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Abstract

Recently, deep multiagent reinforcement learning
(MARL) has become a highly active research area
as many real-world problems can be inherently
viewed as multiagent systems. A particularly in-
teresting and widely applicable class of problems
is the partially observable cooperative multiagent
setting, in which a team of agents learns to coor-
dinate their behaviors conditioning on their pri-
vate observations and commonly shared global
reward signals. One natural solution is to resort to
the centralized training and decentralized execu-
tion paradigm and during centralized training, one
key challenge is the multiagent credit assignment:
how to allocate the global rewards for individ-
ual agent policies for better coordination towards
maximizing system-level’s benefits. In this paper,
we propose a new method called Q-value Path
Decomposition (QPD) to decompose the system’s
global Q-values into individual agents’ Q-values.
Unlike previous works which restrict the represen-
tation relation of the individual Q-values and the
global one, we leverage the integrated gradient
attribution technique into deep MARL to directly
decompose global Q-values along trajectory paths
to assign credits for agents. We evaluate QPD
on the challenging StarCraft II micromanagement
tasks and show that QPD achieves the state-of-
the-art performance in both homogeneous and het-
erogeneous multiagent scenarios compared with
existing cooperative MARL algorithms.
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1. Introduction
The cooperative multiagent reinforcement learning problem
has attracted increasing research attention in the last decade
(Busoniu et al., 2008; Gupta et al., 2017; Palmer et al., 2018),
where a system of agents learn towards coordinated policies
to optimize the accumulated global rewards. Cooperative
multiagent systems (MAS) have been demonstrated ben-
eficial in numerous applications, e.g., the coordination of
autonomous vehicles (Cao et al., 2012) and optimizing the
productivity of a factory in distributed logistics (Ying &
Sang, 2005). One natural way to address the cooperative
MARL problem is the centralized approach, which views
the overall MAS as a whole and solves it as a single-agent
learning task. In such settings, existing reinforcement learn-
ing (RL) techniques can be leveraged to learn joint optimal
policies based on agents’ joint observations and common
rewards (Tan, 1993). However, the centralized approach
usually does not scale well, since the joint action space of
agents grows exponentially as the agent number increases.
Furthermore, centralized approaches may not be applicable
in practical settings where only distributed policies can be
deployed due to private observations and communication
constraints (Foerster et al., 2018), i.e., each agent can only
decide how to behave based on its local observations.

To address these above limitations, researchers resort to
decentralized approaches, in which each agent learns its
optimal policy independently based on its local observations
and individual rewards. However, in cooperative multiagent
environments, all agents receive the same global reward
signal. Letting individual agents learn concurrently based
on the global reward (aka. independent learners) has been
well studied (Tan, 1993), but sometimes even shown to be
difficult in even simple two-agent, single-state stochastic
coordination problems. One main reason is that the global
reward signal brings the nonstationarity that agents cannot
distinguish between the stochasticity of the environment and
the explorative behaviors of other co-learners (Lowe et al.,
2017), thus may mistakenly update their policies. Therefore,
the key of coordinating agents is to correctly allocate the
reward signal for each agent, which is also known as the
multiagent credit assignment problem (Chang et al., 2004).

For simple problems, it might be possible to manually de-
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sign agent-wise reward function based on domain knowl-
edge. However, the heuristic design requires manual efforts
and is not always applicable in complex cooperative multia-
gent tasks. It would be more desirable if there is any general-
ized principle to learn agent-wise reward functions. Foerster
et al. (Foerster et al., 2018) propose a multiagent actor-critic
method called counterfactual multiagent (COMA) policy
gradients, which marginalizes out a single agent’s action
while keeping the other agents’ actions fixed to calculate
the advantage for agent policies. At the same time, Sunehag
et al. (Sunehag et al., 2018) propose a value decomposition
network (VDN) to decompose the global value function
into agent-wise value functions in term of local observa-
tions, which is not applicable for complex systems where
agents have complicated relations and the decomposition is
not accurate as the global information is not fully utilized.
QMIX relaxes the limitation of the linear decomposition of
global Q-value into individual ones in VDN while enforc-
ing a monotonicity constraint among them. However, both
VDN and QMIX restrict the relation representation between
the individual Q-values and the global Q-value. Such a
way restricts the accuracy of the individual Q-values and
may impede the learning of coordinated policies in complex
multiagent scenarios. Recently, QTRAN (Son et al., 2019)
is proposed to guarantee optimal decentralization inherit-
ing the linear constraints between the global Q-value and
agent-wise ones, and avoids the representation limitations
introduced by VDN and QMIX. But the constraints on the
optimization problem are computationally intractable and
practical relaxations may lead to the unsatisfied performance
in complex tasks (Mahajan et al., 2019).

In this paper, we propose a novel Q-value decomposition
technique from the perspective of deep learning (DL). Simi-
lar to previous works, we set in a centralized learning and
decentralized execution paradigm, where agents are trained
centrally with shared information while executing in a decen-
tralized manner. Our method employs integrated gradients
(Sundararajan et al., 2017) method to analyze the contribu-
tion of each agent to the global Q-value Qtot , and regards
the contribution of each agent as its individual Qi, which is
used as the supervision signal to train each agent’s Q-value
function. As we utilize trajectories of RL to implement
attribution decomposition, we call this method Q-value Path
Decomposition (QPD). Besides, we design a multi-channel
critic to generate Qtot by following the individual, group
and system concepts progressively based on agents’ joint
observations and actions. Lastly, we merge the integrated
gradients into MARL to decompose Qtot into approximative
Qi with respect to each agent’s local observation and action
for precise credit assignment. We evaluate QPD using the
StarCraft II micromanagement tasks. Experiments show
that QPD learns effective policies in both homogeneous and
heterogeneous scenarios with state-of-the-art performance.

There have seen many related contributions to the setting
of the decentralized partially observable Markov decision
process (Dec-POMDPs). For the large-scale MAS setting,
Duc Thien Nguyen et al., (Nguyen et al., 2017; 2018) study
the Collective Dec-POMDPs where agent interactions are
dependent on their collective influence on each other rather
than their identities. At the same time, Yang et al., (Yang
et al., 2018) assume that each agent is affected by its neigh-
bors to reduce the nonstationary phenomenon and derive
a mean-field approach. The above two methods are only
investigated in the large-scale multiagent settings and sat-
isfy the theoretical support under the large-scale assumption.
Another notable direction is the multiagent exploration prob-
lem. Mahajan et al., (Mahajan et al., 2019) propose MAVEN
to solve it, where value-based agents condition their behav-
ior on the shared latent variable controlled by a hierarchical
policy. The latent space which controls the exploration of
joint behaviors mainly affects the agent’s individual utility
network and is orthogonal to ours.

The remainder of this paper is organized as follows. We
introduce the Dec-POMDPs and integrated gradients in Sec-
tion 2. Then in Section 3, we explain our QPD framework
for deep MARL in detail. Next, we validate our methods in
the challenging StarCraft II platform in Section 4. Finally,
conclusions and future work are provided in Section 5.

2. Background
2.1. Dec-POMDPs

Fully cooperative multiagent tasks can be modeled as Dec-
POMDPs (Oliehoek & Amato, 2016). Formally, a Dec-
POMDP G is given by a tuple

G =< S,A,P,r,Z,O,n,γ > (1)

where s∈ S describes the true state of the environment. Dec-
POMDPs consider partially observable scenarios in which
an observation function Z(s, i) : S×N → p(O), which de-
fines the probability distribution of the observations oi ∈ Oi

for each agent i ∈ N ≡ {1, ...,n} draws individually. At
each time step, each agent i selects its action ai ∈ Ai
based on its local observation oi according to its stochas-
tic policy πi : Oi × Ai → [0,1]. The joint action ~a ∈ ~A
produces the next state according to the state transition
function P : S×A1× ...×An → S. All agents share the
same reward function r(s,~a) : S×~A→ R. All agents co-
ordinate together to maximize the total expected return
J = Ea1∼π1,...,an∼πn,s∼P ∑

T
t=0 γ trt(s,~a) where γ is a discount

factor and T is the time horizon. Our problem setting fol-
lows the paradigm of centralized training and decentral-
ized execution (Foerster et al., 2018). That is, each agent
executes its policy in a distributed manner, since agents
may only observe the partial environmental information
due to physical limitations (e.g., scope or interfere) and
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high communication cost in practice. Fortunately, each
agent’s policy can be trained in a centralized manner (us-
ing a simulator with additional global information) to im-
prove the learning efficiency. The global discounted re-
turn is Rt = ∑

T−t
l=0 γ lrt+l . The agents’ joint policy induces a

value function, i.e., an approximation of expectation over
Rt , V~π(st) = E~at∼~π,st+1∼P[Rt |st ], and a global action-value
Q~π(st ,~at) = E~at+1∼~π,st+1∼P[Rt |st ,~at ] remarked as Qtot .

2.2. Integrated Gradients

A lot of works intend to understand the input-output behav-
iors of deep networks and attribute the prediction of a deep
network to its input features (Ancona et al., 2018). The goal
of attribution methods is to determine how much influence
each component of input features has in the network output
value (Brasó Andilla, 2018).

Definition 1. Formally, suppose we have a function F :
Rd → R that represents a deep network, and an input~x =
(x1, ...,x j, ...,xd) ∈ Rd . R is the set of real numbers. F is
the function with a d-dimension vector input. An attribution
of the prediction at input~x relative to a baseline input~b is a
vector AF(~x,~b) = (cx1 , ...cx j , ...,cxd ) ∈ Rd , where cx j is the
contribution value of x j to the difference between prediction
F(~x) and the baseline prediction F(~b).

The attribution methods are widely studied (Baehrens et al.,
2010; Binder et al., 2016; Montavon et al., 2018). As one of
them, integrated gradients makes use of path integral to ag-
gregate the gradients along the inputs that fall on the lines be-
tween the baseline and the input (Sundararajan et al., 2017),
which is inspired by economic cost-sharing literature (Tara-
shev et al., 2016) with theoretical supports (Hazewinkel,
1990). The integrated gradients explains how much one fea-
ture affects the deep network output while changing from
F(~b) to F(~x) along a straight line between~x and~b. Using
integrated gradients along a path satisfies Sensitivity and
Implementation Invariance that attribution methods ought
to satisfy (Sundararajan et al., 2017). Although integrated
gradients uses the straight line, there are many paths that
monotonically interpolate between the two points, and each
such path will yield a different attribution method depicting
the feature changing process. The path integral focuses on
the changing process of each variable to perform attribution
and has shown impressive performance in various domains.

Formally, let τ(α) : [0,1]→ Rd be a smooth path function
specifying a path in Rd from the baseline~b to the input ~x,
i.e., τ(0) =~b and τ(1) =~x. Given a path function τ , path
integrated gradients are obtained by integrating gradients
along the path τ(α) for α ∈ [0,1]. Mathematically, path
integrated gradients along the jth dimension for input~x (i.e.,

x j) on the path τ is defined as follows.

cx j = PathIGτ
x j
(~x) ::=

∫ 1

α=0

∂F(τ(α))

∂τx j(α)

∂τx j(α)

∂α
dα, (2)

where ∂F(τ(α))
∂τx j (α) is the gradient of F along the jth dimension.

Attribution methods based on path integrated gradients are
collectively known as path methods. Sundararajan et al,.
first introduce path integrated gradients to perform attribu-
tion for deep networks. Due to the absence of the real feature
varying path, they specify the straight line as the path for
integration. Using the straight line path τ(α) =~b+α(~x−~b)
for α ∈ [0,1], the integrated gradients (Sundararajan et al.,
2017) to calculate the contribution value cx j along the jth
dimension for input~x is defined as follows.

cx j = IGτ
x j
(~x) ::= (~x j−~b j)

∫ 1

α=0

∂F(τ(α))

∂τx j(α)
dα. (3)

In the computer vision and natural language processing
domains, when applying integrated gradients, the zero em-
bedding vector is usually used as the baseline~b. Besides, as
mentioned above, the straight line is the choice for the path.
It seems there are no better path choices for the image mod-
els or natural language models as the feature varying process
is unknown. The zero-vector baseline and corresponding
straight line are not suitable for many real problems as they
do not really reflect how features change. For example, in
an episode of RL, transitions of state and action features
happens between every two adjacent steps from time t to T .
Such a feature varying process cannot be depicted by the
straight line from the starting state to the all-zero vector.

3. QPD for MARL
Here we describe our QPD MARL framework and Figure 1
shows the overall learning framework. First, we leverage
integrated gradients techniques on the centralized critic to
decompose Qtot into individual Q-values Qi approximately
for each agent in Section 3.1. Such a decomposition pro-
cess addresses the multiagent credit assignment via the co-
variation analysis of each agent’s observations and actions
along the trajectory path. The decomposed individual value
which approximates Qi is used as the supervision signal
to train each agent’s recurrent Q-value network. Then, in
Section 3.2, we design a multiagent multi-channel critic
which consists of modular channels to extract hidden states
for different groups of agents to learn the global Q-value
Qtot from agents’ joint observations and actions. Finally, we
give the algorithm details and training losses in Section 3.3.
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Figure 1. The overall QPD Framework. The top block is the cen-
tralized critic with a multi-channel modular design. The middle
block is applying the Q-value path decomposition technique to
achieve credit assignments on the agent level. The Qtot is de-
composed into the supervision signals for Qi. The bottom block
shows the network architecture of the agent policies, which are
implemented by the recurrent deep Q-network.

3.1. Value Decomposition Through Integrated
Gradients

In this section, we apply integrated gradients to assign cred-
its for each agent on the multi-channel critic by performing
attribution on each own states and actions with respect to the
output Qtot . As Deep Reinforcement Learning (DRL) em-
ploys deep neural networks to approximate the global Qtot ,
we could utilize the attribution tools in DL combined with
concepts in RL to extract the contribution of specified sets
of features from different agents to the predicted Q-value.
To this end, in this paper, we propose a new multiagent
credit assignment approach that utilizes integrated gradients
on the state-action trajectory.

As mentioned above, in DL, it is usually unknown how
features change from input to baseline. Thus, the straight
line becomes the path choice for using integrated gradi-
ents in DL. However, in RL, a natural path luckily exists,
which could be depicted by connecting the trajectory of
state-action transitions in each episode to reflect how the
state-action features change. As the trajectory path depicts

the real feature varying process, we could achieve an accu-
rate attribution. Using integrated gradients on the trajectory
path, we perform the global Q-value decomposition by at-
tributing the global Q-value prediction to its input features.
Applying integrated gradients into RL was first studied in
RUDDER (Arjona-Medina et al., 2018) to address the sparse
delayed reward problem in single-agent RL and has shown
excellent performance. However, one weakness of their
approach is that they regard the zero vector as the baseline
for all states, which ignores real state-action transitions. An-
other limitation is that they do not use the trajectory path but
the straight line between current states and the zero vector
as the path when applying integrated gradients, thus making
the decomposition inaccurate. Different from RUDDER,
we utilize the basic trajectory concept in RL to avoid the
above issues and then use integrated gradients to naturally
conduct multiagent credit assignment.

Now we introduce how to use the path integrated gradients
on trajectories to decompose Qtot into approximative indi-
vidual Qi. The key to path integrated gradients is to find the
correct changing path of each agent’s state-action features.
As we analyzed previously, such a path could be depicted
by the state-action transition trajectory in an RL environ-
ment, which captures the state-action feature transformation
process from the start state to the termination state. Besides,
with the trajectory as the path, we can naturally use the ter-
mination state sT as baseline where Q(sT ,∅) = 0. ∅ means
no action is further taken at the termination state. After spec-
ifying both the integration path and baseline, we employ
integrated gradients on the trajectory path to decompose the
critic’s prediction Qtot to each agent’s local observations
and actions to assign the credit. Formally, using joint obser-
vations~o to represent the global state s, we have Equation 4
and the proof is provided in Theorem 1.

Qtot(~ot ,~at) =
n

∑
i=1

Qi(~ot ,~at), (4)

where
Qi(~ot ,~at)≈ ∑

x j∈Xi

PathIGτT
t

x j (~ot ,~at). (5)

Here τT
t is the trajectory path from time t to T , and every

two adjacent joint observations and actions are connected
by straight lines. Xi is the set of agent i’s observation-action
features. By decomposing the global Q-value following
the real trajectory path τ , we get each agent’s individual
contribution to Qtot based on its own observation and ac-
tion. Because the attribution reveals how much each agent’s
own observation and action contributes to Qtot by follow-
ing the real trajectory path, we regard the attribution value
∑x j∈Xi PathIGτ

x j
(~ot ,~at) of agent i’s observation-action fea-

tures as its approximative individual Q-value Qi(~ot ,~at).

Next, we show how to compute ∑x j∈Xi PathIGτT
t

x j (~ot ,~at). As
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paths between every two adjacent joint observations and
actions are straight lines in the path τT

t , we can directly
apply integrated gradients on the line between every two
adjacent joint observations and actions from (~ot+1,~at+1) to
(~ot ,~at) as shown in Equation 6.

∑
x j∈Xi

PathIGτT
t

x j (~ot ,~at) = ∑
x j∈Xi

IGτ t+1
t

x j (~o,~a)

+ ∑
x j∈Xi

IG
τ

t+2
t+1

x j (~o,~a)+ ...+ ∑
x j∈Xi

IG
τT

T−1
x j (~o,~a).

(6)

Using integrated gradients to decompose Qtot makes use of
the available global information. Next, in Theorem 1, we
prove that decomposing global Qtot through the trajectory
satisfies the additive property across agents, which realizes
an intact decomposition. Before proof, we introduce one
important property of integrated gradients in Proposition 1
(Sundararajan et al., 2017) that the attributions add up to the
difference between function F’s outputs at the input~x and
baseline~b, which will be used in proving Theorem 1.
Proposition 1. If F : Rd → R is differentiable almost every-
where, then

∑
x j∈~x

IGτ
x j
(~x) = F(~x)−F(~b), (7)

where j is the feature index and~x gives all the features. τ

represents the straight path between~x and~b. Deep networks
built out of Sigmoids, Relus, and pooling operators satisfy
the differentiable condition. Using Equation 7 and the def-
inition of PathIG and IG in Equation 2 and 3, we could
decompose the Qtot completely to individual contributions
through the trajectory path.
Theorem 1. Let τT

t represent the joint observation and
action trajectory from step t to the termination step T , then

Qtot(~ot ,~at) =
n

∑
i=1

∑
x j∈Xi

PathIGτT
t

x j (~o,~a). (8)

Proof. Let~xt ∈ Rd represent the feature vector (~ot ,~at) con-
cisely. τT

t is composed of (τ t+1
t ,τ t+2

t+1 , ...,τ
T
T−1), where τ

t+1
t

is the straight line path from (~ot ,~at) to (~ot+1,~at+1).

Qtot(~ot ,~at) = Qtot(~xt) = Qtot(~xt)−Qtot(~xT ) = Qtot(~xt)−Qtot(~xt+1)

+Qtot(~xt+1)−Qtot(~xt+2)+ ...+Qtot(~xT−1)−Qtot(~xT )

= ∑
x j∈~x

IGτ t+1
t

x j (~x)+ ∑
x j∈~x

IG
τ

t+2
t+1

x j (~x)+ ...+ ∑
x j∈~x

IG
τT

T−1
x j (~x)

= PathIGτT
t

x1 (~x)+PathIGτT
t

x2 (~x)+ ...+PathIGτT
t

xd (~x)

= ∑
x j∈X1

PathIGτT
t

x j (~x)+ ∑
x j∈X2

PathIGτT
t

x j (~x)+ ...+ ∑
x j∈Xn

PathIGτT
t

x j (~x)

=
n

∑
i=1

∑
x j∈Xi

PathIGτT
t

x j (~x) =
n

∑
i=1

∑
x j∈Xi

PathIGτT
t

x j (~o,~a)

Line 4 to line 6 in the proof shows that, as we apply in-
tegrated gradients at every two adjacent joint observation-
action pair along the trajectory, we aggregate each agent’s
features’ attribution into the contribution of each agent for
the global Q-values. Finally, we conclude that integrated
gradients on the trajectory path attributes the global Q-value
to each agent’s feature changes and the decomposition is
intact. From the angle of the path integrated gradients, we
here find the right feature varying process and then follow
this trajectory path to decompose Qtot to individual Q-values
on account of each agent’s observation and action features.

3.2. Multi-channel Critic

Figure 2. Multi-channel Critic.

In realistic MAS, there may exist heterogeneous agents of
different kinds. The space of agents’ joint states and actions
is very large in such systems, causing the learning of the
global Q-value to be extremely hard. Although agents in
MAS are unique, they can also be categorized into differ-
ent groups according to their feature attributions and per-
sonal profile. This fact enlightens us on using sub-network
channels to extract information with one channel for one
agent group. From bottom to top, agents can be first clas-
sified as several kinds of groups and then summarized as
a unified system. Based on such a MAS abstraction, we
design the multi-channel network structure as illustrated
in Figure 2 to collect the hidden states from each agent’s
decentralized observations and actions instead of simply
using full-connected layers. At the same time, as there may
exist homogeneous agents of the same kind group, we use
parameter sharing for homogeneous agents. This technique
is adopted widely in many complicated environments and
challenging tasks (Yang et al., 2018; Iqbal & Sha, 2018)
and could effectively reduce the network parameters and
accelerate learning.
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Algorithm 1 Q-value Path Decomposition algorithm

Initialize: Critic network θ c, target critic θ̃ c and agents’ Q-
value networks θ π = (θ 1, ...,θ n)

1: for each training episode e do
2: s0 = initial state, t = 0, hi

0 = 0 for each agent i.
3: while st 6= terminal and t < T do
4: t = t +1.
5: for each agent i do
6: Qi(ot,i, ·),hi

t =DRQN(ot,i,hi
t−1;θ i).

7: Sample at,i from πi(Qi(ot,i, ·),ε(e)).
8: end for
9: execute the joint actions (at,1,at,2, ...,at,n).

10: receive the reward rt and next state st+1.
11: end while
12: Add episode to buffer and sample a batch of episodes.
13: for e in batch do
14: for t = 1 to T do
15: Calculate targets yt using θ̃ c.
16: end for
17: end for
18: Update critic parameters θ c with loss L (θ c).
19: Every C episodes reset θ̃ c = θ c.
20: for e in batch do
21: for t = 1 to T do
22: Unroll LSTM using states, actions and rewards.
23: Using the Integrated Gradients along with the

trajectory e to decompose Qtot at time t into
Q̃i

t = ∑x j∈Xi PathIGτ
x j
(~ot ,~at) for each agent i.

24: end for
25: end for
26: Update θ π with loss L (θ i) for each agent i.
27: end for

The critic structure includes three components: the individ-
ual feature extraction process, the group feature extraction
process, and the system’s global Q-value calculation process.
We first use the individual feature extracting modules to ex-
tract embeddings for agents with one channel responding to
one agent group. Next, the group feature merging operation
combines the embeddings from the same group and then
concatenates these group embeddings into the system fea-
tures. The merging operation could be either concatenation
or addition. Finally, the high-level system features are used
to calculate the system’s Q-values. Such a modular critic
structure provides a succinct representation of the multia-
gent Q-value while the number of network parameters can
be significantly reduced as well.

3.3. Algorithm and Training Process

The algorithm details are shown in Algorithm 1. Lines
2-10 show that the decentralized agents interact with the
environment. Next, Lines 13-19 update the critic and target

critic networks. The centralized critic Qtot is trained to
minimize the loss L (θ c) as defined in Equation 9.

L (θ c) = E~o,~a,r,~o′ [(Q
θ c

tot(o1, ...,on,a1, ...,an)− y)2],

y = r+ γ(Qθ̃ c

tot(o
′
1, ...,o

′
n,a
′
1, ...,a

′
n),

(9)

where θ c is the critic parameters and θ̃ c is the target critic
parameters, which are reset every C episode. Agent i’s
network parameters are remarked as θ i. At last, Lines 20-26
update each agent’s individual Q-value network using the
decomposed Q̃i as the target label for each agent i. The loss
of agent i’s Q-value network is defined as Equation 10.

L (θ i) = E~o,~a,r,~o′ [(Q
i,θ i

(oi,ai)− Q̃i)2],

Q̃i = ∑
x j∈Xi

PathIGτ
x j
(~o,~a). (10)

Notably, for each training, we sample a batch of complete
trajectories in the replay buffer for updating. The agent
network in the realistic implement is a Recurrent Deep Q-
Network (RDQN), which is the basic DQN augmented with
the LSTM units. Besides, the exploration policy is ε-greedy
with ε(e) being the exploration rate as Equation 11.

ε(e) = max(εinit − e∗δ ,0), (11)

where e is the episode number. εinit is the start exploration
rate and δ gives the decreasing amount of ε at each episode.

4. Experiment and Analysis
4.1. Experimental Setup

In this section, we describe the StarCraft II decentralized
micromanagement problems, in which each of the learning
agents controls an individual allied army unit. The enemy
units are controlled by a built-in StarCraft II AI, which
makes use of handcrafted heuristics. The difficulty of the
game AI is set to the ”very difficult” level. At the beginning
of each episode, the enemy units are going to attack the
allies. Proper micromanagement of units during battles are
needed to maximize the damage to enemy units while min-
imizing damage received, hence requires a range of skills
such as focusing fire and avoiding overkill. Learning these
diverse cooperative behaviors under partial observation is a
challenging task, which has become a common benchmark
for evaluating state-of-the-art MARL approaches such as
COMA (Foerster et al., 2018), QMIX (Rashid et al., 2018),
and QTRAN (Son et al., 2019). We use StarCraft Multi-
Agent Challenge (SMAC) environment (Samvelyan et al.,
2019) as our testbed. More setup details are in the Appendix.

4.1.1. NETWORK AND TRAINING CONFIGURATIONS

The architecture of agent Q-networks is a DRQN with an
LSTM layer with a 64-dimensional hidden state, with a fully-
connected layer after, and finally a fully-connected layer
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with |A| outputs. The input for agent networks is the sequen-
tial data which consists of the agent’s local observations in
latest 12 time steps for all scenarios. The architecture of the
QPD critic is a feedforward neural network with the first
two dense layers having 64 units for each channel, and then
being concatenated or added in each group, and next being
concatenated to the output layer of one unit. We set γ at 0.99.
To speed up learning, we share the parameters across all
individual Q-networks and a one-hot encoding of the agent
type is concatenated onto each agent’s observations to allow
the learning of diverse behaviors. All agent networks are
trained using RMSprop with a learning rate of 5×10−4 and
the critic is trained with Adam with the same learning rate.
Replay buffer contains the most recent 1000 trajectories and
the batch size is 32. Target networks for the global critic are
updated after every 200 training episodes.

4.1.2. DECOMPOSITION PATH SETTINGS

For the Q-value decomposition process, integrated gradients
can be efficiently approximated via a summation at points
occurring at sufficiently small intervals along the trajectory
path over each pair of consecutive state-action transitions
(~ot ,~at) and (~ot+1,~at+1). Then the gradient integral path is
obtained by repeatedly interpolating between every two ad-
jacent states from the current state to the terminated state.
With m being the number of steps in the Riemman approxi-
mation and~xt being (~ot ,~at) for simplification, we calculate
the integrated gradients for every two adjacent states as:

ĨG
τ t+1

t
x j

(~ot ,~at) = ĨG
τ t+1

t
x j

(~xt) ::=

(~xt, j−~xt+1, j)×
m

∑
k=1

∂F(~xt+1 +
k
m × (~xt −~xt+1))

∂ (~xt+1 +
k
m × (~xt −~xt+1))

× 1
m
.

(12)

Although larger m could obtain more accurate decompo-
sition, due to the trade-off of high qualified performance
and limited computation time and resources, we set m at
5 after the experimental studies. It achieves impressive
performance and could be referred to in Section 4.3.2.

4.2. Results

To validate QPD, we evaluate it on both homogeneous and
heterogeneous scenarios. To encourage exploration, we
use ε-greedy which anneals from 1 to 0 at the first 2000
episodes. We test our method at every 100 training episodes
on 100 testing episodes with exploratory behaviors disabled.
The main evaluation metric is the win percentage of evalua-
tion episodes over the course of training (Samvelyan et al.,
2019). The results include the median performance as well
as the 25-75% percentiles recommended in (Samvelyan
et al., 2019) to avoid the effect of any outliers. Another
metric, the mean win rate over all runs, is also reported. All
experiments are conducted across 12 independent runs and
QPD’s learning curves on all maps are shown in Figure 3.

(a) Map 3m (b) Map 8m

(c) Map 2s3z (d) Map 3s5z

(e) Map 1c3s5z (f) Map 3s5z vs 3s6z

Figure 3. QPD’s median win percentage of different map scenarios.
25%-75% percentile is shaded.

All maps are of the different agent number or different types.
Both sides in Map 3m have 3 Marines while in Map 8m
have 8 Marines. In Map 2s3z, both sides have 2 Stalkers
and 3 Zealots. For Map 3s5z, both sides have 3 Stalkers and
5 Zealots. Map 1c3s5z, both sides have an extra Colossus
compared with Map 3s5z. In map 3s5z vs 3s6z, ally has
3 Stalkers and 5 Zealots while enemy has 3 Stalkers and 6
Zealots. To compare QPD with existing MARL methods,
we use results from SMAC (Samvelyan et al., 2019) because
methods in their report show higher performance than the
original works (Rashid et al., 2018; Foerster et al., 2018)
and our implementation. We also compare with QTRAN.
Table 1 shows the evaluation metric results, where m̃ is the
median win percentage and m is the mean win percentage.

Table 1. Median and mean performance of the test win percentage.
Map IQL COMA QMIX QTRAN QPD

m̃ m m̃ m m̃ m m̃ m m̃ m
3m 100 97 91 92 100 99 100 100 95 92
8m 91 90 95 94 100 96 100 97 94 93

2s3z 39 42 66 64 100 97 77 80 95 94
3s5z 0 3 0 0 16 25 0 4 85 81

1c3s5z 7 8 30 30 89 89 31 33 92 92
3s5z
vs

3s6z
0 0 0 0 0 0 0 0 8 10

We could see that QPD’s performance is competitive with
QMIX in four simple scenarios, 3m, 8m, 2s3z, and 1c3s5z.
More importantly, in the more difficult 3s5z where all ex-
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isting methods perform poorly, QPD achieves superior per-
formance much better than others. Furthermore, in a super
hard scenario 3s5z vs 3s6z, QPD also beats other methods,
where all other methods fail completely. To understand the
rationale behind the results, we analyze the learned behav-
iors of agents. In 3m, agents learn to focus fire for beating
enemies. Furthermore, in 8m, agents learn to stand into
a line to shoot the enemy while avoiding overkill. In the
heterogeneous 2s3z and 1c3s5z, both QMIX and QPD could
solve it. Our method successfully learned to intercept the
enemy Zealots with allied Zealots to protect the allied Stalk-
ers from severe damage. However, in 3s5z, the learned
policy of QPD is quite different from 2s3s: allied Zealots
go around the enemy Zealots to attack the enemy Stalkers
first and then attack the enemy Zealots with the allied Stalk-
ers on both sides. Other methods fail to learn policies of
a high win rate in this scenario. In 3s5z vs 3s6z, Zealots
need to hold enemy’s Zealots to protect ally’s Stalkers and
attack enemy’s Stalkers at the same time. Such a behav-
ior is learned only by QPD which starts to win. Overall,
QPD learns excellent decentralized policies comparable to
the state-of-the-art MARL methods in both homogeneous
and heterogeneous scenarios and outperforms QMIX and
QTRAN in more complicated settings.

4.3. Ablation

4.3.1. MULTI-CHANNEL CRITIC EVALUATION

Using a modular network structure in the centralized critic
is common in MARL algorithms and could effectively im-
prove the performance (Iqbal & Sha, 2018; Liu et al., 2019).
We also test the naive critic with several fully-connected
dense layers, but we found this structure is with a high vari-
ance and its performance is lower than the modular ones.
The reason is that the number of features fed into the critic
is up to hundreds and increases quadratically with the num-
ber of agents, which causes a huge challenge for the naive
network to learn effective hidden states from these features.
Thus, we omit the naive critic’s results. One main difference
with previous modular critic methods is that we explicitly
consider the heterogeneous multiagent setting. We use dif-
ferent channels for different kinds of agents. Furthermore,
we choose the concatenation operation as the way of the in-
tegration of the hidden features from each channel. We show
this design could slightly improve the performance of QPD.
The reason for this phenomenon is clear. The multi-channel
and concatenation operation own the greater representation
ability to keep track of the feature influence of each agent
of each kind in the multiagent Q-value prediction process.

4.3.2. DECOMPOSITION STEP

As the integrated gradients is the core of QPD, it is critical
and interesting to study the decomposition step’s impact on

(a) Map 3m (b) Map 2s3z

Figure 4. Median win percentage of 12 runs for critic ablation.

(a) Map 3m (b) Map 2s3z

Figure 5. Median win percentage of 12 runs for decomposing steps.

the performance. Between each adjacent joint state-action
pairs, we set the decomposition step of 1, 2, 5, 10, and 25
for studying. Results are presented in Figure 5. As we can
see, the decomposition step affects the performance a lot.
When the decomposition step number is low, the decompo-
sition is not accurate enough to assign credits for agents,
thus making the training unstable and win rate low. But
when the decomposition step increases, the more accurate
decomposed individual Q-values could update the policies
more accurately. Especially, QPD is capable of the setting
of moderate decomposition step number, where step of 5
could reach a comparable performance level of step 10 and
25. It means that QPD does not require lots of computation
resources for decomposing to reach high performance.

5. Conclusion and Future Work
In this paper, we propose QPD to solve the multiagent credit
assignment problem in Dec-POMDP settings. Different
from previous methods, we propose the trajectory-based
integrated gradients attribution method to achieve effective
Q-value decomposition at the agent level. Experiments on
the challenging StarCraft II micromanagement tasks show
that QPD learns well-coordinated policies on various sce-
narios and reaches the state-of-the-art performance.

For the future work, better configurations of the path inte-
grated gradients should be investigated to help attribution
such as alternative choices of interpolation methods. Also,
policy gradient methods combined with the path integrated
gradients are expected to leverage better coordination.
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