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Abstract
Recently there has been growing interest in model-
ing sets with exchangeability such as point clouds.
A shortcoming of current approaches is that they
restrict the cardinality of the sets considered or
can only express limited forms of distribution over
unobserved data. To overcome these limitations,
we introduce Energy-Based Processes (EBPs),
which extend energy based models to exchange-
able data while allowing neural network parame-
terizations of the energy function. A key advan-
tage of these models is the ability to express more
flexible distributions over sets without restricting
their cardinality. We develop an efficient training
procedure for EBPs that demonstrates state-of-
the-art performance on a variety of tasks such as
point cloud generation, classification, denoising,
and image completion1.

1. Introduction
Many machine learning problems consider data where each
instance is, itself, an unordered set of elements; i.e., such
that each observation is a set. Data of this kind arises in a
variety of applications, ranging from document modeling
(Blei et al., 2003; Garnelo et al., 2018a) and multi-task
learning (Zaheer et al., 2017; Edwards & Storkey, 2016;
Liu et al., 2019) to 3D point cloud modeling (Li et al.,
2018; Yang et al., 2019). In unsupervised settings, a dataset
typically consists of a set of such sets, while in supervised
learning, it consists of a set of (set, label) pairs.

Modeling a distribution over a space of instances, where
each instance is, itself, an unordered set of elements in-
volves two key considerations: (1) the elements within a
single instance are exchangeable, i.e., the elements are order
invariant; and (2) the cardinalities of the instances (sets)
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vary, i.e., instances need not exhibit the same cardinality.
Modeling both unconditional and conditional distributions
over instances (sets) are relevant to consider, since these
support unsupervised and supervised tasks respectively.

For unconditional distribution modeling, there has been sig-
nificant prior work on modeling set distributions, which has
sought to balance competing needs to expand model flexibil-
ity and preserve tractability on the one hand, with respecting
exchangeability and varying instance cardinalities on the
other hand. However, managing these trade-offs has proved
to be quite difficult, and current approaches remain limited
in different respects.

For example, a particularly straightforward strategy for mod-
eling distributions over instances x = {x1, ..., xn} without
assuming fixed cardinality is simply to use a recurrent neu-
ral network (RNNs) to encode instance probability auto-
regressively via p (x) =

Qn
i=1 p (xi|x1:i�1) for a permu-

tation of its elements. Such an approach allows the full
flexibility of RNNs to be applied, and has been empirically
successful (Larochelle & Murray, 2011; Bahdanau et al.,
2015), but does not respect exchangeability nor is it clear
how to tractably enforce exchangeability with RNNs.

To explicitly ensure exchangeability, a natural idea has been
to exploit De Finetti’s theorem, which assures us that for
any distribution over an infinitely exchangeable sequence,
its finite projection distribution on arbitrary finite elements
x = {x1, ..., xn} can be decomposed as

p (x) =

Z nY

i=1

p (xi|✓) p (✓) d✓, 2 (1)

for some latent variable ✓. In other words, there always
exists a latent variable ✓ such that conditioning on ✓ ren-
ders the instance elements {xi}

n
i=1 i.i.d.. Latent variable

models are therefore a natural choice for expressing an
exchangeable distribution. Bayesian sets (Ghahramani &
Heller, 2005), latent Dirichlet allocation (Blei et al., 2003),
and related variants (Blei & Lafferty, 2007; Teh et al., 2006)
are classical examples of this kind of approach, where the
likelihood and prior in (1) are expressed by simple known
distributions. Although the restriction to simple distribu-
tions severely limits the expressiveness of these models,

2For simplicity, we consider the distributions with density func-
tion exist in this paper.
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neural network parameterizations have recently been intro-
duced (Edwards & Storkey, 2016; Korshunova et al., 2018;
Yang et al., 2019). These approaches still exhibit limited
expressiveness however: Edwards & Storkey (2016) restrict
the model to known distributions parameterized by neural
networks, while Korshunova et al. (2018); Yang et al. (2019)
only consider normalizing flow models that require invert-
ible neural networks.

If we consider conditional rather than unconditional dis-
tributions over sets, an extensive literature has considered
stochastic process representations, which exploits their natu-
ral exchangeability and consistency properties. For example,
Gaussian processes (GPs) (Rasmussen & Williams, 2006)
and extensions like Student-t processes (T Ps) (Shah et al.,
2014), are well known models that, despite their scalabil-
ity challenges, afford significant modeling flexibility via
kernels. Unfortunately, they also restrict the conditional
likelihoods to simple known distributions. Damianou &
Lawrence (2012); Salimbeni & Deisenroth (2017) enrich
the expressiveness of GPs by stacking GP-layers, but at
the cost of increasing inference intractability with increas-
ing depth. Neural processes (NPs) (Garnelo et al., 2018b)
and subsequent variants (Garnelo et al., 2018a; Kim et al.,
2019) attempt to construct neural network to mimic GPs,
but these too rely on known distributions for the conditional
likelihood, which inherently limits expressiveness.

In this paper, we propose Energy-Based Processes (EBPs),
and their extension to unconditional distributions, to in-
crease the flexibility of set distribution modeling while re-
taining exchangeability and varying-cardinality. After es-
tablishing necessary background on energy-based models
(EBMs) and stochastic processes in Section 2, we provide
a new stochastic process representation theorem in Sec-
tion 3. This result allows us to then generalize EBMs to
Energy-Based Processes (EBPs), which provably obtain the
exchangeability and varying-cardinality properties. Inter-
estingly, the stochastic process representation we introduce
also covers classical stochastic processes as special cases.
We further extend EBP to the unconditional setting, uni-
fying the previously separate stochastic process and latent
variable model perspectives in a common framework. To
address the challenge of training EBPs, we introduce an
efficient new Neural Collapsed Inference (NCI) in Section 4.
Finally, we evaluate the effectiveness of EBPs with NCI
training on a set of supervised (e.g., 1D regression and im-
age completion) and unsupervised tasks (e.g., point-cloud
feature extraction, generation and denoising), demonstrating
state-of-the-art performance across a range of scenarios.

2. Background
We provide a brief introducton to energy-based models and
stochastic processes, which provide the essential building

blocks for our subsequent development.

2.1. Energy-Based Models

Energy-based models are attractive due to their flexibility
(LeCun et al., 2006; Wu et al., 2018) and appealing statistical
properties (Brown, 1986). In particular, an EBM over ⌦ ⇢

Rd with fixed dimension d is defined as

pf (x) = exp (f (x)� logZ (f)) (2)

for x 2 ⌦, where f (x) : ⌦ ! R is the energy function and
Z (f) :=

R
⌦ exp (f (x)) dx is the partition function. We let

F := {f (·) : Z (f) < 1}.

The flexibility of EBMs is well known. For example, classi-
cal exponential family distributions can be recovered from
(2) by instantiating specific forms for ⌦ and f (·). Introduc-
ing additional structure to the energy function allows both
Markov random fields (Kinderman & Snell, 1980) and con-
ditional random fields (Lafferty et al., 2001) to be recovered
from (2). More recently, the introduction of deep neural
energy functions (Xie et al., 2016; Du & Mordatch, 2019;
Dai et al., 2019), has led to many successful applications of
EBMs to modeling complex distributions in practice.

Although maximum likelihood estimation (MLE) of gen-
eral EBMs is notoriously difficult, recent techniques such
as adversarial dynamics embedding (ADE) appear able to
practically train a broader class of such models (Dai et al.,
2019). In particular, ADE approximates MLE for EBMs by
formulating a saddle-point version of the problem:

max
f

min
q(x,v)2P

bE [f (x)]�H (q(x, v))

� Eq(x,v)

h
f (x)�

�

2
v
>
v

i
, (3)

where p (x, v) is parametrized via a learnable Hamilto-
nian/Langevin sampler. Since we make use of some of
the techniques in our main development, we provide some
further details of ADE in Appendix A.

Although these recent advances are promising, EBMs re-
main fundamentally limited for our purposes, in that they
are only defined for fixed-dimensional data. The question
of extending such models to express distributions over ex-
changeable data with arbitrary cardinality has not yet been
well explored.

2.2. Stochastic Processes

Stochastic processes are usually defined in terms of
their finite-dimensional marginal distributions. In par-
ticular, consider a stochastic process given by a col-
lection of random variables {Xt; t 2 T } indexed by t,
where the marginal distribution for any finite set of in-
dices {t1, . . . , tn} in T (without order) is specified i.e.,
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p (xt1:tn) := p (xt1 , . . . , xtn | {ti}
n
i=1). For example, Gaus-

sian processes (GPs) are defined in this way using Gaus-
sians for the marginal distributions (Rasmussen & Williams,
2006), while Student-t processes (T Ps) are similarly de-
fined using multivariate Student-t distributions for the
marginals (Shah et al., 2014).

The Kolmogorov extension theorem (Øksendal, 2003) pro-
vides the sufficient conditions for designing a valid stochas-
tic processes, namely:

• Exchangeability The marginal distribution for any finite
set of random variables is invariant to permutation order.
Formally, for all n and all permutations ⇡, this means

p (xt1 , . . . , xtn | {ti}
n
i=1) = p (⇡ (xt1:tn) |⇡ ({ti}

n
i=1)) ,

where p (⇡ (xt1:tn)) := p
�
x⇡(t1), . . . , x⇡(tn)

�
.

• Consistency The partial mariginal distribution, obtained
by marginalizing additional variables in the finite se-
quence, is the same as the one obtained from the original
infinite sequence. Formally, if n > m > 1, this means

p (xt1:tm | {ti}
m
i=1) =

Z
p (xt1:tn | {ti}

n
i=1) dxtm+1:tn .

Obviously, these conditions also justify stochastic processes
as a valid tool for modeling exchangeable data. However,
existing classical models, such as GPs and T Ps, restrict the
marginal distributions to simple forms while requiring huge
memory and computational cost, which prevents convenient
application to large-scale complex data.

3. Energy-Based Processes
We now develop our main modeling approach, which com-
bines a stochastic process representation of exchangeable
data with energy-based models. The result is a generaliza-
tion of Gaussian processes and Student- t processes that
exploits EBMs for greater flexibility. We follow this devel-
opment with an extension to unconditional modeling.

3.1. Representation of Stochastic Processes

Although finite marginal distributions provide a way to
parametrize stochastic processes, it is not obvious how to use
flexible EBMs to represent marginals while still maintaining
exchangeability and consistency. Therefore, instead of such
a direct parametrization, we exploit the deeper structure of
a stochastic process, based on the following representation
theorem.

Theorem 1 For any stochastic process (xt1 , xt2 , . . .) ⇠

SP that can be constructed via Kolmogorov extension theo-
rem, the process can be equivalently represented by a latent
variable model

✓ ⇠ P (✓) , xti ⇠ p (x|✓, ti) , 8i 2 {1, . . . , n} 8n, (4)

where ✓ can be finite or infinite dimensional and P denotes
some measure on ✓.

Notice that ✓ can be either finite or infinite dimensional, and
then, P (d✓) can be either the distribution or stochastic pro-
cess for the finite or infinite dimenstional random variable ✓,
respectively. Then, Theorem 1 is a straightforward corollary
of De Finetti’s Theorem.

Proof Since the process SP is constructed via the Kol-
mogorov Extension Theorem, it must satisfy exchangeabil-
ity and consistency, i.e., the sequence

�
xt(1), . . . , xt(n)

 
is

exchangeable 8n and following a projective family. This
implies, by De Finetti’s Theorem, that any marginal distri-
bution can be represented as a mixture of i.i.d. processes:

p (xt1:tn | {ti}
n
i=1) =

Z nY

i=1

p (x|✓, ti)P (d✓) , (5)

which achieves the conclusion.

For simplicity, we assume the density on ✓ exists as p (✓).
Given such a representation of a stochastic processes, it is
now easy to see how to generalize Gaussian, Student-t, and
other processes with EBMs.

3.2. EBP Construction

To enhance the flexibility of a stochastic process represen-
tation of exchangeable data, we use EBMs to model the
likelihood term in (4), by letting

pw (x|✓, t) =
exp (fw (x, t; ✓))

Z (fw, t; ✓)
, (6)

where Z (fw, t; ✓) =
R
exp (fw (x, t; ✓)) dx and we let w

denote the parameters of f , which can be learned. Substitut-
ing this into the latent variable representation of stochastic
processes (4), leads to the definition of energy-based pro-
cesses on arbitrary finite marginals as

pw (xt1:tn | {ti}
n
i=1) =

R exp(
Pn

i=1(fw(xti ,ti;✓)))
Zn(fw,t) p (✓) d✓,

(7)
given a prior p (✓) on the finite or infinite latent variable ✓.
We refer to the resulting process as an energy-based process
(EBP).

Compared to using restricted distributions, such as Gaussian
or Student-t, the use of an EBM in an EBP allows much
more flexible energy models fw, for example in the form of
a deep neural network, to represent the complex dependency
between x and t. To rigoriously verify that the outcome is
strictly more general than standard processes, observe that
classical process models can be recovered exactly simply
by instantiating (7) with specific choices of fw (x, t; ✓) and
p (✓).
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• Gaussian Processes Consider the weight-space view of
GPs (Rasmussen & Williams, 2006), which allows the
GP for regression to be re-written as

✓ ⇠ N (0, Id) , (8)

fw (x, t; ✓) = �
1

2�2

��x� ✓
>
� (t)

��2 , (9)

where w = {�,� (·)}, with � (·) denoting feature map-
pings that can be finite or infinite dimensional. If we now
let k (t, t0) = � (t)> � (t0) denote the kernel function and
K (t1:n) = [k (ti, tj)]ni,j , the marginalized distribution
can be recovered as

p (xt1:tn | {ti}
n
i=1) = N

�
0,K (t1:n) + �

2
In

�
,

which shows that Xt ⇠ GP
�
0,K (t1:n) + �

2
In

�
;

see Appendix B.1.

• Student-t Processes Denote ✓ = (↵,�) and consider

↵ ⇠ N (0, Id) , �
�1

⇠ �
⇣
⌫

2
,
�

2

⌘
, (10)

fw (x, t; ✓) = �

�

����x�

q
�(⌫�2)

� ↵
>
� (t)

����
2

2�2 (⌫ � 2)�
, (11)

where w = {⌫, �,�,� (·)} with ⌫ > 0 and � > 0. These
substitutions lead to the marginal distribution

p (xt1:tn | {ti}
n
i=1) = T

�
⌫, 0,K (t1:n) + �

2
In

�
,

which shows that Xt ⇠ T P
�
⌫, 0, ,K (t1:n) + �

2
In

�
;

see Appendix B.2.

• Neural Processes Neural processes (NPs) are explic-
itly defined by a latent variable model in (Garnelo et al.,
2018b):3

p (xt1:tn | {ti}
n
i=1) =

Z nY

i=1

N (x|hw (ti; ✓)) p (✓) d✓,

where hw (·; ✓) is a neural network. Clearly, NPs share
similarity to EBPs in that both processes use deep neural
networks to enhance modeling flexibility. However, there
remain critical differences. In fact, the likelihood function
p (x|t, ✓) in NPs is still restricted to known simple distri-
butions, with parameterization given by a neural network.
By contrast, EBPs directly use EBMs with deep neural
energy functions to model the likelihood. In this sense,
EBPs are a strict generalization of NPs: if one fixes the
last layer of fw in EBPs to be a simple function, such as
quadratic, then an EBP reduces to a NP .

3The conditional neural processes (Garnelo et al., 2018a) only
defines the predictive distribution, hence it is not a proper stochas-
tic processes, as discussed in their paper.

Figure 1 demonstrates the comparison between these pro-
cess models and an additional variational implicit pro-
cess (VIP) model (see Appendix E) in a simple regression
setting, highlighting the flexibility of EBPs in modeling the
conditional likelihood.

Figure 1. The ground truth data and learned energy functions of
GP , NP , VIP , and EBP (from left to right). EBP successfully
captures multi-modality of the toy data as GP and NP exhibiting
only a single mode; see Section 5 for details.

3.3. Unconditional EBPs Extension

Stochastic processes, such as EBPs, express the conditional
distribution over {Xt} conditioned on an index variable t,
which makes this approach naturally applicable to super-
vised learning tasks on exchangeable data. However, we
would also like to tackle unsupervised learning problems
given exchangeable observations, so an unconditional for-
mulation of the EBP is required.

To develop an unconditional EBP , we start with the dis-
tribution of an arbitrary finite marginal, p (xt1:tn | {ti}

n
i=1).

Note that when the indices {ti}
n
i=1 are not observed, we can

simply marginalize them out to obtain

pw (x1:n) :=

Z
pw (xt1:tn | {ti}

n
i=1) p ({ti}

n
i=1) dt1:n (12)

=

Z
pw (xt1:tn | {ti}

n
i=1 , ✓) p (✓) p ({ti}

n
i=1) d✓dt1:n.

Here we can introduce parameters to the p ({ti}
n
i=1), which

can also be learned. It can be verified the resulting distri-
bution pw (x1:n) is provably exchangeable and consistent
under mild conditions.

Theorem 2 If n > m > 1, and the prior is exchangeable
and consistent, then the marginal distribution p (x1:n) will
be exchangeable and consistent.

The proof can be found in Appendix C.

We refer to this result as the unconditional EBP . This
understanding allows connections to be established with
some existing models.

• GP-Latent Variable Model The GP-latent variable
model (GPLVM) (Lawrence, 2004) considers the esti-
mation of the latent index variables by maximizing the
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log-marginal likelihood of GP , i.e.,

max
{ti}n

i=1

log p (xt1:tn | {ti}
n
i=1)

= logN
�
0,K (t1:n) + �

2
In

�
. (13)

This can be understood as using a point estimator with
GPs and an improper uniform prior p ({ti}

n
i=1) in (12).

• Bayesian Recurrent Neural Model Korshunova et al.
(2018) propose a model BRUNO for modeling exchange-
able data. This model actually uses degenerate kernels to
eliminate {ti}

n
i=1 in (12). In particular, BRUNO defines

a T P for each latent variable dimension, with the same
constant feature mapping � (t) = 1, 8t. That is, for the
d-th dimension in x, 8d 2 {0, . . . , D},

p
�
x
d
t1:tn | {ti}

n
i=1

�
= p

�
x
d
1:n

�
⇠ T (⌫d, µd,Kd) , (14)

since the kernel is Kd (t1:n) = 11> + (�d)
2
In. The ob-

servations are then transformed via an invertible function,
i.e., x0 =  (x) with det

⇣
@ (x)
@x

⌘
invertible.

• Neural Statistician Edwards & Storkey (2016) essen-
tially generalize latent Dirichlet allocation (Blei et al.,
2003) with neural networks. The model follows (12) with
a sophisticated hierarchical prior. However, by compar-
ison with EBPs, the likelihood function used in neural
statistician is still restricted in known simple distributions.
Meanwhile, it follows vanilla amortized inference. We
will show how EBPs can work with a more efficient in-
ference scheme in the next section.

We provide more instantiations in Appendix B and the re-
lated work in Appendix E.

4. Neural Collapsed Inference for Deep EBPs
By incorporating EBMs in the latent variable representa-
tion of a stochastic process, we obtain a family of flexible
models that can capture complex structure in exchangeable
data for both conditional and unconditional distributions.
We can exploit deep neural networks in parametrizing the
energy function as in Xie et al. (2016); Du & Mordatch
(2019); Dai et al. (2019), leading to deep EBPs. However,
this raises notorious difficulties in inference and learning
as a consequence of flexibility. Therefore, we develop an
efficient Neural Collapsed Inference (NCI) method for un-
conditional deep EBPs. (For the inference and learning of
conditional EBPs, please refer to Appendix D.2.)

4.1. Neural Collapsed Reparametrization

We first carefully analyze the difficulties in inference and
learning through the empirical log-marginal distribution of
the general EBPs on given samples D =

�
x
i
1:n

 N
i=1

:

maxw bED [log pw (x1:n)] , (15)

where pw (x1:n) is defined in (12).

There are several integrations that are not tractable in (15)
given a general neural network parameterized fw (x, t; ✓):

1. The partition function Z (fw, t, ✓) =R
exp (f (x, t; ✓)) dx is intractable in

p (xt1:tn | {ti}
n
i=1 , ✓);

2. The integration over ✓ will be intractable for
p (xt1:tn | {ti}

n
i=1);

3. The integration over {ti}
n
i=1 will be intractable for

p (x1:n).

One can of course use vanilla amortized inference with the
neural network reparameterization trick (Kingma & Welling,
2013; Rezende et al., 2014) for each intractable component,
as in (Edwards & Storkey, 2016), but this leads to an op-
timization over the approximate posteriors q (x|t, ✓) and
q (✓, {ti}

n
i=1). The latter distribution requires a complex

neural network architecture to capture the dependence in
{ti}

n
i=1, which is usually a significant challenge. Mean-

while, in most unsuperivsed learning tasks, such as point
cloud generation and denoising, one is only interested in
x1:n, while {ti}

n
i=1 is not directly used. Since inference

over {ti}
n
i=1 is only an intermediate step, we develop the

following Neural Collapsed Inference strategy (NCI).

Collapsed inference and sampling strategies have previously
been proposed for removing nuisance latent variables that
can be tractably eliminated, to reduce computational cost
and accelerate inference (Teh et al., 2007; Porteous et al.,
2008). Due to the intractability of

pw (x1:n|✓) =

Z
pw (xt1:tn |✓, {ti}

n
i=1) p ({ti}

n
i=1) dt1:n,

standard collapsed inference cannot be applied. However,
since deep EBMs are very flexible, pw0 (x1:n|✓) can be di-
rectly reparameterized with another EBM:

pw0 (x1:n|✓) / exp (fw0 (x1:n; ✓)). (16)

Concretely, assume p ({ti}
n
i=1) / exp (

Pn
i=1 hv (ti)), so

we have

pw0 (x1:n|✓) =
nY

i=1

Z
pw (xti |✓, ti) p (ti) dti

/

nY

i=1

Z
exp (fw (xti , ti; ✓)� Z (fw, ti; ✓) + hv (ti))dti

⇡

nY

i=1

1

Z (fw0 ; ✓)
exp (fw0 (xi; ✓)) ,

where the last step follows because the result of the integra-
tion in the second step is a distribution p (x) over ⌦, and
we are using another learnable EBM to approximate this
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distribution. Therefore, we consider the collapsed model:

pw0 (x1:n|✓) / exp

 
nX

i=1

fw0 (xi; ✓)

!
, (17)

which still satisfies exchangeability and consistency. In
fact, with the i.i.d. prior on {ti}

n
i=1, we will obtain a latent

variable model based on De Finetti’s theorem. With such an
approximate collapsed model, the log-marginal distribution
can be used as a surrogate:

` (w) := log pw0 (x1:n) = log

Z
pw0 (x1:n|✓) p (✓) d✓. (18)

We refer to the variational inference in such a task-oriented
neural reparametrization model as Neural Collapsed Infer-
ence, which reduces the computational cost and memory of
inferring the posterior compared to using vanilla variational
amortized inference.

We can further use the neural collapsing trick for
✓; which will reduce the model to Gibbs point pro-
cesses (GPPs) (Dereudre, 2019) and Determinantal point
processes (DPPs) (Lavancier et al., 2015; Kulesza et al.,
2012). Therefore, the proposed algorithm can straight-
forwardly applied for deep GPP and DPP estimation.
It should be emphasized that by exploiting the proposed
primal-dual MLE framework, we automatically obtain a
deep neural network parametrized dual sampler with the
learned model simultaneously, which can be used in in-
ference and bypass the notorious sampling difficulty in
GPP and DPP . Please see Appendix D.1 for detailed
discussion.

4.2. Amortized Inference

As discussed, {ti}
n
i=1 can be eliminated by neural collapsed

reparameterization. We now discuss variational techniques
for integrating over ✓ and x respectively in the partition
function of (18)

ELBO for integration on ✓ We apply vanilla ELBO to
handle the intractability of integration over ✓. Specifically,
since

log

Z
pw0 (x1:n|✓) p (✓) d✓ (19)

= max
q(✓|x1:n)2P

Eq(✓|x1:n) [log pw0 (x1:n|✓)]�KL (q||p) ,

we can apply the standard reparameterization trick (Kingma
& Welling, 2013; Rezende et al., 2014) for q (✓|x1:n).

Primal-Dual form for partition function For the term
log pw0 (x1:n|✓) in (19), which is

log pw0 (x1:n|✓) = fw0 (x1:n; ✓)� logZ (fw0 , ✓) ,

Algorithm 1 Neural Collapsed Inference
1: Initialize W1 randomly, set length of steps T .
2: for iteration k = 1, . . . ,K do
3: Sample mini-batch

n
x
j
1:nj

ob

j=1
from dataset D.

4: Sample ✓j ⇠ q↵ (✓|x1:n), 8j = 1, . . . , b.
5: Sample x̃

j
1:n, ṽ

j
⇠ q� (x1:n, v|✓), 8j = 1, . . . , b.

6: {�k+1} = �k � �kr̂�L (↵k,�k, w
0
k)

7: {↵, w
0
}k+1 = {↵, w

0
}k +

�kr̂{↵,w0}L (↵k,�k;w0
k).

8: end for

we apply an adversarial dynamics embedding technique (Dai
et al., 2019) for the logZ (fw0 , ✓) as introduced in Section 2.
This leads to an equivalent optimization of the form

log pw0 (x1:n|✓)

/ min
q(x1:n,v|✓)2P

fw0 (x1:n; ✓)�H (q (x1:n, v|✓))

� Eq(x1:n,v|✓)


fw0 (x1:n; ✓)�

�

2
v
>
v

�
. (20)

By combining (19) and (20) into (18), we obtain

max
w0,q(✓|x1:n)

min
q(x1:n,v|✓)

L (q (✓|x1:n) , q (x1:n, v|✓) ;w
0) ,

(21)
where

L (q (✓|x1:n) , q (x1:n, v|✓) ;w
0)

:= bEx1:nE✓ [fw0 (x1:n; ✓)]�bEx1:n [KL (q (✓|x1:n) ||p (✓))]

� bEx1:nE✓

Ex1:n,v|✓


fw0 (x1:n; ✓)�

�

2
v
>
v

��

+ bEx1:nE✓ [H (q (x1:n, v|✓))] . (22)

where bEx1:n [·], E✓[·] and Ex1:n,v [·] denote the expectation
w.r.t. empirical samples, q (✓|x1:n) and qx1:n,v|✓, respec-
tively.

Parametrization Finally, we describe some concrete pa-
rameterizations for fw (x; ✓), q (✓|x1:n) and q (x1:n, v|✓).

The energy function fw (x; ✓) is parametrized as a MLP
that takes input xti concatenated with ✓. We use the same
energy function parameterization for both conditional and
unconditional EBPs.

For q (✓|x1:n) we use a simple Gaussian with mean function
parameterized via deepsets (Zaheer et al., 2017):

✓ = mlp↵ (x1:n) + �⇠, ⇠ ⇠ N (0, Id) , (23)

where mlp↵ (x1:n) :=
Pn

i=1 � (xi) and ↵ denoting the pa-
rameters in � (·).
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For q (x1:n, v|✓) we consider dynamics embedding with
an RNN or flow-model as the initial distribution; see Ap-
pendix A.1 for parameterization and Appendix F for imple-
mentation details. We denote the parameters in q (x1:n, v|✓)
as �. We also denote the objective in (21) as L (↵,�;w0).
Then, we can use stochastic gradient descent for (21) to
optimize W = (↵,�, w0), as illustrated in Algorithm 1.

5. Applications
We test conditional EBPs on two supervised learning tasks:
1D regression and image completion, and unconditional
EBPs on three unsupervised tasks: point cloud generation,
representation learning, and denoising. Details of each ex-
periment can be found in Appendix F.

5.1. Supervised Tasks

1D regression. In order to show that EBPs are more flex-
ible than GPs, NPs and VIPs in modeling complex distri-
butions, we construct a two-mode synthetic dataset of i.i.d.
points whose means form two sine waves with a phase offset.
In this setting, ti corresponds to the horizontal axis of the
sine wave and xti corresponds to the values on the vertical
axis. At every training step, we randomly select a sub-
set of the points as observations and estimate the marginal
distribution of the observed and unobserved points similar
to Garnelo et al. (2018b). We visualize the ground truth
and learned energy functions of GP , NP , VIP and EBP

in Figure 1. Clearly, EBP succeeds as GP and NP fail to
capture the multi-modality of the underlying data distribu-
tion. More comparisons can be found in Appendix G.1.

Image completion. An image can be represented as a set
of n pixels {(ti, xti)}

n
i=1, where ti 2 R2 corresponds to

the Cartesian coordinates of each pixel and xti corresponds
to the channel-wise intensity of that pixel (xti 2 R for
grayscale images and xti 2 R3 for RGB images). Con-
ditional EBPs perform image completion by maximizing
p(xti:tn | {ti}

n
i=1).

We separately train two conditional EBPs on the
MNIST (LeCun, 1998) and the CelebA dataset (Liu et al.,
2015). Examples of completion results are shown in Fig-
ure 2 and Figure 3. When a random or consecutive subset
of pixels are observed, our method discovers different data
modes and generates different MNIST digits, as shown
in Figure 2. When a varying number of pixels are observed
as in Figure 3, completion with fewer observed pixels (col-
umn 2) can lead to a face that is much different from the
original face than completion with more observed pixels
(column 5), revealing high variance when the number of
observations is small (similar to GPs). More examples of
image completion can be found in Appendix G.

Figure 2. Image completion on MNIST. The first row shows the
unobserved pixels in gray and observed pixels in black and white.
The second and third rows are two different generated samples
given the observed pixels from the first row. Generations are based
on randomly selected pixels or the top half of an image.

Figure 3. Image completion on CelebA. The first row shows the
unobserved pixels in black with an increasing number of observed
pixels from left to right (column 1-5). The second row shows the
completed image given the observed pixels from the first row.

5.2. Unsupervised Tasks on Point Clouds

Next, we apply unconditional EBPs to a set of unsupervised
learning tasks for point clouds. A point cloud represents
a 3D object as the Cartesian coordinates of the set of ex-
changeable points {xi}

n
i=1 ⇢ R3, where n is the number

of points in a point cloud and can therefore be arbitrarily
large. Since the point cloud data does not depend on in-
dex ti, they are modeled by unconditional EBPs which
integrate over {ti}

n
i=1, leading to the unconditional objec-

tive p (x1:n) =
R
p (xt1:tn | {ti}

n
i=1) p ({ti}

n
i=1) d {ti}

n
i=1

as first introduced in (12).

Point cloud related work. Earlier work on point cloud
generation and representation learning simply treats point
clouds as matrices with a fixed dimension (Achlioptas et al.,
2017; Gadelha et al., 2018; Zamorski et al., 2018; Sun et al.,
2018), leading to suboptimal parameterizations as permuta-
tion invariance and arbitrary cardrinality of exchangeable
data are violated by this representation. Some of the more
recent work tries to overcome the cardinality constraint by
trading off flexibility of the model. For instance, Yang
et al. (2019) uses normalizing flow to transform an arbitrary
number of points sampled from the initial distribution, but
requires the transformations to be invertible. Yang et al.
(2018), as another example, transforms 2D distributions to
3D targets, but assumes that the topology of the generated
shape is genus-zero or of a disk topology. Li et al. (2018)
demonstrate the straightforward extension of GAN is not
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Figure 4. Example point clouds of airplane, chair, and car gener-
ated from the learned model.

Figure 5. Energy distributions of the generated samples (fake) and
training data (real). x-axis is the energy value and y axis is the
count of examples. The energy distributions of the generated and
real point clouds show significant overlap.

valid for exchangeable data, and then, provide some ad-
hoc strategies to make up such deficiency. Their generator
in the proposed PC-GAN is conditional on observations,
which restricts the usages of the model. Among all genera-
tive models for point clouds considered here, EBPs are the
most flexible in handling permutation-invariant data with
arbitrary cardinality.

Point cloud generation. We train one unconditional
EBP per category on airplane, chair, and car from the
ShapeNet dataset (Wu et al., 2015). Figure 4 shows the
accumulative output of the model (see more generated ex-
amples in Appendix G). We plot the energy distributions
of all real and generated samples for each object category
in Figure 5. EBPs have successfully learned the desired dis-
tributions as the energies of real and generated point clouds
show significant overlap.

We compare the generation quality of EBPs with the pre-
vious state-of-the-art generative models for point clouds
including l-GAN (Achlioptas et al., 2017), PC-GAN (Li
et al., 2018), and PointFlow (Yang et al., 2019). Following
these prior work, we uniformly sample 2048 points per point

Table 1. Generation results. ": the higher the better. #: the lower
the better. The best scores are highlighted in bold. JSD is scaled
by 102, MMD-CD by 103, and MMD-EMD by 102. Each number
for l-GAN is from the model trained using either CD or EMD loss,
whichever one is better.

JSD (#) MMD (#) COV (%, ")

Category Model CD EMD CD EMD

Airplane

l-GAN 3.61 0.239 3.29 47.90 50.62
PC-GAN 4.63 0.287 3.57 36.46 40.94
PointFlow 4.92 0.217 3.24 46.91 48.40
EBP (ours) 3.92 0.240 3.22 49.38 51.60

Chair

l-GAN 2.27 2.46 7.85 41.39 41.69
PC-GAN 3.90 2.75 8.20 36.50 38.98
PointFlow 1.74 2.42 7.87 46.83 46.98
EBP (ours) 1.53 2.59 7.92 47.73 49.84

Car

l-GAN 2.21 1.48 5.43 39.20 39.77
PC-GAN 5.85 1.12 5.83 23.56 30.29
PointFlow 0.87 0.91 5.22 44.03 46.59
EBP (ours) 0.78 0.95 5.24 51.99 51.70

cloud from the mesh surface of ShapeNet, use both Chamfer
distance (CD) and earth mover’s distance (EMD) to measure
similarity between point clouds, and use Jensen-Shannon
Divergence (JSD), Minimum matching distance (MMD),
and Coverage (COV) as evaluation metrics. Table 1 shows
that EBP achieves the best COV for all three categories
under both CD and EMD, demonstrating EBPs advantage
in expressing complex distributions and avoiding mode col-
lapse. EBP also achieves the lowest JSD for two out of
three categories. More examples of point cloud generation
can be found in Appendix G.

Unsupervised representation learning. Next, we evalu-
ate the representation learning ability of EBPs. Following
the convention of previous work, we first train one EBP on
all 55 object categories of ShapeNet. We then extract the
Deep Sets output (✓ in our model) for each point cloud in
ModelNet40 (Wu et al., 2015) using the pre-trained model,
and train a linear SVM using the extracted features. Ta-
ble 2 shows that our method achieves the second highest
classification accuracy among the seven state-of-the-art un-
supervised representation learning methods, and is only
0.1% lower in accuracy than the best performing method.
Since categories in ShapeNet and ModelNet40 only par-
tially overlap, the representation learning ability of EBPs
can generalize to unseen categories.

Point cloud denoising. Lastly, we apply EBPs to point
cloud denoising by running MCMC sampling using noisy
point clouds as initial samples. To create noisy point clouds,
we perturb samples from the initial distribution by selecting
a random point from the set and add Gaussian perturbations
to points within a small radius r of the selected point. We
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Table 2. Classification accuracy on ModelNet40. Models are pre-
trained on ShapeNet before extracting features on ModelNet40.
Linear SVMs are then trained using the learned representations.

Model Accuracy

VConv-DAE (Sharma et al., 2016) 75.5
3D-GAN (Wu et al., 2016) 83.3

l-GAN (EMD) (Achlioptas et al., 2017) 84.0
l-GAN (CD) (Achlioptas et al., 2017) 84.5

PointGrow (Sun et al., 2018) 85.7
MRTNet-VAE (Gadelha et al., 2018) 86.4

PointFlow (Yang et al., 2019) 86.8
PC-GAN (Li et al., 2018) 87.8

FoldingNet (Yang et al., 2018) 88.4
EBP (ours) 88.3

then perform 20 steps of Langevin dynamics with a fixed
step size while keeping the unperturbed points fixed. Results
in Figure 6 show that the gradient of our learned energy
function is capable of guiding the MCMC sampling to re-
cover the original point clouds. More examples of denoising
can be found in Appendix G.

Figure 6. Examples of point cloud denoising using MCMC sam-
pling. From left to right: original, perturbed, and denoised point
clouds.

6. Conclusion
We have introduced a new energy-based processes represen-
tation, EBPs, that unifies the stochastic process and latent
variable modeling perspectives for set distributions. The pro-
posed framework enhances the flexibility of current process
and latent variable approaches, with provable exchangeabil-
ity and consistency, in the conditional and unconditional

settings respectively. We have also introduced a new neu-
ral collapsed inference procedure for practical training of
EBPs, which connects the EBPs to GPPs, and demon-
strated strong empirical results across a range of problems
that involve conditional and unconditional set distribution
modeling. Extending the approach to distributions over sets
of discrete elements remains an interesting direction for
future research.
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