
Improving Molecular Design by Stochastic Iterative Target Augmentation

A. Code Availability
All code is available at https://github.
com/yangkevin2/icml2020-stochastic-
iterative-target-augmentation.

B. Toy Model
We investigate the performance of our model in a toy setting,
as follows. The discrete output space Ω is the set of points
(x1, x2) such that −1 ≤ xi ≤ 3 and xi is a multiple of
0.05 for each i = 1, 2. We assume that there is no input,
that is, we are operating in the unconditional setting. We
define our constraint set to be the unit ball, so a new sample
will pass our filter if and only if is in the unit ball. Our
(nonparametric) prior is estimated using k-nearest neighbors
density estimation on the datasetD with k = 50, whereD is
initialized to be the set of points in Ω where both coordinates
are multiples of 0.5 (in order to achieve a more even prior
distribution over Ω, even though some of these initial points
are outside the constraint set).

We draw samples using Metropolis-Hastings (Hastings,
1970) with interval of 50 steps between samples, using
a uniform distribution over Ω as the proposal distribution.
Upon drawing a sample, we add it to D if it lies in the unit
ball. We repeat for a total of 20000 samples; adding the
correct samples to D corresponds to our iterative augmen-
tation and training procedure. Finally, for evaluation, we
sample an additional 2000 samples (without filtering) and
plot them in Figure 7. Nearly all of the samples lie in the
desired constraint set.

C. Further Theoretical Analysis in Simplified
Setting

We analyze our method further in a simplified setting in
order to understand our method’s ability to produce diverse
outputs. In particular, compared to Section 3 in the main text,
we will now drop the input X , effectively switching to the
unconditional setting. The constraint c then depends only
on Y . While producing diverse outputs is most important
in the unconditional generation setting, our analysis here
applies to the conditional setting as well, as we can view the
conditional setting as a separate unconditional generation
problem for each individual input.

We will demonstrate that our method indeed yields a diverse
distribution over correct outputs in a simplified nonpara-
metric, non-stochastic setting. In this setting, our model P
has unlimited capacity, simulating an arbitrarily complex
neural model in practice. Let A = {Y : c = 1|Y },B =
{Y : c = 0|Y }. Starting with a base distribution P (0), our
objective will be to iteratively maximize logP (A), the log-
probability that a sample from P lies in A. We also add a

Figure 7. Distribution of samples at the end of toy model training.
The unit ball is the desired constraint set, while the discrete space
of possible samples is the points in [−1, 3]× [−1, 3] where both
coordinates are multiples of 0.05.

KL-divergence penalty to keep P (t+1) close to P (t) because
in practice, we make only a limited update to our model
distribution in each training iteration, dependent on learning
rate. Thus, fixing some λ > 0, we update P according to:

P (t+1) = arg max
P

logP (A)− λKL(P ||P (t)) (5)

where the argmax is over all possible models (distributions)
P . We characterize P (t+1) by the following proposition,
whose proof we defer to Appendix D:

Proposition 1 Assume P (0) has nonzero support on A and
B. Let P (t)(Y) be the probability of sampling molecule Y
from P (t), and P (t)(A) the probability that a given sample
lies in A. For any λ > 0, when updating P according to
Equation 5, we have for all timesteps t and molecules Y :

P (t)(Y) = α(t)P
(0)(Y)

P (0)(A)
1Y ∈A+ (1−α(t))

P (0)(Y)

P (0)(B)
1Y ∈B

(6)
for some sequence {α(t)} ∈ [0, 1]. Moreover, the sequence
{α(t)} converges to 1, with α(t) ≥ 1− ε for ε > 0 whenever
t ≥ −λ log(εα(0)).

From Proposition 1, we observe that the converged model
P (∞) assigns probability to each output proportional to
P (0)p(c = 1|Y). We conclude that in this simplified set-
ting, if our starting distribution P (0) is reasonably diverse
(for example, a randomly initialized neural generator), the
resulting converged P (∞) will be a diverse distribution over
A.

Remark. In practice, since molecular structures are dis-
crete and the distribution may be peaked, it is important

https://github.com/yangkevin2/icml2020-stochastic-iterative-target-augmentation
https://github.com/yangkevin2/icml2020-stochastic-iterative-target-augmentation
https://github.com/yangkevin2/icml2020-stochastic-iterative-target-augmentation

Improving Molecular Design by Stochastic Iterative Target Augmentation

to properly deal with repeated samples during our aug-
mentation step. Thus we sample targets proportional to
P (t)p(c = 1|Y) without replacement. This diverges from
our theory, which corresponds to sampling with replace-
ment: the KL-divergence penalty encourages P (t+1) to as-
sign probability proportional to P (t), rather than uniform
probability across A. In the limit as the number of samples
goes to infinity, sampling targets without replacement is
preferred: this encourages P (∞) to be uniform over the set
A.

Lastly, we note that our analysis here applies in principle to
the conditional setting as well, viewing each input precursor
as a separate unconditional design task.

D. Proof of Proposition 1
We now prove Proposition 1, reproduced below for conve-
nience.

Proposition 1 (a) Assume P (0) has nonzero support on A
and B. Let P (t)(Y) be the probability of sampling molecule
Y from P (t), and P (t)(A) the probability that a given sam-
ple lies in A. For any λ > 0, when updating P according
to Equation 5, we have Equation 6 for all timesteps t and
molecules Y :

P (t)(Y) = α(t)P
(0)(Y)

P (0)(A)
1Y ∈A+ (1−α(t))

P (0)(Y)

P (0)(B)
1Y ∈B

for some sequence {α(t)} ∈ [0, 1]

(b) Moreover, the sequence {α(t)} converges to 1, with
α(t) ≥ 1− ε for ε > 0 whenever t ≥ −λ log(εα(0)).

Proof (a) Recall Equation 5:

P (t+1) = arg max
P

logP (A)− λKL(P ||P (t))

We first prove that the optimal P exists and takes the stated
form. Note that it suffices to prove the statement with
P (0)(Y) replaced by P (t)(Y), as we can use induction.
Each timestep t simply results in a reweighting of the sets
A and B by updating α.

Define h(P) = logP (A) − λKL(P ||P (t)), and define
a P of the form given in Equation 6 as proportionality-
preserving, or prop-preserving. First, we use a smoothing
argument to show that for any non-prop-preserving P0, there
exists a prop-preserving P ∗ such that h(P0) < h(P ∗).

By definition,

D(P)
def
= KL(P ||P (t)) (7)

=
∑
Y

P (Y) logP (Y)− P (Y) logP (t)(Y) (8)

Taking the derivative with respect to P (Y0) for fixed Y0:

dD(P)

dP (Y0)
= 1 + logP (Y0)− logP (t)(Y0) (9)

= 1 + log
P (Y0)

P (t)(Y0)
(10)

Now for any P0, let α0 be the weight it assigns toA, and let
P ∗α0

be the prop-preserving P ∗ with parameter α0. For all
Y0 ∈ A, because P ∗α0

is prop-preserving, P∗(Y0)
P (t)(Y0)

is equal

to some constant c. Hence,
dD(P∗

α0
)

dP∗
α0

(Y0)
is a constant k for all

Y0 ∈ A.

Consider next the sets As and Ab which are the subsets of
A where P0(Y0)

P (t)(Y0)
< c and P0(Y0)

P (t)(Y0)
> c, respectively. Since

P0 and P ∗α0
assign the same probability toA as a whole, we

have:

P0(As) + P0(Ab) = P ∗α0
(As) + P ∗α0

(Ab) (11)

However, as the log function is strictly increasing, from
10 we see that dD(P0)

dP0(Y0)
< k whenever P0(Y0)

P (t)(Y0)
< c (i.e.

Y0 ∈ As) and vice versa when dD(P0)
dP0(Y0)

> k (i.e. Y0 ∈ Ab).
Hence for Y0 ∈ As, by the mean value theorem we have that
replacing P0(Y0) with P ∗α0

(Y0) would increase D(P0) by
less than k(P ∗α0

(Y0)−P0(Y0)). Doing this replacement for
all Y0 ∈ As thus increasesD(P0) by less than k(P ∗α0

(As)−
P0(As)). Similarly, replacing P0(Y0) with P ∗α0

(Y0) for
all Y0 ∈ Ab decreases D(P0) by more than k(P0(Ab) −
P ∗α0

(Ab)).

However, from rearranging Equation 11 we have that
P0(As)− P ∗α0

(As) = −(P0(Ab)− P ∗α0
(Ab)). Therefore,

replacing all values of P0(Y0) with P ∗α0
(Y0) for Y0 ∈ A

cannot increase the value of D(P0). Moreover, if As and
Ab were nonempty, then D(P0) strictly decreases.

We can repeat the same argument as above for the probabil-
ity mass in B. If P0 is not prop-preserving, then either As
and Ab are nonempty or the corresponding sets for B are
nonempty. We conclude that for any non-prop-preserving
P0 there exists a prop-preserving P ∗α0

achieving a strictly
lower value of D(P) = KL(P ||P (t)). Since h places
negative weight on D(P), and our value replacements did
not affect the value of logP0(A), we conclude that P ∗α0

achieves a strictly higher value of h than does P0.

Next, observe that the space of possible prop-preserving P ∗

is one-dimensional, parameterized by α ∈ [0, 1]. Thus, we
can define a function h′(α) as h(P ∗(α)). Both logP (A)
and −λKL(P ||P (t) are upper-bounded by 0, so h′ → −∞
as α → 0. If P (t)(B) = 0 then we have the maximum at

Improving Molecular Design by Stochastic Iterative Target Augmentation

α = 1, otherwise h′ → −∞ as α→ 1 as well. Since h′ is
continuous and in fact strictly concave in α (due to strict con-
cavity of log and convexity of KL), we conclude that h′(α)
attains its unique maximum for some α∗ ∈ [0, 1]. Then
since we showed previously that every non-prop-presering
P0 achieves a value of h(P0) at strictly less than that of
some prop-preserving P ∗, we conclude that a unique P ∗

maximizing h indeed exists and is prop-preserving. �

Proof (b) We now show that the sequence {α(t)} converges
to 1. Since we assumed P (0) has nonzero support on A, we
know that α(0) > 0. If P (0)(B) = 0, then we are trivially
done. So henceforth we can assume α(0) ∈ (0, 1).

Noting that logP ∗
α(t+1)(A) = α(t+1) and logP ∗

α(t+1)(B) =

1− α(t+1), we have:

KL(P ∗α(t+1) ||P (t))

= KL(P ∗α(t+1) ||P ∗α(t)) (12)

=
∑
Y0∈A

P ∗α(t+1)(Y0) log
P ∗
α(t+1)(Y0)

P ∗
α(t)(Y0)

(13)

+
∑
Y0∈B

P ∗α(t+1)(Y0) log
P ∗
α(t+1)(Y0)

P ∗
α(t)(Y0)

= P ∗α(t+1)(A) log
α(t+1)

α(t)
+ P ∗α(t+1)(B) log

1− α(t+1)

1− α(t)

(14)

= α(t+1) log
α(t+1)

α(t)
+ (1− α(t+1)) log

1− α(t+1)

1− α(t)

(15)

We are now ready to take the derivative of h with respect to
α(t+1):

dh(P ∗
α(t+1))

dα(t+1)
(16)

=
1

α(t+1)
− λ(logα(t+1) + 1− logα(t)) (17)

− λ(log(1− α(t))− log(1− α(t+1))− 1)

=
1

α(t+1)
− λ log

α(t+1)

1− α(t+1)
+ λ log

α(t)

1− α(t)
(18)

Observe that α is trivially nondecreasing: if α(t+1) < α(t),
then logP (A) decreases while KL(P ||P (t)) increases
when comparing P ∗

α(t+1) and P ∗
α(t) , as P (t) = P ∗

α(t) .

Moreover, the derivative
dh(P∗

α(t+1))

dα(t+1) is positive at α(t+1) =

α(t), so in fact α is strictly increasing. Since h is continuous,

we have either α(t+1) = 1 or
dh(P∗

α(t+1))

dα(t+1) = 0. Solving the
latter equation gives us

λ log
α(t)

1− α(t)
+

1

α(t+1)
= λ log

α(t+1)

1− α(t+1)
(19)

α(t)

1− α(t)
e

1

λα(t+1) =
α(t+1)

1− α(t+1)
(20)

Now suppose for the sake of contradiction that {α(t)} does
not converge to 1, i.e. for some fixed C < 1, αt < C for all
t . Then from 20 we see that

α(t)

1− α(t)
e

1
λC ≤ α(t+1)

1− α(t+1)
(21)

Finally, since 1
λC > 0, we have

e
1
λC > 1 (22)

We conclude from 21 and 22 that α(t)

1−α(t) is exponentially
increasing over time. This contradicts that αt < C < 1 for
some fixed C for all t; therefore, the sequence {α(t)} must
converge to 1.

Finally, we analyze the rate of convergence. Suppose we
want α(t) ≥ 1− ε for some ε > 0, i.e., α(t)

1−α(t) ≥ 1−ε
ε . From

21 we see when α < C, α
1−α is exponentially growing by

a factor of at least e
1
λC with each timestep. Here, we have

C = 1− ε. Therefore, we have:

α(t)

1− α(t)
≥
(

α(0)

1− α(0)

)
e

t
λ(1−ε) (23)

From this, we see that to achieve α(t)

1−α(t) ≥ 1−ε
ε , it suffices

to have:

(
α(0)

1− α(0)

)
e

t
λ(1−ε) ≥ 1− ε

ε
(24)

Rearranging gives us the following sufficient condition for
α(t) ≥ 1− ε:

t ≥ λ(1− ε) log

(
(1− ε)(1− α(0))

εα(0)

)
(25)

Loosening the condition by observing 1 − ε < 1 and 1 −
α(0) < 1 gives us our desired t ≥ −λ log(εα(0)), although
of course this bound is not tight. �

Improving Molecular Design by Stochastic Iterative Target Augmentation

Data Augmentation Epoch

Q
ED

 S
uc

ce
ss

75

80

85

90

95

0 2 4 6 8 10
Data Augmentation Epoch

D
R

D
2

Su
cc

es
s

75

80

85

90

95

100

0 2 4 6 8 10

Figure 8. Left: Success rate for VSeq2Seq+ on validation set for each epoch of iterative target augmentation on conditional QED task.
Right: Same plot for DRD2. For each plot, the far left point indicates the performance of the bootstrapped model.

E. Additional Experimental Details
E.1. Implementation and Hyperparameters

Our augmented models share the same hyperparameters as
their baseline counterparts in all cases.

In the molecular design conditional case, for VSeq2Seq
we use batch size 64, embedding and hidden dimension
300, VAE latent dimension 30, and an LSTM with depth 1
(bidirectional in the encoder, unidirectional in the decoder).
For models using stochastic iterative target augmentation, n1
is set to 5 and n2 is set to 10, while for the baseline models
we train for 20 epochs (corresponding to n1 = 20, n2 = 0).
The HierGNN model shares the same hyperparameters as
in Jin et al. (2019a).

In the unconditional setting, our VSeq model uses the same
hyperparameters as the conditional-case VSeq2Seq model,
while for the REINVENT baseline we use Olivecrona et al.
(2017)’s default settings. Both models have approximately
4 million trainable parameters to facilitate fair comparison.
We set n1 to 1 and n2 to 50, and train the VSeq baseline
model for 50 epochs. We also discard the gold data alto-
gether after the initial bootstrapping phase, as we find that
this improves model performance. For the REINVENT
baseline, we train their prior model for the recommended
number of steps, and then finetune using their RL method
until convergence. We additionally searched over their σ
hyperparameter, although we found that this did not signifi-
cantly affect performance on either the QED or DRD2 tasks,
so our final runs use the default value of 20.

For the training time and prediction time filtering parame-
ters, we setK = 4, C = 200, and L = 10 for both the QED
and DRD2 tasks, in both the conditional and unconditional
cases. Although we ran experiments with different values
of K, we found that the change did not significantly affect
performance unless K was too small; see Appendix E.6.

For the Karel program synthesis task, we use the same hy-
perparameters as the MLE baseline model in Bunel et al.
(2018). Our augmented model shares the same hyperparam-

eters. We use a beam size of 64 at test time, the same as
the MLE baseline, but simply sample programs from the
decoder distribution when running iterative target augmen-
tation during training. The baseline model is trained for 100
epochs, while for the model employing iterative target aug-
mentation we train as normal for n1 = 15 epochs followed
by n2 = 50 epochs of iterative target augmentation. Due to
the large size of the full training dataset, in each epoch of
iterative augmentation we use 1

10 of the dataset, so in total
we make 5 passes over the entire dataset.

For the training time and prediction time filtering parame-
ters, we set K = 4, C = 50, and L = 10.

All code is in PyTorch (Paszke et al., 2017).

E.2. Dataset Sizes

In Table 5 we provide the training, validation, and test set
sizes for all of our tasks. Note that the validation and test
sizes are relevant only for the conditional case. For each
task we use the same splits as our baselines.

Task Training Set Validation Set Test Set

QED 88306 360 800
DRD2 34404 500 1000
Karel 1116854 2500 2500

Table 5. Number of examples in training, validation, and test sets
for each task.

The QED data is obtained from filtering ZINC (Sterling &
Irwin, 2015), while the DRD2 data is obtained from ZINC
and Olivecrona et al. (2017). Our complete datasets are
included together with our code submission.

E.3. Learning Curves

In Figure 8, we provide the validation set performance per
augmentation epoch for our VSeq2Seq+ model on both the
QED and DRD2 conditional tasks.

Improving Molecular Design by Stochastic Iterative Target Augmentation

Augmentation Epoch #

Q
ED

 D
at

a

0

0.5

1

1.5

2

0 2 4 6 8 10

(a) QED Conditional

Augmentation Epoch #

D
R

D
2

D
at

a

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10

(b) DRD2 Conditional

Augmentation Epoch #

Q
ED

 D
at

a

0

5

10

15

0 10 20 30 40 50

(c) QED Unconditional

Augmentation Epoch #

D
R

D
2

D
at

a

0

2

4

6

0 10 20 30 40 50

(d) DRD2 Unconditional

Figure 9. Graphs of the cumulative number of unique training pairs our augmented sequence-based model has seen by the time of each
augmentation epoch, on both QED and DRD2 tasks in both conditional and unconditional settings. All vertical axis scales in millions.

E.4. Unique Data Seen Over Time

In Figure 9, we show the cumulative number of unique data
points seen during augmentation epochs. The four subplots
show the QED and DRD2 tasks for both the VSeq2Seq+
model in the conditional setting as well as the VSeq+ model
in the unconditional setting. Even after several epochs, the
number of unique data points is still increasing in all cases.
Due to the large number of additional data points, we find
that in both settings, empirical model performance at test
time is limited more by the discrepancy between the proxy
predictor and the ground truth evaluator than by the number
of new data points seen. This is evidenced by the near-
perfect performance we observe for both VSeq2Seq+ and
VSeq+ when evaluated using the proxy predictor.

E.5. Frechet ChemNet Distance Analysis

As another evaluation of our model on a metric it was not
optimized for, we further evaluate Frechet ChemNet Dis-
tance (FCD) (Preuer et al., 2018) between model outputs
and a reference set of gold targets for both the QED and
DRD2 tasks, in both the conditional and unconditional set-

Conditional
Model QED DRD2

VSeq2Seq 1.34 7.74
VSeq2Seq+ 1.28 7.10

Unconditional
Model QED DRD2

VSeq 3.21 12.45
REINVENT 4.79 19.81
VSeq+ 3.33 10.86

Table 6. FCD evaluation of baselines and augmentations on two
datasets in both conditional and unconditional settings; in isolation,
lower is better. Our augmentation method maintains similar FCD
between outputs and gold targets compared to the baseline on QED,
and decreases the distance on DRD2, while substantially improv-
ing the success rate and diversity of modifications. By contrast,
the reinforcement-learning based REINVENT method greatly in-
creases the FCD on both QED and DRD2 in the unconditional
setting.

Improving Molecular Design by Stochastic Iterative Target Augmentation

Model QED Succ. QED Div. DRD2 Succ. DRD2 Div.

VSeq2Seq+, K=2 85.1 0.453 95.9 0.327
VSeq2Seq+, K=4 89.0 0.470 97.2 0.361
VSeq2Seq+, K=8 88.4 0.480 97.6 0.373

Table 7. Performance of our model VSeq2Seq+ in the conditional setting with different values of K. All other experiments use K = 4.

Model QED Succ. QED Div. DRD2 Succ. DRD2 Div.

VSeq2Seq+ 89.0 0.470 97.2 0.361
VSeq2Seq+, keep-targets 89.8 0.465 97.6 0.363

Table 8. Performance in conditional setting of our proposed augmentation scheme, VSeq2Seq+, compared to an alternative version
(VSeq2Seq+, keep-targets) which keeps all generated targets and continually grows the training dataset.

tings. FCD is the molecular analogue of Frechet Inception
Distance for images (Heusel et al., 2017), measuring distri-
butional distance. Considering the FCD metric in isolation,
we prefer models whose outputs have lower distributional
distance with the reference set.

In Table 6, we observe that on the QED task our model and
the baseline perform similarly. On DRD2, our augmentation
method is quite successful at decreasing the distributional
distance, where the distributional distances between the
training targets and the reference gold targets leave more
room for improvement compared to QED. Thus our method
improves over the baseline in success and diversity (our
main metrics in the paper) while also performing equal or
better by FCD. By contrast, we observe that the REINVENT
baseline heavily degrades performance on the FCD metric
compared to the baseline on both tasks.

E.6. Further Molecular Design Experiments

In the conditional case, we experiment with the effect of
modifyingK, the number of new targets added per precursor
during each training epoch. In all other experiments we have
used K = 4. Since taking K = 0 corresponds to the base
non-augmented model, it is unsurprising that performance
may suffer when K is too small. However, as shown in
Table 7, at least in the conditional case there is relatively
little change in performance for K much larger than 4.

We also experiment with a version of our method which con-
tinually grows the training dataset by keeping all augmented
targets, instead of discarding new targets at the end of each
epoch. We chose the latter version for our main experiments
due to its closer alignment to our EM motivation. However,
we demonstrate in Table 8 that performance gains from con-
tinually growing the dataset are small to insignificant in our
conditional molecular design tasks.

E.7. Model Stability and Number of Runs

We found that the reinforcement-learning based REINVENT
model was sometimes unstable on our DRD2 dataset, result-
ing in wide variance in results between different runs. To
confirm statistical significance, we ran VSeq+ and REIN-
VENT 10 times each on this dataset, resulting in VSeq+
having higher uniqueness with p-value 0.003 in a t-test.

All other models were highly stable and performed consis-
tently between runs, particularly in the conditional setting.
For our final experiments we ran all models 3 times in the
unconditional setting, reporting mean metrics, and once in
the conditional setting.

E.8. Unconditional Molecular Design Ablations

In Table 9 we present an ablation analysis for the uncon-
ditional setting, similar to that for the conditional setting
in the main text. We also analyze an ablation VSeq(dupe),
an ablation of our stochastic iterative target augmentation
method applied to VSeq. It samples targets with replace-
ment during augmentation, unlike our full method which
deduplicates. As suggested by our theoretical remark on the
difference between sampling with and without replacement
in Appendix C, VSeq(dupe) underperforms VSeq+. As Fig-
ure 10 demonstrates, its diversity eventually decreases over
time.

Interestingly, VSeq(train) achieves nearly the same unique-
ness score as VSeq+, indicating that the additional training
targets from our stochastic iterative augmentation method
are responsible for most if not all the gains over the baseline.
In particular, even our ablation model VSeq(train) signifi-
cantly outperforms the REINVENT baseline, demonstrating
that our model’s advantage over RL is not limited to our
prediction-time filtering procedure.

Improving Molecular Design by Stochastic Iterative Target Augmentation

Model Train+ Test+ QED Succ. QED Uniq. DRD2 Succ. DRD2 Uniq.

VSeq 7 7 62.4 0.499 51.4 0.221
VSeq(test) 7 3 96.5 0.732 92.4 0.338
VSeq(train) 3 7 95.3 0.953 92.5 0.924
VSeq+ 3 3 95.8 0.957 92.8 0.927
VSeq(dupe) 3 3 93.2 0.886 83.9 0.511

Table 9. Ablation analysis of filtering at training and test time for unconditional molecular generation. “Train+” indicates a model whose
training process uses data augmentation according to our framework. “Test+” indicates a model that uses the external filter at prediction
time to discard candidate outputs which fail to pass the filter.

Epoch #

Q
ED

 V
al

 U
ni

qu
en

es
s

0

0.25

0.5

0.75

1

0 10 20 30 40 50
Epoch #

D
R

D
2

V
al

 U
ni

qu
en

es
s

0

0.25

0.5

0.75

1

0 10 20 30 40 50

Figure 10. Left: Epoch number vs. uniqueness, evaluated with the Chemprop proxy predictor, for VSeq-based models on QED dataset.
VSeq+, Vseq(dupe), and VSeq in blue, yellow, and red respectively. Right: Same plot for DRD2. Note that both VSeq(dupe) and VSeq+
are trained without iterative target augmentation for the initial epoch 0, and trained with augmentation thereafter.

Model Train+ Test+ Top-1 Generalization

MLE∗ 7 7 70.91
MLE(test)∗ 7 3 79.61
MLE(train) 3 7 77.92
MLE+ 3 3 85.02

Table 10. Ablation analysis of filtering at training and test time for
program synthesis. “Train+” indicates a model whose training pro-
cess uses data augmentation according to our framework. “Test+”
indicates a model that uses the external filter at prediction time.
*Note that MLE and MLE(test) are based on an MLE checkpoint
which underperforms the published result from Bunel et al. (2018)
by 1 point, due to training for fewer epochs.

E.9. Program Synthesis Ablations

In Table 10 we provide the same ablation analysis that we
provided in the main text for the conditional molecular de-
sign task, demonstrating that both training time iterative
target augmentation as well as prediction time filtering are
beneficial to model performance. We hypothesize that the
effect of test-time filtering is relatively larger in program
synthesis than in molecular design because checking correct-
ness is easier in this domain. However, we note that even
MLE(train), our model without prediction time filtering,
outperforms the best RL method from Bunel et al. (2018).

