k calibrated.

Proposition 4.3. ©5 : RM x V) — R is top-k calibrated.

Proof. See Appendix. Note since 15 is bounded below, by
Theorem 2.2, it is top-k consistent. ]

4.2. Conjecture on the lack of convex hinge losses

Generally, a hinge loss can be considered to have the form

¥(s,y) = max{w' P(f(s))f(s — 5,1),0}

where f is an affine function (or may also contain a (+))
and P is a permutation matrix depending on f(s). wis a
fixed vector. For example, for 1, we have f(s) = s+ 1(y),
P the sort matrix, and w = 1/k for the first k entries. 3
and 14 are similar. If we assume ) is convex, we must
have P be the sorting matrix and w’s entries in decreasing
order (Usunier et al., 2009). Intuitively, the closest we can
get to being top-k calibrated is when w’s nonzero entries
are equal; this leads to essentially the existing hinge loss

surrogates, which are uncalibrated. Thus, we conjecture that
no convex, piecewise affine loss is top-k calibrated.

5. Linear (in)consistency

Until now, we have been discussing consistency with respect
to all measurable functions, as is standard. We may instead
consider consistency with respect to a restricted function
class F. This type of consistency was explored for k = 1 in
Long & Servedio (2013). Time of

Definition 5.1 (F-consistency). ¢ : R™ x Y — Ris F
top-k consistent (or F-consistent) if

L n i f L ! Lerr n i f Lerr ! )
o) = 0l Lu(f) = Lo, (f) = 0t Loy (£

where (f,,)%; is a sequence of functions X — RM in
F. If no conditions or set of distributions are specified,
JF-consistent means the above holds for every probability
distribution over X x ).

Previously, the infimum with respect to the scoring function
was over all measurable functions, but in practice, we min-
imize using some function class, e.g., functions computed
by a neural net architecture.

JF-consistency seems much more difficult to analyze than
consistency because we may no longer decompose the risk
into L(f (), n(x)) for each z, as f cannot vary its outputs
arbitrarily. Furthermore, if X' = R? and F consists of linear
functions, F-consistency of a convex v suggests P = NP,
due to the efficiency of convex minimization and the NP-
hardness of finding a linear separator which maximizes
accuracy (Ben-David et al., 2003).

On the other hand, letting L*(F) = inf z/c 7 L(f’), as long
as Ly, (F) = Ly, and Lg,,, (F) = Lg,,, , top-k consistency
implies F-top-k consistency because

Ly(fn) = Ly(F) = Ly(fa) = Ly,
= Ly(fn) = Ly, = Ly(fn) = L (F). B3)

erry

Furthermore, we can answer easier questions about JF-
consistency by making additional assumptions, e.g. top-k
separability. If there is a top-k separator, i.e. a predictor
with perfect top-k accuracy, then does our algorithm (i.e.,
minimizing a surrogate loss) find it? Despite NP-hardness in
general, if a linear separator exists for a binary classification
problem, one can be found efficiently, so it seems appropri-
ate to ask an analogous question for top-k separability in
the context of surrogate losses.

Proposition 5.1. Let X =R and F = {x — Wa : W €
RM*Y " Then if we consider top-k separable probability
distributions over X x ), i.e. L (F)=0=1L then:

*
erry erry’

1. If k =1, Ent is F-consistent.
2. Ifd>3,M > 3, and k = 2, Ent is not F-consistent.
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3. 11 and 15 are F-consistent.

The above proposition says the answer is yes for 11 and 5,
and generally no for Ent unless £ = 1. To see Propopsi-
tion 5.1.1, note that top-1 separability means IW € RMxd
where Pr[(Wz), > (Wx)jg] = 1. Then, w.p. 1 over z,y,

Ent(cWz,y) =log [ 1+ Z eC(Wa)m—(Wa)y)
m#y

L7 log(1) = 0.
Thus, Ent*(F) = 0 = Ent™ and we have F consistency by
(3). Note we cannot spply this ”scaling to 0 loss” argument
for Ent when k > 2. The rest of the proof is in the appendix.

6. A convex, differentiable loss function

While we achieved top-k calibration for a specific k with
the 15 loss, one might wonder whether this is possible
with a convex, differentiable loss function. In some sense,
because of the case of M = 2, one would expect that if
a convex, differentiable loss function is top-k calibrated
for some k < M, then it is top-k calibrated for all &¥’. In
Bartlett et al. (2003b), it was proven that a convex margin
function just needs to have negative derivative at 0 to be
binary consistent, raising the question of whether a similar
claim can be made when the number of labels increases.
The increase in number of directions the score vector can
travel makes the question much harder to answer.

It turns out that this is partially true, and partially untrue. It
is true in the sense of the following theorem:

Theorem 6.1. Suppose (s, y) is convex and differentiable
for each y € [M)], and moreover if we think of V(s) as the
M length vector whose entries are 1)(s,y), symmetric in the
sense of ¥(Ps) = PV(s) for all permutation matrices P.
Then, if ¢ is top-k calibrated for some k < M, it is top-k’
calibrated for all k' < k.

Proof. Let e; denote the ith coordinate basis vector. Sup-
pose that s* minimizes L., (s,n) = (n, U(s)). Suppose that
1, j are in the arguments of the top-k entries of n, and 7; >
7;. Define 7P as n but with 7; and n; replaced with their av-
erage. For a large enough 6 > 0,7 = n° +o(e;—ej) € Ay
has j no longer in the top-k entries of 7. Suppose § mini-
mizes (7], ¥(s)) and s” minimizes (1), ¥(s)). We have

0> (77, U(3) — W(s"))
> ﬁTV\I/(Sb)(§ — sb)
=0(e; —ej) TVU(s") (5 - ")

= 8(V(s’,i) — Vi(s’,§)) T (5 — 5")
= 6((1 — b)(gl — §j).

The second line is by convexity of W, the third line is by
optimality of s* for 1”. The last line uses symmetry of W:
since SE = 5?’ (follows from convexity of ¥ and n? = 773),
the ¢th and jth gradients are equal to each other, except their
ith and jth entries, a and b, are swapped.

Since 1) is top-k preserving and j is no longer in the top-k
entries of 7, we have 5; > 5;. Thus, a < b. Notice that

we can replace s with s* and everything in the chain holds —
s is not a minimizer of (1), ¥(s)), because V (1, \Ifsb>(§ -
s°) = nVU(s")(5—5") = §'(a—b)(5;—35;) < 0. Therefore,

57 > s;?, as desired. O

However, it is untrue in that we can exhibit a convex, differ-
entiable, symmetric loss which is top-1 calibrated but not
top-2, 3, 4, ... calibrated. It is shown below:

TP (s,y) = log(1 + exp(—s,))

2
1
D s TS @

iy J#y iy

To show UEP is not calibrated for 1 < k < M, we
run gradient descent on Lycn (s, n) = (n, WP (s)) with
n = [0.01,0.02,0.03,0.04,0.9] and reach an optimum
of [0.0114226,0.011404,0.011385,0.011365, 0.470880].
While the most probable class got the highest score, the
scores of the others are reversed relative to probability. To
see why this happens intuitively, the presence of the logistic
loss makes s5 at optimum much higher than the others, since
75 is by far the largest. Now for y # 5, the best way to
decrease the loss (s, y) is to increase s;, j # y, because
the mean is being blown up by s5, and s, is deliberately
excluded from the mean differences.

Theorem 6.2. VP is top-1 calibrated.

Proof. Consider s € RM and WLOG suppose s > 0, and
51 is the maximum entry. We have

¥(s,2) — (s, 1) > (M — 1)(Var(X) + E[X?))
— (M —1)(Var(Y) — E[Y?)])

Where X is uniform over {si,s3,S4,...,8p} and Y is
uniform over {sa, $3, 84, - . ., Sar }. For the remainder of the
proof, we let n := M — 1 for brevity. Showing (s, 2) —
¥(s,1) > 0 may be done by showing

Var(X) + E[X?] — Var(Y) — E[Y?]
= 2(E[X?] - E[Y?]) — (E[X]* - E[Y]*) > 0.



On the Consistency of Top-k Surrogate Losses

Letting m = sz\ig s;, we have

2(E[X?] - E[Y?]) — (E[X]* - E[Y]")

2 _ 2

_ 2(81n 82) _ %[(m_"_sl _ 82)2 _m2)]
_ 2(sT—s3)  2m(sy — s2) + (81 — 52)°
N n B n?
) 2B+ (s — s

N n B 2n

To complete the proof we just need to show that % +

2-%2 < 51 + sp. This is equivalent to showing that
m < (n—1)s; + (n + 1)s2. But this is true; sz\is s; <

(M —2)s1 + nsa, as each s; < s1 and sy > 0. This proves
that (s, 2) — ¢(s,1) > 0if 59 < s7. O

7. Synthetic Data Experiments

Here we describe experiments comparing an assortment of
top-k surrogate loss functions on synthetic data, to see how
their behavior compares with reference to the theory. One
synthetic experiment empirically showcases the inconsis-
tency of 1,9, 1s, 14 and consistency of 5. A second
and third experiment flesh out the behavior of the losses in
different regimes. we also employ the classic cross entropy
loss Ent, and the following truncated cross entropy losses:

EntTI‘l (87 y) = - lng(s)y
M
Entry, (s,y) = —Ing(s), + Z g(s); —1
i=1
exp(s;)
exp(s;)+3 M exp(sy\y)p)
posed in Lapin et al. (2016), and we propose Entry, by
restoring the terms dropped from the Bregman Divergence
by Enty,. Since g is inverse order preserving, by Theo-
rem 3.1 in fact Entr,, is top-k calibrated for every k.

with g(s); = Entr,, was pro-

We use Pytorch to implement each loss and use them to train
on synthetic data. A machine with an Intel Core 17 8th-gen
CPU with 16GB of RAM was used.

The first synthetic data experiment we conduct highlights
the consistency/inconsistency of the top-k hinge losses. By
Proposition 4.2, if the k + 1 least likely classes altogether
have a probability of occurring greater than T-ku’ the pre-
dictions made by s, 13, 104 equal a constant vector, and by
Theorem 4.1, v will assign a value of ¢ + 1 to the k — 1
most probable classes and c to the rest. This behavior is
inconsistent. On the other hand, /5, which is top-k consis-
tent, will still assign values of ¢ + 1 to the & most probable

classes, and c to the rest.

We construct training data which matches the above set-
ting. The data contains 68 data points with each input
data point equal to the zero vector in R2. Each class

in {1,2} is assigned to 10 data points, and each class in
{3,4,5,6,7,8} is assigned to 8 data points. We set k = 2
so that Zﬁk_ﬂ i = % > % as described in Proposi-
tion 4.2. We train our neural architecture on the data using
batch gradient descent, setting the loss of the last layer to
be each of {¢1,...,v5} with k = 2. For each classifier
obtained, we evaluate the top-2 error on the training set.
This is repeated for 100 trials to ensure the robustness of
our results.

One may surmise that even if the theoretical minimizers for
a loss are not top-k Bayes optimal, they may be effective
in practice due to the optimization process. For example,
the learned classifier for 15 could output a vector close to 0,
but with the first two entries minutely greater than the rest.
Interestingly, this is not the case: the returned classifiers for
19,3, Y4 essentially pick randomly amongst the 8 possible
classes. The classifier returned by ¢, chooses one of {0, 1},
and randomly picks from the rest of the classes. Finally,
the classifier returned by 5 returns the Bayes decision
rule, {0, 1}. These results closely align with the theoretical
optima of these losses.

We report average top-2 accuracy over the 100 trials in
Table 2. For reference, predicting {0, 1} yields a top-2
accuracy of % = 0.294, predicting one of them gives
% = (.265, and predicting none of them gives % = 0.235.
Examples of score vectors returned by each loss are in the
Appendix. We note that the neural net trained with 5 pre-

dicts {0, 1} every trial.

Table 2. Results for Top-2 accuracy on the synthetic dataset demon-
strating consistency/inconsistency of hinge-like losses. Averaged
over 100 trials.

Y1 o 3 Py s
0.2671 0.2515 0.2500 0.2468 0.2941

Top-2:

To investigate a more interesting and realistic example, we
also conduct the following synthetic experiment. Given
an input N, we randomly sample from a d dimensional
Gaussian until we find N vectors which are all at least ¢v/d
apart from each other in /5 distance. Then, we assume there
are M classes, where M is a parameter. For each class, we
randomly select /K of the N means, and then generate a
random probability distribution over the K means. Then,
we sample L points from the class, by randomly picking a
mean according to the probability distribution and sampling
from a Gaussian centered there. This models a situation
where labels have overlapping distributions.

We setd = 2,¢c = 2,K = 5,L = 40 and vary N in
{10, 50,100} to generate the training set. We generate a
test set using the same Gaussians and classes with [ = 7.
Results are shown in Table 3, averaged over 10 trials of



On the Consistency of Top-k Surrogate Losses

generating the data followed by training and evaluation of
classifiers on the test set. We optimize with Adam for 500
epochs, using a learning rate of 0.1 and full batch.

Usually, cross entropy dominates other losses in perfor-
mance. However, in this experiment, due to the overlapping
nature of the label distributions, and the function class being
restricted to linear predictors, cross entropy actually does
notably worse than certain losses which particularly per-
form well in this scenario — %1, 95, and Enty, . This can
be viewed as an empirical validation of our results on the
linear-restricted inconsistency of cross entropy and consis-
tency of 11 and 5. Furthermore, it light of our discussion
of the relationship between convexity and calibration, it is
interesting that specifically the nonconvex losses do well in
this scenario.

Another interesting phenomenon we observe is that 15 is in
a sense robust to its setting of k. While the performance of
11 and Enty, degrade noticeably for top-5 accuracy in the
N = 100 case, the performance of 15 stays about the same.
This is in keeping with 15 being more lenient, not caring as
much as long as the top-k error is 0.

Table 3. Results of the second synthetic experiment. Superscript
on loss function denotes which k is taken in the loss. We try out
both k = 5 and k = 4 for the N = 100 case.

N =10 N =50
Top-5 Acc  Top-5 Acc
Ent 0.699 0.212 0.755 0.267
? 0.737 0.120 0.869 0.134
5 0.639 0.189 0.734  0.245
3 0.649 0.191 0.741 0.241
3 0.651 0.185 0.740 0.205
2 0.726  0.117 0.880 0.149
Emt§rrl 0711 0.125 0.879 0.118
Ent},, 0636 0.169 0.656 0.196
N =100,k=5 N=100,k=4
Top-5 Acc Top-5 Acc
Ent 0.763 0.242 0.761 0.224
k 0.896 0.131 0.834 0.144
k 0.734 0236 0.721 0.236
~ 0.711 0214 0.722  0.219
H 0.744 0210 0.720  0.201
k 0.884 0.124 0.868 0.123
Ent’%rl 0.892  0.111 0.857 0.136
E]at'%r2 0.686  0.169 0.726  0.221

We also model more separated probability distributions. We
generate N means as described earlier. For each mean, we
sample kl points from the Gaussian centered at the vector
with covariance matrix I € R¢*9. Each set of kl points is

divided into k classes of [ points each. The top-k error is
necessary to achieve O error because each Gaussian center
spawns k classes that are indistinguishable from each other.

We set d = 5,¢ = 2,k = 5,1 = 20 and vary N in
{10, 50,100} to generate the training set. We generate a
test set using the same Gaussians and classes with | = 7.
Results are shown in Table 4, averaged over 10 trials of
generating the data followed by training and evaluation of
classifiers on the test set.

We find that while on this more conventional dataset, Ent
dominates, the newly proposed 14, 15 do the best among
the other losses.

Table 4. Third set of synthetic experiments, each value averaged
over 10 trials. N is the number of Gaussian centers. Superscript
on top-k losses indicates the value of k for that loss. Top-5 is top-5
accuracy=1 — errs, Acc. is accuracy, A; = test loss - test top-5
error. N/A means not computed due to numerical instability.

N =10 N =50 N =100
Top-5 Acc. Top-5 Acc. Top-5 Acc.
Ent 0932 0.196 0914 0.180 0.888 0.183
P 0.844 0.146 0.720 0.132 0.613 0.126
3 0918 0.187 0.784 0.179 0.651 0.162
5 0924 0.192 0.784 0.180 0.640 0.160
3 0933 0.186 0.812 0.181 0.661 0.157
»3 0.874 0.179 0.801 0.172 0.695 0.146
Entﬁr’frl 0.803 0.129 0.815 0.153 0.649 0.127
Entrsf12 0.802 0.177 N/A N/A N/A N/A

8. Conclusion

We laid out a theoretical framework for the consistency of
surrogate losses used in top-k classification, by defining
top-k preserving-ness and top-k calibration.

Our subsequent results on the calibration of losses pos-
sessing a form involving Bregman divergences and on the
inconsistency of various hinge losses, in constrast to the
consistency of a new one we propose, chart some of the
consistency landscape of top-k surrogate losses.

We further develop the theory of top-k consistency by ex-
ploring a practically relevant extension: consistency re-
stricted to a particular function class. Furthermore, we
analyze the relationship of convexity to top-k calibration.
With hinge losses, convexity seems antithetical to top-k cali-
bration, and when differentiability is added, top-k calibrated
losses are nice, up to a certain limit that is demonstrated via
an interesting counterexample.

Future directions include investigating which losses gener-
alize well in the context of top-k classification, as this is the
natural and practical progression of the inherent infinite sam-
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ple assumption of consistency, and determining consistency
when restricted to deep learning function classes.
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