
Appendix
A. Adversarial Dynamics Embedding
The details of ADE derivations were originally provided in (Dai et al., 2019). We include relevant details here for
completeness, since we make explicit use of these techniques in our training methods.

Given the EBM with pf (x) / exp (f (x)), ADE considers the augmented model

pf (x, v) / exp
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, (A.1)

where v is the auxiliary momentum variable. It has been proved in Dai et al. (2019) that the MLE of (A.1) is the same as the
original model, i.e.,
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We then apply the primal-dual view of the MLE to the augmented model, leading to
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where q (x, v) is the dual sampler in the exponential family of distributions.

To ensure that the dual sampler q (x, v) is flexible and tractable, ADE utilizes the dynamics embedding parametrization.
Specifically, we consider the Hamiltonian dynamics embedding as an example. In this setting, the sample first comes from
an initial distribution
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where ⌘ is defined as the leapfrog stepsize. After T iterations, we obtain
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where Lf,⌘ can be one layer of the neural network. Together with the initial distribution q
0
! , we obtain the parametrization of

q (x, v) with learnable parameters (⌘,!). As justified in Dai et al. (2019), this parametrization is flexible and has a tractable
density,
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By plugging this parametrization into (A.3), we obtain the final objective,
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Dai et al. (2019) also introduces the Langevin and generalized Hamiltonian dynamics embedding for dual density parametriza-
tion in ADE. For more details, please refer to Dai et al. (2019).

A.1. Dynamics Embedding Distribution Parametrization

We now present the concrete implementation of the dual sampler q (x1:n, v|✓) used in our paper. Following the ADE
technique introduced above, parametrization of q (x1:n, v|✓) is separated into parameterizing the initial distribution and
the dynamics embedding. In our real-data experiment, we use the block RNN to parametrize q

0
! (x1:n, v|✓), as introduced

in Appendix F.1. Block RNN is simply a design choice; other alterantives such as normalizing flows can also parametrize
q
0
! (x1:n, v|✓), as shown in our synthetic-data experiment.
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The output of the RNN is then treated as the starting sample to which T Hamiltonian/Langevin dynamics updates are applied,
i.e., �
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where L can be either a Hamiltonian layer or a Langevin layer as specalized below,
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with v
0 = {v

0
i}

n
i=1.

Langevin layer: (x0
1:n, v

0) = L⇠
f,⌘ (x1:n) :=

 
v
0
i = ⇠i +

⌘
2rxf (xi; ✓)

x
0
i = xi + v

0
i

����� i = 1, . . . , n

!
, (A.10)

with ⇠ = {⇠i}
n
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Finally, following Theorem 4 in Dai et al. (2019), we obtain the parametrized dual sampler with tractable density as
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Langevin embedding: q
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By plugging this into the primal-dual view objective (21), we are able to learn the paramters in EBPs and dual samplers.

B. Derivation of Special Cases of EBPs
In this section, we provide the details for instantiating (un)conditional EBPs to other specific models.

B.1. Latent Variable Representation of Gaussian Processes

We consider the latent variable model specified in (8), i.e.,

✓ ⇠ N (0, Id) , (B.1)
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To show that the marginal distribution follows

p (xt1:tn | {ti}
n
i=1) = N

�
0,K (t1:,n) + �

2
In

�
,

we integrate out of ✓, i.e.,

p (xt1:tn | {ti}
n
i=1) =

Z nY

i=1

p (x|ti, ✓) p (✓) d✓ = N

⇣
0,�2

In + � (t1:n)
>
� (t1:n)

⌘
,

where the last equation come from the integration of Gaussians. This shows that GPs under the latent variable parametrization
are a special case of EBPs.

B.2. Latent Variable Representation of Student-t Processes

We consider the latent variable model specified in (10), i.e.,
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To show the marginal distribution follows
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and by integrating over �, we have
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This shows that T Ps under the latent variable parametrization are a special case of EBPs.

B.3. Topic Models

The topic models, including Bayesian sets (Ghahramani & Heller, 2005), probabilistic latent semantic index (Hofmann,
1999), latent Dirichlet allocation (LDA) family (Blei et al., 2003; Blei & Lafferty, 2007; Blei & McAuliffe, 2007), and
replicated softmax (Hinton & Salakhutdinov, 2009), are also special cases of the unconditional EBPs.

Here we consider the original LDA and replicated softmax as examples of directed and undirected topic models respectively.
Other models follow a similar consideration.

Latent Dirichlet Allocation LDA is a representative of the directed topic model, which treats a document as a set of
words. The model defines each component in (12) as

p (ti) = Dir-Multi (↵) ,

p (xti |ti) = Multi
�
�>1ti

�
, i = 1, . . . , n,

where ti 2 {1, . . . , d} denotes the topic of each word and follows the Dirichlet-Multinomial distribution. The xi is a
k-dimensional one-hot encoding for each word in the vocabulary. � is a d⇥k matrix where each row denotes the distribution
of words in one topic.

Replicated Softmax The replicated softmax (Hinton & Salakhutdinov, 2009) is proposed as an undirected topic model,
which defines the joint distribution in (12) as a restricted Boltzmann machine with a linear potential function, i.e.,
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where ✓ 2 {0, 1}d can be seen as the latent topic assignment. Each xi is a k-dimensional indication vector with only one
element equals to 1 and the rest equal to 0. Together {xi}

n
i=1 denote the one-hot encodings for the observed words in the

document.

As a result, LDA and replicated softmax are special realizations of uncondtional EBPs, where the index variables are either
explicit defined or integrated out.
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C. Proof Details of Theorem 2
Theorem 2 If n > m > 1, and prior is exchangeable and consistent, then the marginal distribution p (x1:n) will be

exchangeable and consistent.

Proof We simply verify the consistency of p (x1:n) under the consistency of p ({ti}
m
i=1).

Z
p (x1:n) dxm+1:n

=

Z Z
p (xt1:tn | {ti}

n
i=1) p ({ti}

n
i=1) d {ti}

n
i=1 dxm+1:n

=

Z ✓Z
p (xt1:tn | {ti}

n
i=1) dxm+1:n

◆
p ({ti}

n
i=1) d {ti}

n
i=1

=

Z
p (xt1:tm | {ti}

m
i=1)

✓Z
p ({ti}

n
i=1) dtm+1:n

◆
dt1:m

=

Z
p (xt1:tm | {ti}

m
i=1) p ({ti}

m
i=1) dt1:m = p (x1:m) .

The exchangeability of p (x1:n) directly comes from the exchangeablity of p (xt1:tn) and p ({ti}
n
i=1),

p (x1:n) =

Z
p (xt1:tn | {ti}

n
i=1) p ({ti}

n
i=1) d {ti}

n
i=1

=

Z
p (⇡ (xt1:tn) |⇡ ({ti}

n
i=1)) p (⇡ ({ti}

n
i=1)) d {ti}

n
i=1

= p (⇡ (xt1:tn))

D. More Details of Inference
D.1. Further Neural Collapsed Inference for Unconditional EBPs

In the main text, we introduce the neural collapsed inference for EBPs to eliminate the posterior inference of {ti}
n
i=1. We

can further exploit the neural collapsed inference idea to eliminate ✓.

Recall the model with {ti}
n
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where we denote w
00 = {w̃

0
, u

0
}. The last approximation comes from the fact that

1) the integration over ✓ leads to a distribution over x1:n 2 ⌦
n⌦;

2) since p (x1:n) is an integration of latent variable model, it should be exchangeable.

Therefore, we consider deepsets (Zaheer et al., 2017) in the reparametrized EBM as a special choice of (D.1), which satifies
these two conditions in order to approximate the integrated model.

The attention mechanism is another choice for the reparametrized EBM, i.e.,
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We can apply ADE to such neural collapsed reparametrization if the task only concerns set generation (i.e., does not use ✓).
We take the deepsets parametrization (D.1) as an example (the attention parametrization follows similarly). Specifically, we
learn the parameters in w
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Following the ADE technique, we can parametrize the initialization distribution q
0
!
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x
0
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�

using an RNN and refine
q ({xi}

n
i=1 , v) with learnable Hamiltonian/Langevin dynamics as introduced in Section A.

Connection to Gibbs Point Processes (GPPs) and Determinantal Point Processes (DPPs): In fact, if we adopt the
most general model collapsed unconditional EBP for arbitrary n, we obtain

pw00 (x1:n) =
1

Zw00
exp (fw00 (x1:n)) , (D.3)

which includes the Gibbs point processes (Dereudre, 2019) with fw00 satisfying several mild conditions for the regularity
of GPP . Particularly, the determinatal point processes (Lavancier et al., 2015; Kulesza et al., 2012) can be instantiated
from GPP by setting the potential function to be log det of some kernel function, which can also be parametrized by neural
network, e.g., Xie et al. (2016).

Therefore, the proposed algorithm can straightforwardly applied for (deep) GPPs and DPPs learning. It should be
emphasized that by exploiting the proposed primal-dual MLE framework, we automatically obtain a deep neural network
parametrized dual sampler with the learned model simultaneously, which can be used in inference and bypass the notorious
sampling difficulty in GPP and DPP .

D.2. Inference for Conditional EBP

In the conditional EBP setting where the index {ti}
n
i=1 are given for any cardinality n, we are modeling:

p (xt1:tn | {ti}
n
i=1) =

Z nY
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p(x|✓, ti)p(✓)d✓ (D.4)

For simplicity, we use capital letters to denote the set. We denote Ttrain, Xtrain as the observed sets of points, and
Ttest, Xtest as the un-observed inputs and targets. For the rest of this section, we denote T = Ttrain [ Ttest and
X = Xtrain [Xtest. Then the predictive model is to infer

p(Xtest|T,Xtrain) =
p(Xtrain, Xtest|T )P
X0 p(Xtrain, X

0|T )
=

p(Xtrain, Xtest|T )

p(Xtrain|T )
=

p(Xtrain, Xtest|T )

p(Xtrain|Ttrain)
(D.5)
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where the last equal sign is due to the consistency condition of stochastic processes. Below we briefly review several existing
conditional neural processes.

D.2.1. REVIEW OF CONDITIONAL NEURAL PROCESSES

The learning of processes is generally done via maximizing the marginal likelihood p(X|T ). The following neural processes,
however, perform learning by maximizing the predictive distribution p(X|T,Xtrain) directly.

Conditional Neural Processes (Garnelo et al., 2018a) directly parametrize the conditional distribution p(X|T,Xtrain)
as:

p(X|T,Xtrain) =

|X|Y

i=1

N (xti |µti ,�ti) (D.6)

where µti and �ti are outputs of some neural network g(ti, Ttrain, Xtrain) with permutation invariance.

Neural Processes (Garnelo et al., 2018b) model the distribution of p(X|T ) as

p(X|T ) =
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N (xti |g(ti, ✓),�)p(✓)d✓, (D.7)

where g(ti, ✓) can be learned using ELBO:

log p(X|T ) > Eq(✓|T,X)

h |X|X
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logN (xti |g(ti, ✓),�) + log p(✓)� log q(✓|T,X)
i
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During learning, however, Garnelo et al. (2018b) again performs MLE on the predictive model:

log p(Xpred|T,Xcontext) > Eq(✓|T,X)

h X

xtj2Xpred

logN (xtj |g(tj , ✓),�) + log p(✓|Tcontext, Xcontext)� log q(✓|T,X)
i
,

(D.9)
where Xcontext denotes a subset of Xtrain and Xpred = Xtrain \Xcontext, that are randomly splitted from Xtrain. The
p(✓|Tcontext, Xcontext) is the true posterior after observing Tcontext, Xcontext. This posterior then serves as the prior of the
predictive model according to Bayes’ rule. However, since p(✓|Tcontext, Xcontext) is not tractable in general, Garnelo et al.
(2018b) uses q(✓|Tcontext, Xcontext) to approximate this term instead.

Attentive Neural Processes (Kim et al., 2019) is an extension to Neural Processes (Garnelo et al., 2018b) by using
self-attention to parametrize the variational posterior. Besides ✓ from the variational posterior, their model also adds the
deterministic context embedding r computed using attention, together with location xti , into the mean function g(xti , r, ✓).
Other than these differences, the training procedure is the same as Garnelo et al. (2018b), which still uses Gaussian for
observation modeling.

D.2.2. LEARNING CONDITIONAL EBP

The proposed EBPs exploits flexible energy-based model, intead of Gaussian distributions in NPs and theirs variants:

p(X|T, ✓) / exp (f(X,T ; ✓)) p(✓) / exp
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@
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The ELBO then becomes:

log p(X|T ) > Eq(✓|T,X)

h |X|X

i=1

f(xti , ti; ✓))�A(✓, ti) + log p(✓)� log q(✓|T,X)
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where A(✓, t) = log
R
exp(f(x, t; ✓))dx is the log partition function.
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Using the ADE technique, we have A(✓, t) = maxq0(x|✓,t) Eq0(x|✓,t) [f(x, t; ✓)] +H(q0). By plugging this into the ELBO,
we arrive at the learning objective which tries to maximize the marginal likelihood w.r.t.

max
q,h

min
q0

Eq(✓|T,X)

h
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i
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Different from the family of neural processes, we are able to directly optimize for p(X|T ) using the above objective. We
can easily learn the predictive distribution p(X|T,Xtrain) similar to other neural processes by replacing the prior with the
variational posterior from the observed set Ttrain, Xtrain.

D.2.3. PREDICTION USING EBPS

Without loss of generality, we illustrate the prediction of a single point (t, x) given the training set, namely
p(x|t,Xtrain, Ttrain).

As is pointed out in Eq (D.5), p(x|t,Xtrain, Ttrain) / p(x,Xtrain|t, Ttrain). We use the variational posterior (denoted as
q(✓) below for simplicity) to approximate the lower bound:
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where
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In practice, we use q(✓|Xtrain|Ttrain) to replace the above p(✓), which results in the predictive distribution approximated
by:
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E. Additional Related Work
The proposed EBPs bridge the gap between stochastic processes and models of exchangeable data. We summarize these
two related topics below:

Stochastic Processes. Exploiting stochastic processes for conditional distribution modeling has a long line of research,
starting from Gaussian processes for regression (Williams & Rasmussen, 1996) to being generalized to classification (Opper
& Winther, 2000) and ordinal regression (Chu & Ghahramani, 2005). One of the major bottlenecks of GPs is the memory
and computational costs — O

�
N

2
�

in memory and O
�
N

3
�

in computation respectively, where N denotes the number of
training samples. Although low-rank and sparse approximations have been proposed (Williams & Seeger, 2000; Quiñonero-
Candela & Rasmussen, 2005; Snelson & Ghahramani, 2007; Titsias, 2009; Hensman et al., 2013) to reduce these costs,
flexibilty of GPs and its variants remains a critical issue to be addressed.

Student-t processes are derived by adding the inverse-Wishart process prior to the kernel function (Shah et al., 2014),
allowing the kernel function to adapt to data. As we discussed in Section 3.2, student-t processes essentially rescales each
dimention in the likelihood model, and thus still has restricted modeling flexibilty. Another line of research to further
improve the flexibility of GPs is to introduce structures or deep compositions into kernels, such as Duvenaud et al. (2013);
Damianou & Lawrence (2012); Bui et al. (2016); Wilson et al. (2016); Al-Shedivat et al. (2017). Even though neural
networks can be incorporated in constructing these kernels, the likelihood estimations of these models are still restricted to
known distributions, limiting their modeling flexibility.
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Neural processes (Garnelo et al., 2018b) and its varaints (Garnelo et al., 2018a; Kim et al., 2019; Louizos et al., 2019)
introduce neural networks to stochatic processes beyond GPs. However, their likelihoods are still restricted to known
distributions, e.g., Gaussian. Besides the modeling restriction, these models are learned by maximizing log-predictive
distribution, rather than the log-marginal distibution, which may lead to suboptimial solutions.

The most competitive model w.r.t. EBPs is the implicit processes (Ma et al., 2018), which uses the implicit models as the
likelihood in (4). However, due to the intractability of the implicit likelihood, GPs are introduced for variational inference,
which negatively impacts the initially designed flexility in implicit processes, as demonstrated in Section G.1.

Exchangeable Probabilistic Models. The generative models for exchangeable data is a separate research topic which
mostly relies on the De Finetti’s Theorem. Bayesian sets (Ghahramani & Heller, 2005) considers the latent variable
model with Bernoulli distribution likelihood and beta prior for a set of binary data. The conjugacy of Bernoulli and beta
distributions leads to tractability in Bayesian inference, but limits the flexibility. Topic models, e.g., pLSI (Hofmann,
1999), LDA family (Blei et al., 2003; Blei & Lafferty, 2007; Blei & McAuliffe, 2007), and replicated softmax (Hinton &
Salakhutdinov, 2009) generalize Bayesian sets by introducing more complicated local latent variables, but the likelihood is
still restricted to simple distributions.

To make distribution modeling more flexible, neural networks have been introduced to likelihood estimation of latent
variable models (Edwards & Storkey, 2016). However, this work only exploits the analytic form of parametrization within
known distributions. Korshunova et al. (2018); Yang et al. (2019) use normalizing flows to improve modeling flexibility
of exchangeable data. Flow-based models, compared to EBPs, still restrict the underlying distribution (by requiring the
transformations to be invertable), and therefore cannot fully utilize the expressiveness of neural networks.

The Gibbs point processes (Dereudre, 2019), including Poission point processes, Hawkes point processes (Hawkes, 1971)
and determinantal point processes (Lavancier et al., 2015; Kulesza et al., 2012) as special cases, is also an alternative flexible
model for exchangeable data. As we discussed in Appendix D.1, by the neural collapsed inference technique, we reduce the
collapsed EBP to GPP , which implies the flexibility of the proposed EBP . Moreover, this connection also highlights that
the proposed primal-dual ADE can be used for GPP and DPP estimation.

F. Experiment Details
F.1. Architecture and Training Details

As preluded in Section D, we use deepsets (Zaheer et al., 2017) to parametrize q(✓|x1:n) as a diagonal Gaussian. Specifically,
each input xi undergoes 1D-convolutions with kernel size 1 and filter sizes {128, 256} for synthetic-data experiments
and filter sizes {128, 256, 256, 512} for image completion and point-cloud generation. The 1D-convolution layers are
interleaved with ReLU, followed by max-pooling across inputs in the embedding space. We then use the reparametrization
trick (Kingma & Welling, 2013) to sample ✓ from the resulting Gaussian. To compute the energy of a single input f(xi; ✓),
each xi is concatenated with ✓ and followed by fully connected layers of {128, 64, 1} neurons each interleaved with ReLU.
The energy of the set, f(x1:n; ✓), is the average energy of all inputs in the set.

To obtain the ADE initialization distribution q
0
�
x
0
1:n|✓

�
on synthetic data, we first use a 2-layer hyper-network (Ha et al.,

2017) with 256 hidden neurons each to output the parameters for a 10-layer normalizing planar flow model (Rezende
& Mohamed, 2015). The planar flow then takes both ✓ (learned from Ttrain and Xtrain) and the target indices Ttest as
inputs to produce q

0
�
x
0
t1:tn |✓

�
. For the synthetic experiments, we directly use q

0
�
x
0
1:n|✓

�
as the sampler output without

performing additional Hamiltonian/Langevin dynamics, which is sufficient to capture the synthetic data distributions.

To obtain q (x1:n, v|✓) for image completion and point-cloud generation, we first parametrize the initialization distribution
q
0
�
x
0
1:n|✓

�
using an RNN where each recurrent LSTM block consists of an MLP with {64, 128, 512} hidden neurons

interleaved with ReLU. Each LSTM block outputs the mean and variance of a diagonal Gaussian of dimension k times
d, where k (block size) is the number of elements generated at once, and d is the dimension of each element. For image
completion, k equals the number of pixels in a row of an image (e.g., 28 for MNIST and 32 for CelebA), and d equals the
number of channels of a pixel (1 for MNIST and 3 for CelebA). For point-cloud generation, we have k = 512 and d = 3.
We considered a range of k values from 32 to 2048, and selected k based on the best completion/generation performance.
The number of recurrent RNN blocks equals the total number of elements in the final generated set (784 for MNIST, 1024
for CelebA, and 2048 for point clouds) divided by k. Using the RNN output as the initialization distribution q

0
�
x
0
1:n|✓

�
, we

then perform T = 20 steps of Langevin dynamics similar to Xie et al. (2016) with step size ⌘ = 0.1 and ⇠i ⇠ N (0, 0.05)
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while clipping rxf to 0.1.

We use spectral normalization in training the energy function and batch normalization in training the sampler. We use Adam
with learning rate 10�4 to optimize all of our models. We set �1 = 0.5 for image completion and �1 = 0.0 for the synthetic
experiments and for point-cloud generation. The coefficient of H(q (x1:n, v|✓)) in (1) is set to 10�5. All tasks are trained
until convergence using batch size 64 on a single NVIDIA V100 GPU with 32 GB memory.

F.2. Point-Cloud Preprocessing

Following Achlioptas et al. (2017), we use shapes from ShapeNet (Wu et al., 2015) that are axis aligned and centered into the
unit sphere. For the point-cloud classification task, we apply random rotations along the gravity axis following Achlioptas
et al. (2017); Yang et al. (2019), and also normalize shapes from ModelNet40 (Wu et al., 2015) the same way. For generation,
the model is trained on the official training split and evaluated on the test split of ShapeNet (where the train-validation-test
splits are 70%-20%-10%) similar to Yang et al. (2019).

F.3. Point-Cloud Model Selection

We follow the model selection protocol of Achlioptas et al. (2017), namely select the model with the smallest JSD and
reports other measurements of this model. Measurements are created every 100 epochs. We noticed that the measurement
of JSD and COV are relatively robust across different evaluation runs, whereas the MMD measurement (due to its small
magnitude, e.g., 10�4) is less robust.

F.4. Point-Cloud Generation Metrics

Following Achlioptas et al. (2017); Yang et al. (2019), we use Chamfer distance (CD) and earth mover’s distance (EMD)
defined below to measure distance between point clouds.

dCD(X,X
0) =

X

xi2X

min
x0
i2X0

kxi � x
0
ik2 +

X

x0
i2X0

min
xi2X

kxi � x
0
ik2, (F.1)

dEMD(X,X
0) = min

�:X!X0

X

xi2X

kxi � �(xi)k2. (F.2)

Similarly, we use Jensen-Shannon Divergence (JSD), Minimum matching distance (MMD), and Coverage (COV) defined
below to evaluate generation quallity.

• JSD is computed between the marginal distribution of the entire reference set (pr) and the marginal distribution of the
entire generated set (pg) of point clouds, specifically,

JSD(pg, pr) =
1

2
DKL(pr||pm) +

1

2
DKL(pg||pm) , (F.3)

where pm = 1
2 (pr + pg) and DKL stands for the Kullback-Leibler divergence. JSD only measures similarity at the

marginal distribution level, and does not provide insights on the generation quality of each individual point cloud.

• MMD measures the average distance between a point-cloud in the reference set Sr and its closest neighbor in the
generated set Sg , namely

MMD(Sg, Sr) =
1

|Sr|

X

X2Sr

min
X02Sg

d(X,X
0), (F.4)

where d(X,X
0) is the distance between two point clouds according to either CD or EMD.

• COV measures the ratio of point clouds in the reference set Sr that are matched to a distinct closest neighbor in the the
generated set Sg:

COV(Sg, Sr) =
1

|Sr|
|{arg min

X2Sr

d(X,X
0)|X 0

2 Sg}|. (F.5)

where d(X,X
0) can again be based on CD or EMD. COV reflects the generation diversity.
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G. More Experimental Results
G.1. Additional Comparisons on Synthetic Data

We comapre the proposed EBPs with Gaussian processes (GPs), neural processes (NPs)4, and variational implicit
processes (VIPs)5.

Figure 7 shows the ground truth data and the normalized probability heatmap for each process. To generate data given an
index ti, we randomly select one of the two modes (e.g., one of the sine waves) as the mean and adds ✏ ⇠ N (0, 0.1) noise
to produce xti . We plot the heatmap of the learned predictive distribution of each process. For EBP , we use (D.15) to
approximate p(xti |ti).

Figure 7. The ground truth data and learned energy functions of GP , NP , VIP , and EBP (from left to right). EBP successfully captures
multi-modality of the toy data as GP , NP , and VIP exhibiting only a single mode.

4https://github.com/deepmind/neural-processes
5 https://github.com/LaurantChao/VIP
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G.2. Additional Image Completion Results on MNIST

Figure 8. Additional image completion results on MNIST where the top half of the image serves as context.

Figure 9. Additional image completion results on MNIST where 10, 100, and 1000 (top to bottom) random pixels serve as context.

Figure 8 shows additional image completion results on MNIST when only the upper-half of an image is given. Figure 9
shows MNIST completion results when 10, 100, and 1000 randomly selected pixels are given.
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G.3. Additional Image Completion Results on CelebA

Figure 10. Additional image completion results on CelebA for both contiguous (right-most) and random pixels as context.

Figure 10 shows additional completion results on CelebA where 10, 100, 500, 800, 1000 randomly selected pixels are given
and when a 16x16 square is removed from the original 32x32 image.
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G.4. Additional Point-Cloud Generation Restuls

Figure 11. Additional examples of airplane, chair, and car point-cloud generation with 4 RNN blocks of block size 512.
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G.5. Additional Point-Cloud Denoising Restuls

Figure 12. Additional examples of airplane, chair, and car point-cloud denoising. Left to right: original, perturbed, denoised point clouds.


