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Abstract
In this paper, we study a family of non-convex and
possibly non-smooth inf-projection minimization
problems, where the target objective function is
equal to minimization of a joint function over an-
other variable. This problem include difference of
convex (DC) functions and a family of bi-convex
functions as special cases. We develop stochastic
algorithms and establish their first-order conver-
gence for finding a (nearly) stationary solution
of the target non-convex function under differ-
ent conditions of the component functions. To
the best of our knowledge, this is the first work
that comprehensively studies stochastic optimiza-
tion of non-convex inf-projection minimization
problems with provable convergence guarantee.
Our algorithms enable efficient stochastic opti-
mization of a family of non-decomposable DC
functions and a family of bi-convex functions.
To demonstrate the power of the proposed algo-
rithms we consider an important application in
variance-based regularization. Experiments verify
the effectiveness of our inf-projection based for-
mulation and the proposed stochastic algorithm in
comparison with previous stochastic algorithms
based on the min-max formulation for achieving
the same effect.

1. Introduction
In this paper, we consider a family of non-convex and possi-
bly non-smooth problems with the following structure

min
x∈X

F (x) := {g(x) + min
y∈dom(h)

h(y)− 〈y, `(x)〉}, (1)

where X ⊆ Rd is a closed convex set, g : X → R is lower-
semicontinuous, h : dom(h)→ R is uniformly convex, ` :
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X → Rm is a lower-semicontinuous differentiable mapping,
and 〈·, ·〉 is the inner product. The requirement of uniform
convexity on h is to ensure the inner minimization problem
is well defined and its solution is unique (cf. Section 2).
Define f(x, y) = g(x) + h(y) − 〈y, `(x)〉, the objective
function F (x) is called the inf-projection of f(x, y) in the
literature. When g is convex, depending on dom(h), the two
subfamilies of above problem (1) deserve more discussion:
difference of convex (DC) and bi-convex functions.

DC functions. When g is convex and dom(h) ⊆ Rm+ and `
is convex 1, the inf-projection minimization problem (1) is
equivalent to the following DC functions,

min
x∈X

F (x) =
{
g(x)− h∗(`(x))

}
, (2)

where h∗ denotes the convex conjugate function of h, the
convexity of the second component h∗(`(x)) is following
the composition rule of convexity (Boyd & Vandenberghe,
2004) 2. Minimizing DC functions has wide applications in
machine learning and statistics (Nitanda & Suzuki, 2017;
Kiryo et al., 2017). Although stochastic algorithms for DC
problems have been considered recently (Nitanda & Suzuki,
2017; Xu et al., 2018a; Thi et al., 2017), working with the
inf-projection minimization (1) is preferred when h∗(`(x))
is non-decomposable such that an unbiased stochastic gradi-
ent of h∗(`(x)) is not easily accessible as that of 〈y, `(x)〉
in (1). Inspired by this scenario, let us particularly con-
sider an important instance variance-based regularization. It
refers to a learning paradigm that minimizes the empirical
loss and its variance simultaneously, by which a better bias-
variance trade-off may be achieved (Maurer & Pontil, 2009).
To give a condensed understanding of its connection to the
inf-projection formulation, we can re-formulate the prob-
lem (cf. the details and comparison with a related convex
objective of (Namkoong & Duchi, 2017) in Section 5):

min
x∈X

1

n

n∑

i=1

li(x) + λ
1

2n

n∑

i=1

(li(x))2 − λ

2

( 1

n

n∑

i=1

li(x)
)2

,

(3)

where li(x) : X → R+ is the loss function of a model
x on the i-th example and λ > 0 is a regularization pa-

1dom(h) ⊆ Rm
− and ` is concave can be transferred to the

considered case by a variable change.
2Note that h∗ is monotonically increasing iff dom(h) ⊆ Rm

+ .
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Table 1. Summary of results for finding a (nearly) ε-stationary solution in this work under different conditions of g, h and `. SM means
smoothness, Lip. means Lipschitz continuous, Diff means differentiable, MO means monotonically increasing or decreasing for h∗, CVX
means convex, and UC means p-uniformly convex (p ≥ 2), v = 1/(p− 1).

g h (h∗) ` Alg. Mini-Batch Compl.

SM UC & simple SM & Lip MSPG (Section 3) Yes O(1/ε4/v)

SM & CVX UC (MO) Diff & Lip & CVX St-SPG (Section 4) No O(1/ε4/v)

Lip & CVX UC (MO) SM & Lip & CVX St-SPG (Section 4) No O(1/ε4/v)

rameter. The above problem (3) is a special case of (2) by
regarding g(x) as the sum of the first two terms, `(x) =
1
n

∑n
i=1 li(x) and h∗(s) = λ

2 s
2. By noting the con-

vex conjugate − 1
2

(
1/n

∑n
i=1 li(x)

)2

= miny≥0
1
2y

2 −
〈y, 1/n∑n

i=1 li(x)〉, the above problem can be viewed as
a special case of (1). In this way, computing a stochastic
gradient of f(x, y) in terms of x can be done based on one
sampled loss function li(x). It is easier than computing an
unbiased stochastic gradient of h∗(`(x)) in (3) that requires
at least two sampled loss functions.

Bi-convex functions. When g is convex and dom(h) ⊆ Rm−
and ` is convex, the inf-projection minimization problem
(1) reduces to minimization of a bi-convex function. In
particular, f(x, y) is convex in terms of x for every fixed
y ∈ dom(h) and f(x, y) is convex in terms of y for every
fixed x ∈ X . The concerned family of bi-convex functions
also find some applications in machine learning and com-
puter vision (Kumar et al., 2010; Shah et al., 2016). For ex-
ample, the self-paced learning method proposed by (Kumar
et al., 2010) needs to solve the following bi-convex problem
minw∈Rd,v∈{0,1}n r(w) +

∑n
i=1 vifi(w) − 1

K

∑n
i=1 vi,

where r and fi are convex in w, vi = 0 if fi(w) > 1
K

and vi = 1 if fi(w) < 1
K , which can be covered by (1).

Although deterministic optimization methods (e.g., prox-
imal alternating linearized minimization and its variants
(Bolte et al., 2014; Davis et al., 2016)) and their conver-
gence theory have been studied for minimizing a bi-convex
function (Gorski et al., 2007), algorithms and convergence
theory for stochastic optimization of a bi-convex function
remains under-explored especially when we are interested
in the convergence respect to the target function F (x). A
special case that belongs to both DC and Bi-convex func-
tions is when `(x) = Ax, and dom(h) can be any convex
set.

A naive idea to tackle (1) is by alternating minimization or
block coordinate descent, i.e., alternatively solving the inner
minimization problem over y given x and then updating x by
certain approaches (e.g., stochastic gradient descent) (Bolte
et al., 2014; Davis et al., 2016; Hong et al., 2015; Xu & Yin,
2013; Driggs et al., 2020). However, this approach suffers
from two issues: (i) solving the inner minimization might

not be a trivial task (e.g., solving the inner minimization
problem related to (3) requires passing n examples once);
(ii) the target objective function F (x) is not necessarily a
smooth function or a convex function, which makes the
convergence analysis challenging. Additionally, their con-
vergence analysis focus on f(x, y) instead of F (x). In this
paper, the main question that we tackle is: how to design
efficient stochastic algorithms using simple updates for both
x and y to enjoy a provable convergence guarantee in terms
of finding a stationary point of F (x)? Our contributions
are summarized below:

• First, we consider the case when g and ` are smooth
but not necessarily convex and h is a simple function
whose proximal mapping is easy to compute. Under
the condition that ` is Lipschitz continuous, we prove
the convergence of mini-batch stochastic proximal gra-
dient method (MSPG) with increasing mini-batch size
that employ parallel stochastic gradient updates for x
and y, and establish the convergence rate.

• Second, we consider the cases when g and ` are not
necessarily smooth but convex, and h is not necessarily
a simple function (corresponding to DC and bi-convex
functions). We develop an algorithmic framework that
employs a suitable stochastic algorithm for solving
strongly convex functions in a stagewise manner. We
analyze the convergence rates for finding a (nearly)
stationary point when employing the stochastic prox-
imal gradient (SPG) method at each stage, resulting
St-SPG. The complexity results of our algorithms un-
der different conditions of g, h and ` are shown in
Table 1.

The novelty and significance of our results are (i) this is
the first work that comprehensively studies the stochastic
optimization of a non-smooth non-convex inf-projection
problem; (ii) the application of the inf-projection formu-
lation to variance-based regularization demonstrates much
faster convergence of our algorithms comparing with exist-
ing algorithms based on a min-max formulation.
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2. Preliminaries
Let us first present some notations. We let ‖ · ‖ denote the
Euclidean norm of a vector and the spectral norm of a matrix.
We use ξ to denote some random variable. Given a func-
tion g : Rd → R, we denote the Fréchet subgradients and
limiting Fréchet gradients by ∂̂g and ∂g respectively, i.e.,
at x, ∂̂g(x) = {y ∈ Rd : limx→x′ inf g(x)−g(x′)−y>

‖x−x′‖ ≥ 0},
and ∂g(x) = {y ∈ Rd : ∃xk g→ x, vk ∈ ˆ∂g(xk), vk → v}.
Here xk

g→ x represents xk → x and g(xk)→ g(x). When
the function g is differentiable, the subgradients (∂̂g and
∂g ) reduce to the standard gradient ∇g. It is known that
∂̂g(x) ⊂ ∂g(x), ∂̂g(x) = {∇g(x)} if g(x) is differential
and ∂g(x) = {∇g(x)} if g(x) is continuously differential.
We denote by ∂xg(x, y) the partial derivative in the direc-
tion of x and ∂g(x, y) = (∂xg(x, y), ∂yg(x, y))>. In this
paper, we will prove the convergence in terms of the limit-
ing gradient. But all results can be extended to the Fréchet
subgradients.

Let ∇`(x) ∈ Rm×d denote the Jacobian matrix of the dif-
ferentiable mapping `(x). ` is said G`-Lipschitz continuous
if ‖∇`(x)‖ ≤ G`. A differentiable function f(·) has (L, v)-
Hölder continuous gradient if ‖∇f(x1) − ∇f(x2)‖ ≤
L‖x1 − x2‖v holds for some v ∈ (0, 1] and L > 0. When
v = 1, it is known as L-smooth function. If ∇f is Hölder
continuous, then it holds f(x1)− f(x2) ≤ 〈∇f(x2), x1 −
x2〉 + L

1+v‖x1 − x2‖1+v. A related condition is uniform
convexity. A function f(·) is (%, p)-uniformly convex where
p ≥ 2, if f(x1)−f(x2) ≥ 〈∂f(x2), x1−x2〉+ %

2‖x1−x2‖p2.
When p = 2, it is known as strong convexity. If f is (%, p)-
uniformly convex, then the following inequality holds

%‖x1 − x2‖p ≤〈∂f(x1)− ∂f(x2), x1 − x2〉
≤‖∂f(x1)− ∂f(x2)‖ · ‖x1 − x2‖. (4)

It is obvious that a uniformly convex function has a unique
minimizer. If f is uniformly convex, then its convex con-
jugate f∗ has Hölder continuous gradient and vice versa,
which is summarized in the following lemma.

Lemma 1. Let f be differentiable and∇f be (L, v)-Hölder
continuous where v ∈ (0, 1]. Then f∗ is (%, p)-uniformly
convex with p = 1 + 1

v and % = 2v
1+v (1/L)

1
v . If f is (%, p)-

uniformly convex, then f∗ has (L, v)-Hölder continuous
gradient with L = (1/%)1/(p−1) and v = 1/(p− 1).

Next we discuss the convergence measure for the considered
inf-projection problem. Let fh(x) = miny h(y)− y>`(x).
If h is uniformly convex, let y∗(x) = arg miny h(y) −
y>`(x) denote the unique minimizer. In this way, under a
regularity condition that h(y) − y>`(x) is level-bounded
in y uniformly in x, then Theorem 10.58 of (Rockafellar
& Wets, 2009) implies ∂fh(x) = −∇`(x)>y∗(x). Then
∂F (x) = ∂g(x)−∇`(x)>y∗(x) under the smoothness or

Algorithm 1 MSPG
1: Input: initialized x1, y1.
2: for t = 1, . . . , T do
3: Compute mini-batch stochastic partial gradients

∇̃xf (t)
0 = 1

mt

∑mt
i=1∇xf0(xt, yt; ξi) and ∇̃yf (t)

0 =
1
mt

∑mt
i=1∇yf0(xt, yt; ξi)

4: xt+1 = ΠX [xt − η∇̃xf (t)
0 ]

5: yt+1 = Pηh[yt − η∇̃yf (t)
0 ]

6: end for
7: Output: wτ = (xτ , yτ ), where τ ∈ {1, . . . , T} is

randomly sampled

convexity condition of g, which allows us to connect ∂F (x)
by ∂g(x) − ∇`(x)>y∗(x). In this paper, we aim to find
a solution that is ε-stationary or nearly ε-stationary of F ,
which are defined as follows.

Definition 1. A solution x satisfying dist(0, ∂F (x)) ≤ ε is
called an ε-stationary point of F . A solution x is called a
nearly ε-stationary if there exists z and a constant c > 0
such that ‖z − x‖ ≤ cε and dist(0, ∂F (z)) ≤ ε.

Particularly, nearly stationarity has been used to measure the
convergence for non-smooth non-convex optimization in the
literature (Davis & Grimmer, 2017; Davis & Drusvyatskiy,
2018b;a; Chen et al., 2018; Xu et al., 2018a).

Before ending this section, we state basic assumptions below.
For simplicity, here all variance bounds are denoted by σ2.
Additional conditions regarding g, h and ` are presented in
individual theorems.

Assumption 1. For the problem (1) we assume:
(i) h∗ has (Lh∗ , v)-Hölder continuous gradient, and ` is
continuously differentiable;
(ii) Let ∂g(x; ξg) denote a stochastic gradient of g(x). If
g(x) is smooth, assume E[‖∂g(x; ξg) − ∂g(x)‖2] ≤ σ2,
otherwise assume E[‖∂g(x; ξ)‖2] ≤ σ2 for x ∈ X;
(iii) Let `(x; ξ`) denote a stochastic version of `(x) and
assume E[‖`(x; ξ`) − `(x)‖2] ≤ σ2. If `(x) is smooth,
assume E[‖∇`(x; ξ`)−∇`(x)‖2] ≤ σ2, otherwise assume
E[‖∇`(x; ξ`)‖2] ≤ σ2 for x ∈ X;
(iv) Let ∂h(y; ξh) denote a stochastic gradient of h(y) and
assume E[‖∂h(y; ξh)‖2] ≤ σ2 for y ∈ dom(h);
(v) maxx∈X,y∈dom(h) f(x, y)−minx∈X,y∈dom(h) f(x, y) ≤
M .

3. Mini-batch Stochastic Gradient Methods
For Smooth Functions

In this section, we consider the case when g and ` are smooth
functions but not necessarily convex. Please note that the
target function F is still not necessarily smooth and is non-
convex. We assume h is simple such that its proximal map-
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ping defined by Pηh[ŷ] = arg miny h(y) + 1
2η‖y − ŷ‖2 is

easy to compute. Let f0(x, y) = g(x) − y>`(x). The key
idea of the our first algorithm is that we treat f(x, y) =
f0(x, y) + h(y) + IX(x) as a function of the joint variable
w = (x, y), which consists of a smooth component f0 and
a non-smooth component h(y) + IX(x). Hence, we can
employ mini-batch stochastic proximal gradient (MSPG)
method to minimize f(x, y) based on stochastic gradients
of f0(w) denoted by ∇f0(w; ξ) for a random variable ξ.
The detailed steps of MSPG are shown in Algorithm 1. At
each iteration, stochastic partial gradients w.r.t. x and y are
computed and used for updating.

Although the convergence of MSPG for f(w) has been con-
sidered in literature of composite optimization (Ghadimi
et al., 2016) or alternating minimization (Hong et al., 2015;
Xu & Yin, 2013; Driggs et al., 2020), there is still a gap
when applying the existing convergence result, since we
are interested in the convergence analysis of dist(0, ∂F (x)),
rather than f0(w). In the following, we fill this gap by four
main steps. In brief, first, we establish the joint smoothness
of f0 in (x, y) by Lemma 2. Then, based on Lemma 2, we
derive the convergence of dist(0, ∂f(w)) in Proposition 1.
Next, Lemma 5 connects dist(0, ∂f(w)) to dist(0, ∂F (x)).
Finally, the convergence of dist(0, ∂F (x)) is achieved (The-
orem 2).

Lemma 2. Suppose g(x) is Lg smooth, ` is G`-Lipschitz
continuous and L`-smooth, and maxy∈dom(h) ‖y‖ ≤ Dy.
Then f0(x, y) is smooth over (x, y) ∈ X × dom(h), i.e.,

‖∇xf0(x, y)−∇xf0(x′, y′)‖22
+ ‖∇yf0(x, y)−∇yf0(x′, y′)‖22

≤ L2(‖x− x′‖22 + ‖y − y′‖22),

where L =
√

max(2L2
g + 4L2

`D
2
y +G2

` , 4G
2
`).

Based on the joint smoothness of f0 in (x, y), we
can establish the convergence of MSPG in terms of
dist(0, ∂f(xτ , yτ )) in the following proposition. Note that
this convergence result in terms of dist(0, ∂f(xτ , yτ )) is
stronger than that in (Ghadimi et al., 2016) in terms of
proximal gradient, which follows the analysis in (Xu et al.,
2019).

Proposition 1. Under the same conditions as in Lemma 2
and suppose the stochastic gradient has bounded variance
E[‖∇f0(w; ξ)−∇f0(w)‖2] ≤ σ2

0 , run MSPG with η = c
L

(0 < c < 1
2 ) and a sequence of mini-batch sizes mt =

b(t + 1) for t = 0, . . . , T − 1, where b > 0 is a constant,
then the output wτ of Algorithm 1 satisfies

E[dist(0, ∂f(wτ ))2] ≤ c1σ
2
0(log(T ) + 1)

bT
+
c2∆

ηT
,

where c1 = 2c(1−2c)+2
c(1−2c) and c2 = 6−4c

1−2c .

The next lemma establishes the relation between
dist(0, ∂f(wτ )) and dist(0, ∂F (xτ )), allowing us to bridge
the convergence of dist(0, ∂F (xτ )) by employing that of
dist(0, ∂f(wτ )).

Lemma 3. Under the same conditions as in Lemma 2 and
h∗ has (Lh∗ , v)-Hölder continuous gradient. Then for any
(x̃, ỹ) ∈ X × dom(h), we have

dist(0, ∂F (x̃)) ≤ ‖∇xf(x̃, ỹ)‖2

+G`

( (1 + v)

2v

)v
Lh∗dist(0, ∂yf(x̃, ỹ))v.

Finally, combining the above results, we can state the main
result in this section regarding the convergence of MSPG in
terms of the concerned dist(0, ∂F (xτ )) as follows.

Theorem 2. Suppose the same conditions as in Lemma 2
and Assumption 1 hold. Algorithm 1 guarantees
that E[dist(0, ∂F (xτ ))2] ≤ O(1/T v). To ensure
E[dist(0, ∂F (xτ ))] ≤ ε, we can set T = O(1/ε2/v). The
total complexity is O(1/ε4/v).

4. Stochastic Algorithms for Non-Smooth
Functions

In this section, we consider the case when g or ` are not
necessarily smooth but are convex. We also assume h∗ is
monotonic, i.e., dom(h) ⊆ Rm+ or dom(h) ⊆ Rm− . In the
former case, the objective function belongs to DC func-
tions, and in the latter case the objective function belongs
to Bi-Convex functions. Please note that the target function
F is still not necessarily convex and is non-smooth. The
proposed algorithm is inspired by the stagewise stochastic
DC algorithm proposed in (Xu et al., 2018a) but with some
major changes. Let us first briefly discuss the main idea
and logic behind the proposed algorithm. There are two
difficulties that we need to tackle: (i) non-smoothness and
non-convexity in terms of x, (ii) minimization over y.

To tackle the first issue, let us assume the optimal solution
y∗(x) = arg miny h(y)−y>`(x) given x is available. Then
the problem regarding x becomes:

min
x∈X

g(x)− y∗(x)
>
`(x) (5)

When dom(h) ⊆ Rm+ (corresponding to a DC function),
the above problem is still non-convex. In order to obtain a
provable convergence guarantee, we consider the following
strongly convex problem from some γ > 0 and x0 ∈ X ,
whose objective function is an upper bound of the function
in (5) at x0:

P (x0) = arg min
x∈X

{
g(x)− y∗x0

>(`(x0)

+∇`(x0)(x− x0)) +
γ

2
‖x− x0‖2

}
. (6)
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Note P (x0) is uniquely defined due to strong convexity. If
x0 = P (x0) it can be shown that x0 is the critical point of
F (x), i.e., 0 ∈ ∂F (x0) = ∂g(x0)−∇`(x0)>y∗(x0). Then
we can iteratively solve the fixed-point problem x = P (x)
until it converges.

When dom(h) ⊆ Rm− (corresponding to a Bi-convex func-
tion), we can simply consider the following strongly convex
problem:

P (x0) = arg min
x∈X

g(x)− y∗(x0)
>
`(x) +

γ

2
‖x− x0‖2.

A remaining issue in the above approach is that y∗(x0)
is assumed available, which is related to the second issue
mentioned above. It may not be easy to obtain an exact mini-
mizer y∗(x0) given a x0. To this end, we can employ an iter-
ative stochastic algorithm to optimize miny h(y)− y>`(x0)
approximately given x0, and obtain an inexact solution
ŷ(x0) such that h(ŷ(x0)) − ŷ(x0)>`(x0) − h(y∗(x0)) −
y∗(x0)>`(x0) ≤ ε for some approximation error ε. Then,
we combine these two pieces together, i.e., replacing y∗(x0)
in the definition of P (x0) with ŷ(x0), and employing a
stochastic algorithm to solve the fixed-point equation by
x ← P̂ (x), where P̂ (x) is an approximation of P (x).
Therefore, we have two sources of approximation error —
one from using ŷx instead of y∗(x) and another one from
solving the minimization problem of x inexactly. Our analy-
sis is to show that with well-controlled approximation error,
we can still achieve provable convergence guarantee.

For the sake of presentation, let us first introduce some
important notations by considering different conditions of
DC and bi-convex functions. For the k-th stage of St-SPG,
define

fkx (x) =g(x)− y>k (`(xk) +∇`(xk)(x− xk)),

for dom(h) ⊆ Rm+ ,

and

fkx (x) =g(x)− y>k `(x), for dom(h) ⊆ Rm− .

A stochastic gradient of fkx (x) can be computed by
∂g(x; ξg) − ∇`(xk; ξ`)

>yk for dom(h) ⊆ Rm+ or
∂g(x; ξg) − ∇`(x; ξ`)

>yk for dom(h) ⊆ Rm− . For both
conditions, let

fky (y) = h(y)− y>`(xk+1),

Rkx(x) =
γ

2
‖x− xk‖2, Rky(y) =

µ

2
‖y − yk‖2.

A stochastic gradient of fky (y) can be computed by
∂h(y; ξh) − `(xk+1; ξ′`), where ξg, ξ`, ξh, ξ′` denote inde-
pendent random variables.

The proposed algorithm is shown in Algorithm 2 named
St-SPG, which employs SPG in Algorithm 3 to solve the

Algorithm 2 St-SPG
1: Initialize x1 ∈ X , y1 ∈ dom(h)
2: Set a sequence of integers T xk , T yk and numbers γ, µ
3: for k = 1, . . . ,K do
4: xk+1 = SPG(fkx , R

k
x, xk, X, T

x
k , γ)

5: yk+1 = SPG(fky , R
k
y , yk, dom(h), T yk , µ)

6: end for

Algorithm 3 SPG(f,R, z1,Ω, T, γ)
1: Set ηt according to γ
2: for t = 1, . . . , T do
3: zt+1 = arg minz∈Ω ∂f(zt; ξt)

>z+R(z)+ 1
2ηt
‖z−

zt‖2
4: end for
5: Output ẑT =

∑T
t=1 tzt∑T
t=1 t

subproblems of x and y in a stagewise manner. x and y
share the same update method SPG, so we can summarize it
in general notations. To this end, let us consider the conver-
gence of SPG for solving H(z) = f(z) +R(z), where f(z)
is a convex function and R(z) = γ

2 ‖z − z1‖2 is a strongly
convex function. Its convergence has been considered in
many previous works. Here, we adopt the results derived
in (Xu et al., 2018a) to establish the convergence of St-SPG
under different conditions of g and ` as follows.

Proposition 2. Let H(z) = f(z) + R(z) where R(z) =
γ
2 ‖z − z1‖2 is γ-strongly convex. If f(z) is L-smooth and
E[|∇f(z; ξ)−∇f(z)|2] ≤ σ2 and γ ≥ 3L, then by setting
ηt = 3/(γ(t+ 1)) SPG guarantees that

E[H(ẑT )−H(z∗)] ≤
4γ‖z∗ − z1‖2

3T (T + 3)
+

6σ2

(T + 3)γ
.

If f is non-smooth with E[|∇f(z; ξ)‖2] ≤ σ2, then by set-
ting ηt = 4/(γt) SPG guarantees that

E

[
H(ẑT )−H(z∗)

]
≤ γ‖z∗ − z1‖2

4T (T + 1)
+

17σ2

γ(T + 1)
,

where z∗ = arg minz∈ΩH(z).

With the above proposition, we can apply the above conver-
gence guarantee of SPG for fkx (x) + Rkx(x) and fky (y) +

Rky(y). Then define vk and uk as the optimal solutions to
the subproblems of x and y at the k-th stage, respectively:

vk = arg min
x∈X

fkx (x) +Rkx(x),

uk = arg min
y
fky (y) +Rky(y).

We can establish the following result regarding the con-
vergence of St-SPG related to fixed-point convergence
(xτ+1 − xτ ), and also the minimization error of P (x),
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i.e., ‖xτ+1 − vτ‖, for a randomly sampled index τ ∈
{1, . . . ,K}. We have boundedness assumptions on y and `
below to guarantee the boundedness of the second moment
of stochastic gradients, which can be implied by assuming
the domain X is a compact set and dom(h) is bounded.

Theorem 3. Suppose Assumption 1 holds, and
max(‖yk‖2,E[‖`(xk+1; ξ)‖2]) ≤ D2 for k ∈ {1, . . . ,K}.
There exists a constant G = 17 max{2σ2 + 2D2σ2, 2σ2 +
2D2}, and for any constants γ > 0, µ > 0, α ≥ 1
Algorithm 2 with T yk = k/γ + 1, T tk = k/µ+ 1 guarantees
that the following inequalities hold:

1

2
E[‖xτ+1 − vτ‖2] ≤E[‖xτ − vτ‖2 + ‖xτ+1 − xτ‖2]

≤4(M + 2G2)(α+ 1)

γK
1

2
E[‖yτ+1 − uτ‖2] ≤E[‖yτ − uτ‖2 + ‖yτ+1 − yτ‖2]

≤4(M + 2G2)(α+ 1)

µK

for τ sampled by P (τ = k) = kα∑K
s=1 s

α .

The lemma below connects ‖∇F (xk)‖ (or dist(0, F (xk)))
to the quantities in Theorem 3, by which we can derive the
convergence of (nearly) stationary point.

Lemma 4. Suppose g is Lg-smooth, and ` is G`-Lipschitz
continuous. Then for any k we have

‖∇F (xk)‖ ≤(γ + Lg)‖xk − vk‖+G`‖yk − uk‖

+G`µ
v
(1 + v

2v

)v
Lh∗‖uk − yk‖v

+Gv+1
`

(1 + v

2v

)v
Lh∗‖xk+1 − xk‖v.

Suppose g is non-smooth, and ` is G`-Lipschitz continuous
and L`-smooth and maxy∈dom(h) ‖y‖ ≤ D, then for any k
we have

dist(0, ∂F (vk)) ≤ (γ +DL`)‖xk − vk‖+G`‖yk − uk‖

+G`

(1 + v

2v

)v
Lh∗

(
µ‖yk − uk‖+G`‖xk+1 − zk‖

)v
.

Combining Lemma 4 and Theorem 3, we have the follow-
ing corollaries regarding the convergence of St-SPG under
different conditions of g and `.

Corollary 4. Suppose g is Lg-smooth and ` is G`-Lipschitz
continuous and both are convex. Under the same condi-
tions as in Theorem 3, we have E[dist(0,∇F (xτ ))] ≤ ε

after K = O(ε−
2
v ) stages. Therefore, the total iteration

complexity is
∑K
k=1(T xk + T yk ) = O(ε−

4
v ).

Corollary 5. Suppose g is non-smooth and convex, ` is
G`-Lipschitz continuous and L`-smooth and convex, and

maxy∈dom(h) ‖y‖ ≤ D. Under the same conditions as in
Theorem 3, we have E[dist(0,∇F (vτ ))] ≤ ε and E[‖xτ −
vτ‖] ≤ O(ε1/v) after K = O(ε−

2
v ) stages. Therefore, the

total iteration complexity is
∑K
k=1(T xk + T yk ) = O(ε−

4
v ).

Remark: Our algorithms enjoy the same iteration com-
plexity of that in (Xu et al., 2018a) for DC functions when
v is unknown or v = 1, but we do not assume a stochastic
gradient of h∗(`(x)) is easily computed. It is also notable
that St-SPG doest not need the knowledge of v to run.

Finally, we would like to mention that the SPG algorithm
for solving subproblems in Algorithm 2 can be replaced by
other suitable stochastic optimization algorithms for solv-
ing a strongly convex problem similar to the developments
in (Xu et al., 2018a) for minimizing DC functions. For
example, one can use adaptive stochastic gradient methods
in order to enjoy an adaptive convergence, and one can
use variance reduction methods if the involved functions
are smooth and have a finite-sum structure to achieve an
improved convergence.

5. Application for Variance Regularization

Table 2. Data statistics.
Datasets #Examples #Features #pos:#neg

a9a 32,561 123 0.3172:1
covtype 581,012 54 1.0509:1
RCV1 697,641 47,236 1.1033:1
URL 2,396,130 3,231,961 0.4939:1

In this section, we consider the application of the proposed
algorithms for variance-based regularization in machine
learning. Let l(θ, z) ∈ R+ denote a loss of model θ ∈
Θ on a random data z. A fundamental task in machine
learning is to minimize the expected riskR(θ) = Ez[l(θ, z)].
However, in practice one has to find an approximate model
based on sampled data Sn = {z1, . . . , zn}. An advanced
learning theory according to Bennett’s inequality bounds
the expected risk by (Maurer & Pontil, 2009):

R(θ) ≤ 1

n

n∑

i=1

l(θ, zn) + c1

√
Var(`(θ, z))

n
+
c2
n
, (7)

where c1 and c2 are constants. This motivates the variance-
based regularization approach (Maurer & Pontil, 2009):

min
θ∈Θ

1

n

n∑

i=1

l(θ, zn) + λ

√
Varn(θ,Sn)

n
, (8)

where Varn(θ,Sn) = 1
n

∑n
i=1(`(θ, zi) − l̄n(θ)])2 is the

empirical variance of loss, l̄n(θ) is the average of empirical
loss, and λ > 0 is a regularization parameter.

However, the above formulation does not favor efficient
stochastic algorithms. To tackle the optimization problem
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for variance-based regularization, (Namkoong & Duchi,
2017) proposed a min-max formulation based on distri-
butionally robust optimization, given below and proposed
stochastic algorithms for solving the resulting min-max for-
mulation when the loss function is convex (Namkoong &
Duchi, 2016),

min
θ∈Θ

max
P∈∆n

{
n∑

i=1

Pi`(θ,Xi)] : Dφ(P ||P̂n) ≤ ρ}, (9)

where ρ > 0 is a hyper-parameter, ∆n = {P ∈ Rn;P ≥
0,
∑n
i=1 Pi = 1}, P̂n = (1/n, . . . , 1/n), and Dφ(P ||Q) =∫

φ( dPdQ )dQ is called the φ-divergence based on φ(t) =
1
2 (t− 1)2. The min-max formulation is convex and concave
when the loss function is convex. Nevertheless, the stochas-
tic optimization algorithms proposed for solving the min-
max formulation are not scalable. The reason is that it in-
troduces an n-dimensional dual variable P that is restricted
on a probability simplex. As a result, the per-iteration cost
could be dominated by updating the dual variable that scales
as O(n), which is prohibitive when the training set is large.
Although one can use a special structure and a stochastic
coordinate update on P to reduce the per-iteration cost to
O(log(n)) (Namkoong & Duchi, 2016), the iteration com-
plexity could be still blowed up by a factor up to n due to
the variance in the stochastic gradient on P .

As a potential solution to addressing the scalability issue,
we consider the following reformulation:

F (θ) =
1

n

n∑

i=1

l(θ, zn) + λ

√
Varn(θ,Sn)

n

= min
α>0

1

n

n∑

i=1

l(θ, zn) + λ

(
Varn(θ,Sn)

2α
+

α

2n

)

= min
α>0

1

n

n∑

i=1

l(θ, zn) + λ
( α

2n

+
1
n

∑n
i=1(`(θ, zi))

2 − (Ei[`(θ, zi)])
2

2α

)
. (10)

In practice, one usually needs to tune the regularization
parameter λ in order to achieve the best performance. As
a result, we can further simplify the problem by absorbing
α into the regularization parameter λ and end up with the
following formulation by noting− 1

2s
2 = maxy≥0

1
2y

2−ys
for s ≥ 0:

min
θ∈Θ

1

n

n∑

i=1

l(θ, zi) + λ
1

2n

n∑

i=1

(l(θ, zi))
2

+ λ{min
y≥0

1

2
y2 − y 1

n

n∑

i=1

l(θ, zi)}. (11)

It is notable that the above formulation only introduces one
additional scalable variable y ∈ R+, though the problem

might become a non-convex problem of θ. However, when
the loss function l(θ, z) itself is a non-convex function, the
min-max formulation (9) also losses its convexity, which
makes our inf-projection formulation more favorable.

We conduct experiments to verify the efficacy of the inf-
projection formulation and proposed stochastic algorithms
in comparison to the stochastic algorithms for solving min-
max formulation (9). We perform two experiments on four
datasets, i.e., a9a, RCV1, covtype and URL from the lib-
svm website, whose number of examples are n = 32561,
581012, 697641 and 2396130, respectively (Table 2). For
each dataset, we randomly sample 80% as training data and
the rest as testing data. We evaluate training error and testing
error of our algorithms and baselines versus cpu time.

In the first experiment, we use (convex) logistic loss for
l(θ, zi) in our inf-projection formulation (11) and min-max
formulation (9). We compare our St-SPG with the stochas-
tic algorithm Bandit Mirror Descend (BMD) proposed in
(Namkoong & Duchi, 2016). We implement two versions
of BMD, one using the standard mirror descent method to
update the dual variable P and the other (denoted by BMD-
eff) exploiting binary search tree (BST) to update the P .
To this end, it needs to use a modified constraint on P , i.e.,
P ∈ {p ∈ Rn+|pi ≥ δ/n, n2/2‖p−1/n‖2 ≤ ρ} (see Sec. 4
in (Namkoong & Duchi, 2016)). We tune hyper-parameters
from a reasonable range, i.e., for St-SPG, λ ∈ {10−5:2},
γ, µ ∈ {10−3:3}. For BMD and BMD-eff, we tune step size
ηP ∈ {10−8:−15} for updating P , step size ηθ ∈ {10−5:3}
for updating θ, ρ ∈ {n× 10−3:3} and fix δ = 10−5. Train-
ing and testing errors against cpu time (s) of the three algo-
rithms on four datasets are reported in Figure 1.

In the second experiment, we use (non-convex) truncated
logistic loss in (11) and (9). In particular, the truncated loss
function is given by φ(l(θ, zi)) = α log(1 + l(θ, zi)/α),
where l is logistic loss and we set α =

√
10n as suggested

in (Xu et al., 2018b). Since the loss is non-convex, we
compare MSPG with proximally guided stochastic mirror
descent (PGSMD) (Rafique et al., 2018) and its efficient
variant (denoted by PGSMD-eff) for solving the min-max
formulation that is non-convex and concave, where the ef-
ficient variant is implemented with the same modified con-
straint on P and BST as BMD-eff. For MSPG, we tune
λ ∈ {10−5:2}, the step size parameter c in Proposition 1
from {10−5:2}. Hyper-parameters of PGSMD and PGSMD-
eff including ηP , ηθ, ρ and δ are selected in the same range
as in the first experiment. The weak convexity parameter
ρwc are chosen from {10−5:5}. Training and testing errors
against cpu time (s) of the three algorithms on four datasets
are reported in Figure 2.

We can observe two conclusions from the results of both
experiments. First, the training and testing errors from
solving the inf-projection formulation (11) converge to a
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Figure 1. Results of variance-based regularization with (convex) logistic loss.
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Figure 2. Results of variance-based regularization with for (non-convex) truncated logistic loss.

close or even a lower level compared to that from solving
the min-max formulation (9), which verifies the efficacy
of the inf-projection formulation. Second, the proposed
stochastic algorithms have significant improvement in the
convergence time of training/testing errors, especially on
large datasets, covtype, RCV1 and URL, which can be
verified by comparing convergence of training/testing errors
against cpu time.

6. Conclusion
In this paper, we design and analyze stochastic optimization
algorithms for a family of inf-projection minimization prob-
lems. We show that the concerned inf-projection structure
covers a variety of special cases, including DC functions and
bi-convex functions as special cases (non-smooth functions

in Section 4) and another family of inf-projection formula-
tions (smooth functions in Section 3). We develop stochastic
optimization algorithms for those problems with theoreti-
cal guarantees of their first-order convergence for finding
a (nearly) ε-stationary solution at O(1/ε4/v). To the best
of our knowledge, this is the first work to provide compre-
hensive convergence analysis for stochastic optimization
of non-convex inf-projection minimization problems. Ad-
ditionally, to verify the significance of our inf-projection
formulation, we investigate an important machine learning
problem, variance-based regularization, and compare our
algorithms with baselines for min-max formulation (distri-
butionally robust optimization). Empirical results demon-
strate the significance and effectiveness of our proposed
algorithms.
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