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Abstract
Randomized smoothing is the current state-of-the-
art defense with provable robustness against `2
adversarial attacks. Many works have devised
new randomized smoothing schemes for other
metrics, such as `1 or `∞; however, substantial
effort was needed to derive such new guarantees.
This begs the question: can we find a general
theory for randomized smoothing?

We propose a novel framework for devising and
analyzing randomized smoothing schemes, and
validate its effectiveness in practice. Our theoreti-
cal contributions are: (1) we show that for an ap-
propriate notion of “optimal”, the optimal smooth-
ing distributions for any “nice” norms have level
sets given by the norm’s Wulff Crystal; (2) we pro-
pose two novel and complementary methods for
deriving provably robust radii for any smoothing
distribution; and, (3) we show fundamental lim-
its to current randomized smoothing techniques
via the theory of Banach space cotypes. By com-
bining (1) and (2), we significantly improve the
state-of-the-art certified accuracy in `1 on stan-
dard datasets. Meanwhile, we show using (3)
that with only label statistics under random in-
put perturbations, randomized smoothing cannot
achieve nontrivial certified accuracy against per-
turbations of `p-norm Ω(min(1, d

1
p− 1

2 )), when
the input dimension d is large. We provide code
in github.com/tonyduan/rs4a.

1. Introduction
Deep learning models are vulnerable to adversarial exam-
ples – small imperceptible perturbations to their inputs that
lead to misclassification (Goodfellow et al., 2015; Szegedy
et al., 2014). To solve this problem, recent works proposed
heuristic defenses that are robust to specific classes of per-

*Equal contribution 1Microsoft Research AI 2Work done
as part of the Microsoft AI Residency Program. Corre-
spondence to: Greg Yang <gregyang@microsoft.com>,
Tony Duan <tony.duan@microsoft.com>, Jerry Li
<jerrl@microsoft.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

turbations, but many would later be broken by stronger at-
tacking algorithms (Carlini & Wagner, 2017; Athalye et al.,
2018; Uesato et al., 2018). This led the community to both
strengthen empirical defenses (Kurakin et al., 2016; Madry
et al., 2017) as well as build certified defenses that provide
robustness guarantees, i.e., models whose predictions are
constant within a neighborhood of their inputs (Wong &
Kolter, 2018; Raghunathan et al., 2018a). In particular, ran-
domized smoothing is a recent method that has achieved
state-of-the-art provable robustness (Lecuyer et al., 2018;
Li et al., 2019; Cohen et al., 2019). In short, given an input,
it outputs the class most likely to be returned by a base
classifier, typically a neural network, under random noise
perturbation of the input. This mechanism confers stabil-
ity of the output against `p perturbations, even if the base
classifier itself is highly non-Lipschitz. Canonically, this
noise has been Gaussian, and the adversarial perturbation
it protects against has been `2 (Cohen et al., 2019; Salman
et al., 2019a; Zhai et al., 2020), but some have explored other
kinds of noises and adversaries as well (Lecuyer et al., 2018;
Li et al., 2019; Dvijotham et al., 2019). In this paper, we
seek to comprehensively understand the interaction between
the choice of smoothing distribution and the perturbation
norm.1

1. We propose two new methods to compute robust cer-
tificates for additive randomized smoothing against
different norms.

2. We show that, for `1, `2, `∞ adversaries, the optimal
smoothing distributions have level sets that are their re-
spective Wulff Crystals — a kind of equilibrated crystal
structure studied in physics since 1901 (Wulff).

3. Using the above advances, we obtain state-of-the-art `1
certified accuracy on CIFAR-10 and ImageNet. With
stability training (Li et al., 2019), semi-supervised
learning (Carmon et al., 2019), and pre-training in the
fashion of Hendrycks et al. (2019), we further improve
CIFAR-10 certified accuracies, with > 30% advantage
over prior SOTA for `1 radius ≥ 1.5. See Table 1.

4. Finally, we leverage the classical theory of Banach
space cotypes (Wojtaszczyk, 1996) to show that current
techniques for randomized smoothing cannot certify
nontrivial accuracy at more than Ω(min(1, d

1
p− 1

2 )) `p-
radius, if all one uses are the probabilities of labels
when classifying randomly perturbed input.

1V2 update: we added results using stability training, semi-
supervised learning, and ImageNet pre-training. See Table 1.

github.com/tonyduan/rs4a
https://www.microsoft.com/en-us/research/academic-program/microsoft-ai-residency-program/
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ImageNet `1 Radius 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Laplace, Teng et al. (2019) (%) 48 40 31 26 22 19 17 14
Uniform, Ours (%) 55 49 46 42 37 33 28 25
+ Stability Training 60 55 51 48 45 43 41 39

CIFAR-10 `1 Radius 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Laplace, Teng et al. (2019) (%) 61 39 24 16 11 7 4 3
Uniform, Ours (%) 70 59 51 43 33 27 22 18
+ Stability Training 70 60 53 47 43 39 35 28
+ Stability Training, Semi-supervision 74 63 54 48 43 38 34 31
+ Stability Training, Pre-training 74 62 55 48 43 40 37 33

Table 1. Certified top-1 accuracies of our `1-robust classifiers, vs previous state-of-the-art, at various radii, for ImageNet and CIFAR-10.3

2. Related Works
Defences against adversarial examples are mainly divided
into empirical defenses and certified defenses.

Empirical defenses are heuristics designed to make learned
models empirically robust. An example of these are adver-
sarial training based defenses (Kurakin et al., 2016; Madry
et al., 2017) which optimize the parameters of a model by
minimizing the worst-case loss over a neighborhood around
the input to these models (Carlini & Wagner, 2017; Laidlaw
& Feizi, 2019; Wong et al., 2019; Hu et al., 2020). Such
defenses may seem powerful, but have no guarantees that
they are not “breakable”. In fact, the majority of the empiri-
cal defenses proposed in the literature were later “broken”
by stronger attacks (Carlini & Wagner, 2017; Athalye et al.,
2018; Uesato et al., 2018; Athalye & Carlini, 2018).

Certified defenses guarantee that for any input x, the clas-
sifier’s output is constant within a small neighborhood of x.
Such defenses are typically based on certification methods
that are either exact or conservative. Exact methods include
those based on Satisfiability Modulo Theories solvers (Katz
et al., 2017; Ehlers, 2017) or mixed integer linear program-
ming (Tjeng et al., 2019; Lomuscio & Maganti, 2017; Fis-
chetti & Jo, 2017), which, although guaranteed to find adver-
sarial examples if they exist, are unfortunately computation-
ally inefficient. On the other hand, conservative methods are
more computationally efficient, but might mistakenly flag
a “safe” data point as vulnerable to adversarial examples
(Wong & Kolter, 2018; Wang et al., 2018a;b; Raghunathan
et al., 2018a;b; Wong et al., 2018; Dvijotham et al., 2018b;a;
Croce et al., 2018; Salman et al., 2019b; Gehr et al., 2018;
Mirman et al., 2018; Singh et al., 2018; Gowal et al., 2018;
Weng et al., 2018; Zhang et al., 2018). However, none of
these defenses scale to practical networks. Recently, a new
method called randomized smoothing has been proposed
as a probabilistically certified defense, whose architecture-
independence makes it scalable.

3Unless stated otherwise, these models were trained with noise
augmentation. In our replication of Teng et al. (2019), our noise
augmentation results matched their adversarial training results.

Randomized smoothing Randomized smoothing was
first proposed as a heuristic defense without any guaran-
tees (Liu et al., 2018; Cao & Gong, 2017). Later on, Lecuyer
et al. (2018) proved a robustness guarantee for smoothed
classifiers from a differential privacy perspective. Subse-
quently, Li et al. (2019) gave a stronger robustness guarantee
utilizing tools from information theory. Recently, Cohen
et al. (2019) provided a tight `2 robustness guarantee for
randomized smoothing, applied by Salman et al. (2020)
to provably defend pre-trained models for the first time.
Furthermore, a series of papers came out recently that devel-
oped robustness guarantees against other adversaries such
as `1-bounded (Teng et al., 2019), `∞-bounded (Zhang*
et al., 2020), `0-bounded (Levine & Feizi, 2019a; Lee et al.,
2019), and Wasserstein attacks (Levine & Feizi, 2019b). In
Section 4.3, we give a more in-depth comparison on how
our techniques compare to their results.

Wulff Crystal We are the first to relate to adversarial ro-
bustness the theory of Wulff Crystals. Just as the round soap
bubble minimizes surface tension for a given volume, the
Wulff Crystal minimizes certain similar surface energy that
arises when the crystal interfaces with another material. The
Russian physicist George Wulff first proposed this shape
via physical arguments in 1901 (Wulff, 1901), but its energy
minimization property was not proven in full generality un-
til relatively recently, building on a century worth of work
(Gibbs, 1875; Wulff, 1901; Hilton, 1903; Liebmann, 1914;
von Laue; Dinghas, 1944; Burton et al., 1951; Herring; Con-
stable, 1968; Taylor, 1975; 1978; Fonseca & Müller, 1991;
Brothers & Morgan, 1994; Cerf, 2006).

No-go theorems for randomized smoothing Prior to the
initial submission of this manuscript, the only other no-
go theorem for randomized smoothing in the context of
adversarial robustness is Zheng et al. (2020). However, they
are only concerned with a non-standard notion of certified
robustness that does not imply anything for the original
problem. Moreover, they show that, under this different
notion of robustness, if they are robust for `∞, then the `2
norm of the noise must be large on average. While this
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provides indirect evidence for the hardness of certifying
`∞, it does not actually address the question. Our result,
on the other hand, directly rules out a large suite of current
techniques for deriving robust certificates for all `p norms
for p > 2, for the standard notion of certified robustness.

After the initial submission of this manuscript, we became
aware of two concurrent works (Blum et al., 2020; Kumar
et al., 2020) that claim impossibility results for random-
ized smoothing. Blum et al. (2020) demonstrate that, under
some mild conditions, any smoothing distribution for `p
with p > 2 must have large component-wise magnitude.
This gives indirect evidence for the hardness of the problem,
but does not directly show a limit for the utility of random-
ized smoothness for the robust classification problem, which
we do in this work. Kumar et al. (2020) demonstrate that
certain classes of smoothing distributions cannot certify `∞
without losing dimension-dependent factors. Our result is
more general, as it rules out any class of smoothing distri-
butions, and in fact, any smoothing scheme that allows the
distribution to vary arbitrarily with the input point.

3. Randomized Smoothing
Consider a classifier f from Rd to classes Y and a distribu-
tion q on Rd. Randomized smoothing with q is a method
that constructs a new, smoothed classifier g from the base
classifier f . The smoothed classifier g assigns to a query
point x the class which is most likely to be returned by the
base classifier f when x is perturbed by a random noise
sampled from q, i.e.,

g(x)
def
= argmax

c∈Y
q(Uc − x) (1)

where Uc is the decision region {x′ ∈ Rd : f(x′) = c},
Uc−x denotes the translation of Uc by −x, and q(U) is the
measure of U under q, i.e. q(U) = Pδ∼q(δ ∈ U).

Robustness guarantee for smoothed classifiers For p ∈
[0, 1], v ∈ Rd, define the growth function

Gq(p, v)
def
= sup

U⊆Rd:q(U)=p

q(U − v), (2)

One can think of U has the decision region of some base
classifier. Thus Gq(p, v) gives the maximal growth of mea-
sure of a set (i.e. decision region) when q is shifted by the
vector v, if we only know the initial measure p of the set.

Consider an adversary that can perturb an input additively by
any vector v inside an allowed set B. In the case when B is
the `2 ball and q is the Gaussian measure, Cohen et al. (2019)
gave a simple expression for Gq involving the Gaussian
CDF, derived via the Neyman-Pearson lemma, which is later
rederived by Salman et al. (2019a) as a nonlinear Lipschitz
property. Likewise, the expression for Laplace distributions
was derived by Teng et al. (2019). (See Theorem F.10 and
Theorem F.11 for their expressions.)

Suppose when the base classifier f classifies x+ δ, δ ∼ q,
the class c ∈ Y is returned with probability ρ = Pδ∼q(f(x+
δ) = c) > 1/2. Then the smoothed classifier g will not
change its prediction under the adversary’s perturbations if 4

sup
v∈B
Gq(1− ρ, v) < 1/2. (3)

4. Methods for Deriving Robust Radii
Let q be a distribution with a density function, and we shall
write q(x), x ∈ Rd, for the value of the density function
on x. Then, given a shift vector v ∈ Rd and a ratio κ > 0,
define the Neyman-Pearson set

NPκ def
= {x ∈ Rd : κq(x− v) ≥ q(x)}. (4)

Then the Neyman-Pearson lemma tells us that (Neyman &
Pearson, 1933; Cohen et al., 2019)

Gq(q(NPκ), v) = q(NPκ − v). (NP)

While this gives way to a simple expression for the growth
function when q is Gaussian (Cohen et al., 2019), it is diffi-
cult for more general distributions as the geometry of NPκ
becomes hard to grasp. To overcome this difficulty, we
propose the level set method that decomposes this geome-
try so as to compute the growth function exactly, and the
differential method that upper bounds the growth function
derivative, loosely speaking.

4.1. The Level Set Method

For each t > 0, let Ut be the superlevel set

Ut
def
= {x ∈ Rd : q(x) ≥ t}.

Then its boundary ∂Ut is the level set with q(x) = t under
regularity assumptions. The integral of q’s density is of
course 1, but this integral can be expressed as the integral
of the volumes of its superlevel sets:

1 =

∫
q(x) dx =

∫ ∞
0

Vol(Ut) dt. (•)

If q has a differentiable density, then we may rewrite this as
an integral of level sets (Theorem E.3):

1 =

∫ ∞
0

∫
∂Ut

t

‖∇q(x)‖2
dx dt. (◦)

𝑑𝑡

𝑈𝑡
𝑡

𝑑𝑡
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4Many earlier works state robustness guarantees in terms of
estimates of pA = ρ of the top class and pB of the runner up class;
however, their implementations are all in the form provided here,
as pB is usually taken to be 1− pA.
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The graphics above illustrate the two integral expressions
(best viewed on screen). In this level set perspective, the
Neyman-Pearson set NPκ (Eq. (4)) can be written as

NPκ =
⋃
t>0

{x : q(x) = t and q(x− v) ≥ t/κ}

=
⋃
t>0

{∂Ut ∩ (Ut/κ + v)}.

Then naturally, its measure is calculated by

q(NPκ) =

∫ ∞
0

∫
∂Ut∩(Ut/κ+v)

t

‖∇q(x)‖2
dx dt. (∨)

Similarly, the Neyman-Pearson set can also be written from
the perspective of q(· − v),

NPκ =
⋃
t>0

{x : q(x− v) = t and q(x) ≤ tκ}

=
⋃
t>0

{(∂Ut + v) \ Ůtκ},

where Ů is the interior of the closed set U . So its measure
under q(· − v) is

q(NPκ − v) =

∫ ∞
0

∫
∂Ut\(Ůtκ−v)

t

‖∇q(x)‖2
dx dt. (∧)

𝑈𝑡𝜅
∘ − 𝑣

𝜕𝑈𝑡 ∩ 𝑈𝑡/𝜅 + 𝑣

𝑈𝑡/𝜅 + 𝑣

𝜕𝑈𝑡 ∖ 𝑈𝑡𝜅
∘ − 𝑣

𝜕𝑈𝑡

𝜕𝑈𝑡

Eq ∨ Eq ∧

The graphics above illustrate the integration domains of x
in Eqs. (∨) and (∧). In general, the geometry of ∂Ut ∩
(Ut/κ + v) or ∂Ut \ (Ůtκ − v) is still difficult to handle, but
in highly symmetric cases when Ut are concentric balls or
cubes, Eqs. (∨) and (∧) can be calculated efficiently.

Computing Robust Radius Eqs. (∨) and (∧) allow us to
compute the growth function by Eq. (NP). In general, this
yields an upper bound of the robust radius

sup

{
r : sup
‖v‖p≤r

Gq(1− ρ, v) < 1/2

}
≤ sup {r : Gq(1− ρ, ru) < 1/2}

for any particular u with ‖u‖p = 1. With sufficient symme-
try, e.g. with `2 adversary and distributions with spherical
level sets, this upper bound becomes tight for well-chosen
u, and we can build a lookup table of certified radii. See
Algorithms 1 and 2.

Algorithm 1 Pre-Computing Robust Radius Table via Level
Set Method for Spherical Distributions Againt `2 Adversary

Input: Radii r1 < . . . < rN
Initialize u = (1, 0, . . . , 0) ∈ Rd.
for i = 1 to N do

Find κ s.t. q(NPκ − riu) = 1/2 (via Eq. (∧) or Theo-
rem I.20) by binary search
Compute pi ← q(NPκ) via Eq. (∨) or Theorem I.20

end for
Output: p1 > · · · > pN

Algorithm 2 Certification with Table

Input: Probability of correct class ρ
Output: Look up ri where pi ≥ 1− ρ > pi+1

4.2. The Differential Method

To derive certification (robust radius lower bounds) for
more general distributions, we propose a differential method,
which can be thought of as a vast generalization of the proof
in Salman et al. (2019a) of the Gaussian robust radius. The
idea is to compute the largest possible infinitesimal increase
in q-measure due to an infinitesimal adversarial perturba-
tion. More precisely, given a norm ‖ · ‖, and a smoothing
measure q, we define

Φ(p)
def
= sup
‖v‖=1

sup
U⊆Rd:q(U)=p

lim
r↘0

q(U − rv)− p
r

. (5)

Intuitively, one can then think of 1/Φ(p) as the smallest
possible perturbation in ‖ · ‖ needed to effect a unit of
infinitesimal increase in p. Therefore,

Theorem 4.1 (Theorem F.6). The robust radius in ‖ · ‖ is
at least

R
def
=

∫ 1/2

1−ρ

1

Φ(p)
dp,

where ρ is the probability that the base classifier predicts
the right label under random perturbation by q.

By exchanging differentiation and integration and applying
a similar greedy reasoning as in the Neyman-Pearson lemma,
Φ(p) can be derived for many distributions q and integrated
symbolically to obtain expressions for R. We demonstrate
the technique with a simple example below, but much of it
can be automated; see Theorem F.6.
Example 4.2 (see Theorem I.6). If the smoothing distri-
bution is q(x) ∝ exp(−‖x‖∞/λ), then the robust radius
against an `1 adversary is at least

R = 2dλ(ρ− 1/2),

when ρ is the probability of the correct class as in Theo-
rem 4.1.
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Figure 1. Smoothing distributions for which we derive robustness guarantees in this paper. Each box represents a family of distribu-
tions that obtain guarantees through similar proofs. Text beside each box indicates the name of the family and the `p adversaries against
which we have guarantees. Log Convex* means log convex on the positive and negative half lines, but not necessarily on the whole line.
The color indicates the basic technique used, among the two proposed techniques in this paper. We explicitly list example densities in
each box. For the robust radii formulas, see Table A.1.

Proof Sketch. By linearity in λ, we WLOG assume λ = 1.
By Theorem 4.1 and the monotonicity of Φ, it suffices to
show that Φ(p) = 1/2d for p ≥ 1/2d. For any fixed U with
q(U) = p,

lim
r↘0

q(U − rv)− p
r

=
d

dr

∫
U

q(x− rv) dx

∣∣∣∣
r=0

=

∫
U

〈v,∇q(x)〉dx.

Note ∇q(x) = exq(x), where ex = sgn(xi∗)ei∗ , ei is the
ith unit vector, and i∗ = argmaxi |xi|. Additionally, the
above integral is linear in v, so the supremum over ‖v‖1 = 1
is achieved on one of the vertices of the `1 ball. So we
may WLOG consider only v = ±ei; furthermore, due to
symmetry of∇q(x), we can just assume v = e1:

Φ(p) = sup
U

lim
r↘0

q(U − re1)− p
r

= sup
U

∫
U

〈e1, ex〉q(x) dx,

where U ranges over all q(U) = p. Note 〈e1, ex〉 = 0
if i∗ 6= 1, and sgn(xi∗) otherwise. Thus, to maximize
limr↘0

q(U−re1)−p
r subject to the constraint that q(U) = p,

we should put as much q-mass on those xwith large 〈e1, ex〉.
For p ≥ 1/2d, we thus should occupy the entire region
{x : 〈e1, ex〉 = 1}, which has q-mass 1/2d, and then assign
the rest of the q-mass (amounting to p− 1/2d) to the region
{x : 〈e1, ex〉 = 0}, which has q-mass 1− 1/d. This shows
that

Φ(p) = 1/2d, ∀p ∈ [1/2d, 1− 1/2d]

as desired.

4.3. Comparison of the Two Methods and Prior Works

We summarize the distributions our methods cover in Fig. 1
and the bounds we derive in Table A.1. We highlight a few
broadly applicable robustness guarantees:

Example 4.3 (Theorem I.1). Let φ : R→ R be convex and
even, and let CDF−1

φ be the inverse CDF of the 1D random
variable with density∝ exp(−φ(x)). If q(x) ∝∏i e

−φ(xi),
and ρ is the probability of the correct class, then the robust
radius in `1 is

R = CDF−1
φ (ρ)

and this radius is tight. This in particular recovers the Gaus-
sian bound of Cohen et al. (2019), Laplace bound of Teng
et al. (2019), and Uniform bound of Lee et al. (2019) in the
setting of `1 adversary.
Example 4.4 (Appendices I.2.1 and I.3.1). Facing an `1
adversary, cubical distributions, like that in Example 4.2,
typically enjoy, via the differential method, `1 robust radii
of the form

R = c(ρ− 1/2)

for some constant c depending on the distribution.

In general, the level set method always gives certificate as
tight as Neyman-Pearson, while the differential method is
tight only for infinitesimal perturbations, but can be shown
to be tight for certain families, like in Example 4.3 above.
On the other hand, the latter will often give efficiently evalu-
able symbolic expressions and apply to more general distri-
butions, while the former in general will only yield a table
of robust radii, and only for distributions whose level sets
are sufficiently symmetric (such as a sphere or cube).

For distributions that are covered by both methods, we com-
pare the bounds obtained and note that the differential and
level set methods yield almost identical robustness certifi-
cates in high dimensions (e.g. number of pixels in CIFAR-
10 or ImageNet images). See Appendix B.1.

Many earlier works used differential privacy or f -divergence
methods to compute robust radii of smoothed models
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(Lecuyer et al., 2018; Li et al., 2019; Dvijotham et al.,
2019). In particular, Dvijotham et al. (2019) proposed a
general f -divergence framework that subsumed all such
works. Our robust radii are computed only from ρ; Dvi-
jotham et al. called this the “information-limited” setting,
and we shall compare with their robustness guarantees of
this type. While their algorithm in a certain limit becomes as
good as Neyman-Pearson, in practice outside the Gaussian
distribution, their robust radii are too loose. This is evi-
dent by comparing our baseline Laplace results in Table 1
with theirs, which are trained the same way. Additionally,
our differential method often yields symbolic expressions
for robust radii, making the certification algorithm easy to
implement, verify, and run. Moreover, we derive robust-
ness guarantees for many more (distributions, adversary)
pairs (Fig. 1 and Table A.1). See Appendix B.2 for a more
detailed comparison.

5. Wulff Crystals
A priori, it is a daunting task to understand the relationship
between the adversary B and the smoothing distribution q.
In this section, we shall begin our investigation by looking
at uniform distributions, and then end with an optimality
theorem for all “reasonable” distributions.

Let q be the uniform distribution supported on a measurable
set S ⊆ Rd. WLOG, assume S has (Lebesgue) volume 1,
Vol(S) = 1. Then for any v ∈ Rd and any p ∈ [0, 1],

Gq(p, v) = min (1, p+ Vol((S + v) \ S)) .

𝑆
𝑆 + 𝑣

𝑈

𝑑𝑡
𝑈𝑡

This can be seen easily by tak-
ing U in Eq. (2) to be a subset
of (S + v) ∩ S with volume p
(or any set of volume p contain-
ing (S + v)∩ S if p ≥ Vol((S +
v) ∩ S)) unioned with the com-
plement of S. For example, in
the figure here, U would be the
gray region, if U ∩ S has volume p.

If S is convex, and we take v to be an infinitesimal transla-
tion, then the RHS above is infinitesimally larger than p, as
follows:

lim
r→0

Gq(p, rv)− p
r

= lim
r→0

Vol((S + rv) \ S)

r
= ‖v‖2Vol(ΠvS) (6)

𝑆
𝑆 + 𝑣

𝑣

Π
𝑣 𝑆 𝑣

same vol
≈ 𝑣 2 Vol(Π𝑣𝑆)

where ΠvS is the projection of
S along the direction v/‖v‖2,
and Vol(ΠvS) is its (d − 1)-
dimensional Lebesgue mea-
sure. A similar formula holds
when S is not convex as well
(Eq. (13)). In the context of
randomized smoothing, this
means that the classifier g

smoothed by q is robust at x under a perturbation
1
2−p

‖v‖2Vol(ΠvS)v when 1/2 − p is small, and p is the prob-
ability the base classifier f misclassifies x+ δ, δ ∼ q. Thus,
for r small, we have

sup
v∈rB

Gq(p, v) ≈ p+ r sup
v∈B
‖v‖2Vol(ΠvS) = p+ rΦ(p),

with Φ as in Eq. (5). The smaller supv∈B ‖v‖2Vol(ΠvS) is,
the more robust the smoothed classifier g is, for a fixed p. A
natural question, then, is: among convex sets of volume 1,

which set S minimizes Φ = sup
v∈B
‖v‖2Vol(ΠvS)?

If B is the `p ball, the reader might guess S should either
be the `p ball or the `r ball with 1

r + 1
p = 1. It turns

out the correct answer, at least in the case when B is a
highly symmetric polytope (e.g. `1, `2, `∞ balls), is a kind
of energy-minimizing crystals studied in physics since 1901
(Wulff).
Definition 5.1. The Wulff Crystal (w.r.t. B) is defined as
the unit ball of the norm dual to ‖ · ‖∗, where ‖x‖∗ =
Ey∼Vert(B) |〈x, y〉| and y is sampled uniformly from the
vertices of B 5.

In fact, Wulff Crystals solve the more general problem with-
out convexity constraint.
Theorem 5.2 (Theorem G.7, informal). The Wulff Crystal
w.r.t. B minimizes

Φ = sup
v∈B

lim
r→0

r−1Vol((S + rv) \ S)

among all measurable (not necessarily convex) sets S of
the same volume, when B is sufficiently symmetric (e.g.
`1, `2, `∞ balls).

When Vert(B) is a finite set, the Wulff Crystal has an
elegant description as the zonotope of Vert(B), i.e. the
Minkowski sum of the vertices of B as vectors (Proposi-
tion G.4), from which we can derive the following exam-
ples.
Example 5.3. The Wulff Crystal w.r.t. `2 ball is the `2 ball
itself. The Wulff Crystal w.r.t. `1 ball is a cube (`∞ ball).
The Wulff Crystal w.r.t. `∞ in 2 dimensions is a rhombus;
in 3 dimensions, it is a rhombic dodecahedron; in higher
dimension d, there is no simpler description of it other than
the zonotope of the vectors {±1}d.

ℬ

Wulff
Crystal

ℓ1 ℓ2 ℓ∞

cube sphere zonotope

5When B is the `2 ball, Vert(B) is the entire boundary.
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In fact, distributions with Wulff Crystal level sets more
generally maximizes the robust radii for “hard” inputs.

Theorem 5.4 (Theorem G.20, informal). Let B be suffi-
ciently symmetric. Let q0 be any distribution with a “rea-
sonable”6 and even density function. Among all “reason-
able” and even density functions q whose superlevel sets
{x : q(x) ≥ t} have the same volumes as those of q0, the
quantity

Φ(1/2) = sup
v∈B

sup
q(U)=1/2

lim
r↘0

q(U − rv)− 1/2

r

is minimized by the unique distribution q∗ whose superlevel
sets are proportional to the Wulff Crystal w.r.t. B.

This theorem implies that distributions with Wulff Crystal
level sets give the best robust radii for those hard inputs x
that a smooth classifier classifies correctly but only barely, in
that the probability of the correct class ρ = 1/2+ε for some
small ε. The constraint on the volumes of superlevel sets
indirectly controls the variance of the distribution. While
this theorem says nothing about the robust radii for ρ away
from 1/2, we find the Wulff Crystal distributions empirically
to be highly effective, as we describe next in Section 6.

6. Experiments
We empirically study the performance of different smooth-
ing distributions on image classification datasets, using the
bounds derived via the level set or the differential method,
and verify predictions made by the Wulff Crystal theory. We
follow the experimental procedure in Cohen et al. (2019)
and further works on randomized smoothing (Salman et al.,
2019a; Li et al., 2019; Zhai et al., 2020) using ImageNet
(Deng et al., 2009) and CIFAR-10 (Krizhevsky, 2009).

The certified accuracy at a radius ε is defined as the fraction
of the test set for which the smoothed classifier g correctly
classifies and certifies robust at an `p radius of ε. All re-
sults were certified with N = 100, 000 samples and fail-
ure probability α = 0.001. For each distribution q, we
train models across a range of scale parameter λ (see Ta-
ble A.1), corresponding to the same range of noise variances
σ2 def

= Eδ∼q[ 1
d‖δ‖22] across different distributions. Then we

calculate for each model the certified accuracies across the
range of considered ε. Finally, in our plots, we present, for
each distribution, the upper envelopes of certified accuracies
attained over the range of considered σ. Further details of
experimental procedures are described in Appendix D.

We focus on the effect of the noise distribution in this sec-
tion and only train models with noise augmentation. In
Appendix D we also study (1) stability training, and (2) the
use of more data through (a) pre-training on downsampled

6Reasonable here roughly means Sobolev, i.e. has weak deriva-
tive that is integrable, and this can be further relaxed to bounded
variations; for details see Theorem G.20 and Theorem H.15.

Figure 2. SOTA `1 Certified Accuracies. Certified `1 top-1 accu-
racies for ImageNet (left) and CIFAR-10 (right). For each distri-
bution q, we train models across a range of σ2 def

= Eδ∼q[ 1d‖δ‖
2
2],

and at each level of `1 adversarial perturbation radius ε we report
the best certified accuracy.

(a) ImageNet
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(b) CIFAR-10

0 2 4
`1 radius

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-1
ce

rt
ifi

ed
ac

cu
ra

cy noise

Gaussian

Laplace

Uniform

ImageNet (Hendrycks et al., 2019) and (b) semi-supervised
self-training with data from 80 Million Tiny Images (Car-
mon et al., 2019). As shown in Table 1, these techniques
further improve upon our results in this section.

6.1. `1 Adversary

As previously mentioned, the Wulff Crystal for the `1 ball is
a cube. With this motivation, we explore certified accuracies
attained by distributions with cubical level sets.

1. Uniform, ∝ I(‖x‖∞ ≤ λ)

2. Exponential, ∝ ‖x‖−j∞ e−‖x/λ‖
k
∞

3. Power law, ∝ (1 + ‖x/λ‖∞)−a

We compare to previous state-of-the-art approaches using
the Gaussian and Laplace distributions, as well as new non-
cubical distributions.

4. Exponential `1 (non-cubical), ∝ ‖x‖−j1 e−‖x/λ‖
k
1

5. Pareto i.i.d. (non-cubical), ∝∏i(1 + |xi|/λ)−a.

The relevant certified bounds are given in Table A.1.

We obtain state-of-the-art robust certificates for ImageNet
and CIFAR-10, finding that the Uniform distribution per-
forms best, significantly better than the Gaussian and
Laplace distributions (Table 1, Fig. 2). The other distri-
butions with cubic level sets match but do not exceed the
performance of Uniform distribution, after sweeping hyper-
parameters. This verifies that distributions with cubical level
sets are significantly better for `1 certified accuracy than
those with spherical or cross-polytope level sets. See results
for other distributions in Appendix C.

6.2. `2 Adversary

The Wulff Crystal w.r.t. the `2 ball is a sphere, so we explore
distributions with spherical level sets (Table A.1):

1. Uniform, ∝ I(‖x‖2 ≤ λ)
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Figure 3. CIFAR-10 certified accuracies for `2 (left) and `∞ (right)
adversaries. For each distribution q we train models across a range
of σ2 def

= E[ 1
d
‖δ‖22], and at each level of `p adversarial perturbation

radius ε, we pick the model that maximizes certified accuracy.
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2. Exponential, ∝ ‖x‖−j2 e−‖x/λ‖
k
2

3. Power law, ∝ (1 + ‖x/λ‖2)−a

We find these distributions perform similarly to, though do
not surpass the Gaussian (Fig. 3, left).

6.3. `∞ Adversary

The Wulff Crystal for the `∞ ball is the zonotope of vectors
{±1}d, which is a highly complex polytope hard to sample
from and related to many open problems in polytope theory
(Ziegler, 1995). However, we can note that it is approxi-
mated by a sphere with constant ratio (Proposition G.13),
and in high dimension d, the sphere gets closer and closer
to minimizing Φ (Theorem 5.2), but the cube and the cross
polytope do not (Claim G.15). Accordingly, we find that
distributions with spherical level sets outperform those with
cubical or cross polytope level sets in certifying `∞ robust-
ness (Fig. 3, right). In fact, in the next section we show that
up to a dimension-independent factor, the Gaussian distri-
bution is optimal for defending against `∞ adversary if we
don’t use a more powerful technique than Neyman-Pearson.

7. No-Go Results for Randomized Smoothing
Recall that given a smoothing distribution q, a point x ∈ Rd,
and a binary base classifier U ⊆ Rd (identified wth its deci-
sion region), the smoothed classifier outputs sgn(ρ− 1/2)
where ρ = q(U − x) is the “confidence” of this prediction
(Eq. (1)). Randomized smoothing (via Neyman-Pearson)
tells us that, if ρ is large enough, then, no matter what U
is, a small perturbation of x cannot decrease ρ too much to
change sgn(ρ− 1/2) (Eq. (3)).

If all we care about is robustness, then the optimal strategy
would set q to be an arbitrarily wide distribution (say, e.g.
a wide Gaussian), and the resulting smoothed classifier is
roughly constant. Of course, such a smoothed classifier
can never achieve good clean accuracy, so it is not useful.
Thus there is an inherent tension between 1) having to have
large enough noise variance to be robust and 2) having to
have small enough noise variance to avoid trivializing the
smoothed classifier. In this section, we seek to formalize

this tradeoff. As we’ll show, even if we only assume a very
weak condition on the accuracy, we can show strong upper
bounds on the best robust radius for each `p norm.

In fact, our negative results below will hold for a more gen-
eral class of smoothing schemes than those in our positive
results in previous sections: In what follows, a smoothing
scheme for Rd is any family of probability distributions
Q = {qx}x∈Rd . In practice, including in our paper, almost
all smoothing schemes are translational, that is, there is
some base distribution q, and for every x, the smoothing dis-
tribution at x is defined by qx(U) = q(U − x), for all base
classifiers U ⊆ Rd. The above discussion then motivates
the following

Definition 7.1. Let ‖ · ‖ be a norm over Rd, and let Q =
{qx}x∈Rd be a smoothing scheme for Rd. We say that Q
satisfies (ε, s, `)-useful smoothing with respect to ‖ · ‖ if:

1. ((ε, s)-Robustness) For all x, y with ‖x − y‖ < ε, if
U ⊆ Rd is any set (read: base classifier) satisfying
qx(U) ≥ 1/2 + s, then qy(U) ≥ 1/2.

2. (`-Accuracy) For all x, y with ‖x − y‖ ≥ 1, there
exists a set (read: base classifier) U ⊆ Rd so that
|qx(U)− qy(U)| ≥ `.

label prob. 𝜌

ro
b

u
st

ra
d

iu
s

𝜀

0.5 + 𝑠0.5
0

𝜀, 𝑠 -Robustness

𝑥 𝑦

𝑈

𝑞𝑥 𝑞𝑦

𝑉𝑜𝑙 ≥ ℓ ≥ 1

ℓ-Accuracy

We pause to interpret this definition. Condition (1) indicates
how large the certified radii can be for a classifier at any
given point x, if the smoothed classifier assigns likelihood
at least 1/2 + s to it; i.e. (1/2 + s, ε) is a point on the
robust radii curve in the style of Fig. A.1. The goal of the
smoothing scheme is to achieve the largest possible ε, for
every fixed s. In particular, observe that for `2, Gaussian
smoothing achieves dimension-independent ε, for every
fixed choice of s (Theorem F.10).

Condition (2) says that the resulting smoothing should not
“collapse” points: in particular, if x, y are far in norm, then
there should be some smoothed classifier that distinguishes
them. We argue that this is a very mild assumption. For Con-
dition (2) to be satisfied, the U which distinguishes these
two points can be completely arbitrary. Thus, if it is violated
for ` = o(1), the two distributions are indistinguishable by
any statistical test in high dimension, implying the impossi-
bility of classifying between x and y after smoothing.

We seek to show that, for constant s and l, any (ε, s, `)-
useful smoothing scheme must have ε = o(1) for a number
of norms, including `∞. This would imply that any smooth-
ing scheme that satisfying our weak notion of accuracy can
only certify a vanishingly small radius, even when the confi-
dence of the classifier is strictly bounded away from 1/2 by
a constant.
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Randomized Smoothing as Metric Embedding A
smoothing scheme can be thought of as a mapping from
a normed space supported on Rd to the space of distribu-
tions, e.g. each point x is mapped to the distribution qx.
We will show that Definition 7.1 is roughly equivalent to
a bi-Lipschitz condition on this mapping, where the target
distributions are equipped with the total variation distance.
Then the existence of a useful smoothing scheme is equiva-
lent to whether (Rd, ‖ · ‖) can be embedded with low distor-
tion into the total variation space of distributions. Classical
mathematics has a definitive answer to this question in the
form of a geometric invariant, called the cotype.
Definition 7.2 (see e.g. Wojtaszczyk (1996)). A normed
space T = (X, ‖ · ‖) is said to have cotype p for 2 ≤
p ≤ ∞ if there exists C such that for all finite sequences
x1, . . . , xn ∈ X , we have

E

∥∥∥∥∥∥
n∑
j=1

σjxj

∥∥∥∥∥∥
 ≥ C−1

 n∑
j=1

‖xi‖p
1/p

,

where the σj are independent Rademacher random variables.
The smallest such C is denoted Cp(T ).

When the underlying space of the normed space T is Rd,
John’s theorem (John, 1948) implies that any norm has co-
type 2 with C2(T ) ≤ O(d1/2). Because C2 lower bounds
the distortion of a metric embedding of T , by the aforemen-
tioned connection with randomized smothing, C2 also limits
the usefulness of any smoothing scheme of T :
Theorem 7.3. Let T be any normed space over Rd. There
exist universal constants c,K > 0 so that any (ε, s, `)-
useful smoothing scheme for T with s/` < c must have

ε ≤ K 4
√
s/` · C2(T )−1.

In particular, it is well-known that C2((Rd, ‖ · ‖p)) =

Ω(max(1, d1/2−1/p)), for all p ∈ [1,∞]. Thus, as an im-
mediately corollary, we get:
Corollary 7.4. For the value of c in Theorem 7.3 and
for p ∈ [1,∞], any (ε, s, `)-useful smoothing scheme for
(Rd, ‖ · ‖p) with s/` < c must have

ε ≤ O(min(1, d−1/2+1/p)).

It is easy to see that, up to constants, the Gaussian smoothing
scheme achieves equality, and thus is optimal (in terms of
dimension dependence), for all p ∈ [1,∞].

Discussion After Cohen et al. (2019) showed the surpris-
ing scalability of Gaussian randomized smoothing to high-
dimensional `2-robust classification problems, many antic-
ipated that this can be extended to `∞ as well. One might
also hope that, even though it seems like we cannot certify
`2 radius that grows with input dimension, we could do so
for `1. But Theorem 7.3 and Corollary 7.4 present a strong
barrier to such hopes. In words:

Without using more than the information of the
probability ρ of correctly classifying an input
under random noise, no smoothing techniques
can certify nontrivial robust accuracy at `∞
radius Ω(d−1/2), or at `2 or `1 radius Ω(1).

Indeed, the `1-radii we can obtain nontrivial certified ac-
curacy at are on the same order between CIFAR10 and
Imagenet (Fig. 2).

However, there are some ways to bypass this barrier. For
one, more information about the base classifier can be col-
lected to produce better robustness certificates. In fact, Dvi-
jotham et al. (2019) proposed a “full-information” algorithm
that computes many moments of the base classifier in a
convex optimization procedure to improve certified radius,
but it is 100 times slower than the “information-limited”
algorithms we discuss here that use only ρ. It would be
interesting to see whether this technique can be scaled up,
and whether other methods can leverage more information7.

Another route is to directly look for better randomized
smoothing schemes for multi-class classification. We formu-
lated our no-go result in the setting of binary classification,
and it is not clear whether a similarly strong barrier applies
for multi-class classification. However, current techniques
for certification only look at the two most likely classes, and
separately reason about how much each one can change by
perturbing the input. Our no-go result then straightforwardly
applies to this case as well.

8. Conclusion
In this work, we have showed how far we can push ran-
domized smoothing with different smoothing distributions
against different `p adversaries, by presenting two new tech-
niques for deriving robustness guarantees, by elucidating
the geometry connecting the noise and the norm, and by
empirically achieving state-of-the-art in `1 provable defense.
At the same time, we have showed the limit current tech-
niques face against `p adversaries when p > 2, especially
`∞. Our results point out ways to bypass this barrier, by
either leveraging more information about the base classifier
or by taking advantage of the multi-class problem structure
better. We wish to investigate both directions in the future.

More broadly, randomized smoothing is a method for in-
ducing stability in a mechanism while maintaining utility
— precisely the bread and butter of differential privacy. We
suspect our methods for deriving robustness guarantees here
and for optimizing the noise distribution can be useful in
that setting as well, where Laplace and Gaussian noise dom-
inate the discussion. Whereas previous work Lecuyer et al.
(2018) has applied differential privacy tools to randomized
smoothing, we hope to go the other way around in the future.

7Lee et al. (2019) also used the decision tree structure of their
base classifier to improve `0 certification, but the `0-adversary
does not fall within our framework.
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fester Oberflächen Lake. Geneva (Wisconsin) USA, 29.
September bis 1. Oktober 1952. Angewandte Chemie.

Hilton, H. Mathematical Crystallography. Oxford, 1903.

Hu, J. E., Swaminathan, A., Salman, H., and Yang, G. Im-
proved image wasserstein attacks and defenses. arXiv
preprint arXiv:2004.12478, 2020.

John, F. Extremum problems with inequalities as subsidiary
conditions, studies and essays presented to r. courant on
his 60th birthday, january 8, 1948, 1948.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient smt solver for verifying
deep neural networks. In International Conference on
Computer Aided Verification, pp. 97–117. Springer, 2017.

Krizhevsky, A. Learning Multiple Layers of Features from
Tiny Images. Technical report, 2009.

Kumar, A., Levine, A., Goldstein, T., and Feizi, S. Curse of
dimensionality on randomized smoothing for certifiable
robustness. arXiv preprint arXiv:2002.03239, 2020.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial ma-
chine learning at scale. arXiv preprint arXiv:1611.01236,
2016.

Laidlaw, C. and Feizi, S. Functional adversarial attacks. In
Advances in Neural Information Processing Systems, pp.
10408–10418, 2019.

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and
Jana, S. Certified robustness to adversarial examples with
differential privacy. arXiv preprint arXiv:1802.03471,
2018.

Lee, G.-H., Yuan, Y., Chang, S., and Jaakkola, T. Tight
Certificates of Adversarial Robustness for Randomly
Smoothed Classifiers. In Wallach, H., Larochelle, H.,
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M. Fast and effective robustness certification. In Ad-
vances in Neural Information Processing Systems, pp.
10825–10836, 2018.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Er-
han, D., Goodfellow, I., and Fergus, R. Intriguing
properties of neural networks. In International Confer-
ence on Learning Representations, 2014. URL http:
//arxiv.org/abs/1312.6199.

Taylor, J. Unique structure of solutions to a class of nonel-
liptic variational problems. Proc. Sympos. Pure Math.,
27:419–427, 1975.

Taylor, J. E. Crystalline variational problems. Bulletin of
the American Mathematical Society, 84(4):568–588, July
1978. ISSN 0002-9904, 1936-881X.

Teng, J., Lee, G.-H., and Yuan, Y. $\ell 1$ Adversarial
Robustness Certificates: a Randomized Smoothing Ap-
proach. Technical report, September 2019. URL https:
//openreview.net/forum?id=H1lQIgrFDS.

Tjeng, V., Xiao, K. Y., and Tedrake, R. Evaluating robust-
ness of neural networks with mixed integer programming.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=HyGIdiRqtm.

Uesato, J., O’Donoghue, B., Oord, A. v. d., and Kohli, P.
Adversarial risk and the dangers of evaluating against
weak attacks. arXiv preprint arXiv:1802.05666, 2018.

von Laue, M. Der Wulffsche Satz für die Gleidigewichts-
form von Kristallen. Zeitschrift für Kristallographie Crys-
talline Materials, 105.

Wang, S., Chen, Y., Abdou, A., and Jana, S. Mixtrain: Scal-
able training of formally robust neural networks. arXiv
preprint arXiv:1811.02625, 2018a.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
Efficient formal safety analysis of neural networks. In
Advances in Neural Information Processing Systems, pp.
6369–6379, 2018b.

Weng, T.-W., Zhang, H., Chen, H., Song, Z., Hsieh, C.-J.,
Boning, D., Dhillon, I. S., and Daniel, L. Towards fast
computation of certified robustness for ReLU networks.
In International Conference on Machine Learning, 2018.

Wojtaszczyk, P. Banach spaces for analysts, volume 25.
Cambridge University Press, 1996.

Wong, E. and Kolter, Z. Provable defenses against adversar-
ial examples via the convex outer adversarial polytope. In
International Conference on Machine Learning (ICML),
pp. 5283–5292, 2018.

Wong, E., Schmidt, F., Metzen, J. H., and Kolter, J. Z. Scal-
ing provable adversarial defenses. Advances in Neural
Information Processing Systems (NIPS), 2018.

Wong, E., Schmidt, F. R., and Kolter, J. Z. Wasserstein
adversarial examples via projected sinkhorn iterations.
arXiv preprint arXiv:1902.07906, 2019.

https://royalsocietypublishing.org/doi/10.1098/rsta.1933.0009
https://royalsocietypublishing.org/doi/10.1098/rsta.1933.0009
http://matwbn.icm.edu.pl/ksiazki/fm/fm21/fm21119.pdf
http://matwbn.icm.edu.pl/ksiazki/fm/fm21/fm21119.pdf
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=H1lQIgrFDS
https://openreview.net/forum?id=H1lQIgrFDS
https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=HyGIdiRqtm


Randomized Smoothing of All Shapes and Sizes

Wulff, G. Zur Frage der Geschwindigkeit des Wachstums
und der Auflösung der Krystallflagen. Zeitschrift für
Krystallographie und Mineralogie, 34:449–530, 1901.

Zhai, R., Dan, C., He, D., Zhang, H., Gong, B., Ravikumar,
P., Hsieh, C.-J., and Wang, L. Macer: Attack-free and
scalable robust training via maximizing certified radius.
In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rJx1Na4Fwr.

Zhang*, D., Ye*, M., Gong*, C., Zhu, Z., and Liu, Q. Filling
the soap bubbles: Efficient black-box adversarial certifi-
cation with non-gaussian smoothing, 2020. URL https:
//openreview.net/forum?id=Skg8gJBFvr.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and
Daniel, L. Efficient neural network robustness certifica-
tion with general activation functions. In Advances in
Neural Information Processing Systems, pp. 4939–4948,
2018.

Zheng, T., Wang, D., Li, B., and Xu, J. A unified frame-
work for randomized smoothing based certified defenses,
2020. URL https://openreview.net/forum?
id=ryl71a4YPB.

Ziegler, G. M. Lectures on Polytopes, volume 152 of Grad-
uate Texts in Mathematics. Springer New York, New
York, NY, 1995. ISBN 978-0-387-94365-7 978-1-4613-
8431-1. URL http://link.springer.com/10.
1007/978-1-4613-8431-1.

https://openreview.net/forum?id=rJx1Na4Fwr
https://openreview.net/forum?id=rJx1Na4Fwr
https://openreview.net/forum?id=Skg8gJBFvr
https://openreview.net/forum?id=Skg8gJBFvr
https://openreview.net/forum?id=ryl71a4YPB
https://openreview.net/forum?id=ryl71a4YPB
http://link.springer.com/10.1007/978-1-4613-8431-1
http://link.springer.com/10.1007/978-1-4613-8431-1

	Introduction
	Related Works
	Randomized Smoothing
	Methods for Deriving Robust Radii
	The Level Set Method
	The Differential Method
	Comparison of the Two Methods and Prior Works

	Wulff Crystals
	Experiments
	L1 Adversary
	L2 Adversary
	Linf Adversary

	No-Go Results for Randomized Smoothing
	Conclusion
	Table of Robust Radii
	Analysis of Robust Radii
	Level Set Method vs Differential Method
	In-Depth Comparison with Dvijotham et al. (2019)

	Additional Experimental Results
	Experimental Details
	Mathematical Preliminaries
	The Differential Method
	Example: Gaussian against L2 Adversary
	Example: Laplace against L1 Adversary

	Wulff Crystal
	Wulff Crystals are Zonotopes
	Wulff Crystals Yield Optimal Uniform Distributions for Randomized Smoothing
	Growth Calculations for Standard Shapes
	Wulff Crystal of the Linf Ball
	Growth Formula of a Set

	Optimal Smoothing Distributions Have Wulff Crystal Level Sets
	Optimality among Wulff Crystal Distributions

	Generalization of Differential Method and Wulff Crystal Optimality Results to Bounded Variation Densities
	Differential Method for BV Densities
	Wulff Crystal Optimality for BV Densities

	Robust Radii Derivations
	IID Distributions
	L1 Adversary

	Linf Norm-Based Exponential Law
	L1 Adversary
	Linf Adversary

	Linf Norm-Based Power Law
	L1 Adversary
	Linf Adversary

	L1 Norm-Based Exponential Law
	L1 Adversary
	Linf Adversary

	Pareto Distribution
	L1 Adversary

	L2-Norm Based Exponential Law
	L2 Adversary

	Uniform Distribution over a Sphere
	L2 Adversary

	General L2-Norm Based Distributions via the Level Set Method
	L2 Adversary

	Basic Facts about Probability Distributions

	Proof of Our No-Go Theorem
	The Pairwise Growth Function
	Proof of Lemma J.1
	Proof of Lemma J.2


