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Abstract

Feature selection problems have been extensively
studied in the setting of linear estimation (e.g.
LASSO), but less emphasis has been placed on
feature selection for non-linear functions. In this
study, we propose a method for feature selection
in neural network estimation problems. The new
procedure is based on probabilistic relaxation of
the /o norm of features, or the count of the num-
ber of selected features. Our {p-based regular-
ization relies on a continuous relaxation of the
Bernoulli distribution; such relaxation allows our
model to learn the parameters of the approximate
Bernoulli distributions via gradient descent. The
proposed framework simultaneously learns either
a nonlinear regression or classification function
while selecting a small subset of features. We
provide an information-theoretic justification for
incorporating Bernoulli distribution into feature
selection. Furthermore, we evaluate our method
using synthetic and real-life data to demonstrate
that our approach outperforms other commonly
used methods in both predictive performance and
feature selection.

1. Introduction

Feature selection is a fundamental task in machine learning
and statistics. Selecting a subset of relevant features may
result in several potential benefits: reducing experimental
costs (Min et al., 2014), enhancing interpretability (Ribeiro
et al., 2016), speeding up computation, reducing memory
and even improving model generalization on unseen data
(Chandrashekar & Sahin, 2014). For example, in biomedical
studies, machine learning can provide effective diagnostics
or prognostics models. However, the number of features
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(e.g., genes or proteins) often exceeds the number of sam-
ples. In this setting, feature selection can lead to improved
risk assessment and provide meaningful biological insights.
While neural networks are good candidates for learning diag-
nostics models, identifying relevant features while building
compact predictive models remains an open challenge.

Feature selection methods are classified into three major
categories: filter methods, wrapper methods, and embed-
ded methods. Filter methods attempt to remove irrelevant
features prior to learning a model. These methods filter fea-
tures using a per-feature relevance score that is created based
on statistical measures (Battiti, 1994; Peng et al., 2005; Es-
tévez et al., 2009; Song et al., 2007; 2012; Chen et al., 2017).
Wrapper methods (Kohavi & John, 1997b; Stein et al., 2005;
Zhu et al., 2007; Reunanen, 2003; Allen, 2013) use the out-
come of a model to determine the relevance of each feature.
Wrapper methods require recomputing the model for each
subset of features and, thus, become computationally ex-
pensive, especially in the context of deep neural networks
(Verikas & Bacauskiene, 2002; Kabir et al., 2010; Roy et al.,
2015). Embedded methods aim to remove this burden by
learning the model while simultaneously selecting the sub-
set of relevant features. The Least Absolute Shrinkage and
Selection Operator (LASSO) (Tibshirani, 1996) is a well-
known embedded method, whose objective is to minimize
the loss while enforcing an ¢, constraint on the weights of
the features. LASSO is scalable and widely used (Hans,
2009; Li et al., 2011; 2006), but it is restricted to the do-
main of linear functions and suffers from shrinkage of the
model parameters. It seems natural to extend the LASSO
using neural networks; however, gradient descent on an /4
regularized objective neither performs well in practice nor
sparsifies the input layer (Li et al., 2016; Scardapane et al.,
2017; Feng & Simon, 2017).

To overcome these limitations, we develop a fully embedded
feature selection method for nonlinear models. Our method
improves upon the LASSO formulation by: a) capturing
nonlinear interactions between features via neural network
modeling and b) employing an {y-like regularization using
gates with weights parametrized by a smooth variant of a
Bernoulli distribution. These two improvements are jointly
formulated as a fully differentiable neural network that pro-
vides a solution to the important long-standing problem of
feature selection for nonlinear functions.
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Algorithm 1 STG: Feature selection using stochastic gates

Input: X € RV*D target variables y € RY, regulariza-
tion parameter A, number of epochs M, learning rate .
Output: Trained model fg and parameter pu € RP.

1: Initialize the model parameter 6. Set ;o = 0.5.

2: fork=1,..., K do

3: ford=1,..,Ddo

4: Sample ¢ ~ N (0, 52)

5: Compute z((jk) = max(0, min(1, pg + e&k)))

6:  end for

7: end for

8: Compute the loss L = e S L(folmn © 20, )

n,k
: Compute the regularization R = \) ®(£4)
d

N=J

6:=0 —nyeﬁ and p := p — W“(i +R)
10: Repeat M epochs

Figure 1. Top left: Each stochastic gate zq4 is drawn from the STG approximation of the Bernoulli distribution (shown as the blue histogram
on the right). Specifically, zq is obtained by applying the hard-sigmoid function to a mean-shifted Gaussian random variable (step 5
in algorithm 1). Bottom left: The z4 stochastic gate is attached to the x4 input feature, where the trainable parameter pq controls the
probability of the gate being active. Right: Pseudocode of our algorithm for feature selection. See the supplementary material for a

discussion of ¢ and \’s selection.
Specifically, our contributions are as follows:

e We identify the limitations of the logistic-distribution-
based Bernoulli relaxation (Maddison et al., 2016; Jang
et al., 2017; Louizos et al., 2017) in feature selec-
tion and present a Gaussian-based alternative termed
stochastic gate (STG), which is better in terms of model
performance and consistency of feature selection.

e We develop an embedded nonlinear feature selection
method by introducing the stochastic gates to the input
layer (the feature space) of a neural network.

e We justify our probabilistic approach by analyzing the
constrained Mutual Information maximization objec-
tive of feature selection.

We demonstrate the advantages of our method for classifica-
tion, regression, and survival analysis tasks using numerous
examples.

Notation: Vectors are denoted by bold lowercase letters
x and random vectors as bold uppercase letters X . Scalars
are denoted by lower case letters y, while random variables
are uppercase Y. A set is represented by a script font S. For
example the n*” vector-valued observation is denoted as x,,
whereas X represents the d*" feature of the vector-valued
random variable X. Let [n] = 1,2,...,n. Foraset S C
[D] let the vector s € {0, 1} be the characteristic function
for the set. Thatis s; = 1 if ¢ € S and 0 otherwise. For two
vectors  and z we denote « © z to be the element-wise
product between x and z. Thus, if we let s € {0, 1}? be the

characteristic vector of S, then we may define x5 = x © s.
The ¢; norm of x is denoted by ||x|; = Zil |;|. Finally,
the ¢p norm of x is denoted by ||x||o and counts the total
number of non-zero entries in the vector x.

2. Problem Setup and Background

Let X C RP be the input domain with corresponding re-
sponse domain ). Given realizations from some unknown
data distribution Py y, the goal of embedded feature selec-
tion methods is to simultaneously select a subset of indices
S C {1,...D} and construct a model fg € F that predicts
Y based on the selected features X s.

Given a loss L, the selection of features S C [D], and choice
of parameters 8 can be evaluated in terms of the following
risk:

R(ev S) = EX,YL(fG(X ® S), Y)7 (1)

where we recall that s = {0,1}? is a vector of indica-
tor variables for the set S, and ©® denotes the point-wise
product. Embedded feature selection methods search for
parameters 0 and s that minimize R(6, s) such that ||s|q is
small compared to D.

2.1. Feature Selection for Linear Models

We first review the feature selection problem in the lin-
ear setting for a least squares loss. Given observations
{x,, yn }Y_,, a natural objective derived from (1) is the
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constrained empirical risk minimization

N
1
min — Z(OTa:n —yn)? st |60 < k. (2)

n=1

Since the above problem is intractable, several authors re-
place the ¢y constraint with a surrogate function, Q(0) :
RP — R, designed to penalize the number of selected
features in 6. A popular choice for €2 is the £; norm, which
yields a convex problem and more precisely the LASSO
optimization (Tibshirani, 1996). Computationally efficient
algorithms for solving the LASSO problem have been pro-
posed (Tibshirani, 1996; Nesterov, 2013; Qian et al., 2019).
While the original LASSO focuses on the constrained opti-
mization problem, the regularized least squares formulation,
which is often used in practice, yields the following mini-
mization objective:

N
1
min—Z(BTwn—yn)Q—l—)\HOHl. (3)
0 Nn:l

The hyperparameter \ trades off the amount of regulariza-
tion versus the fit of the objective!. The /;-regularized
method is effective for feature selection and prediction;
however, it achieves this through shrinkage of the coeffi-
cients and is restricted to linear models. To avoid shrinkage,
non-convex choices for {2 have been proposed (Fan & Li,
2001). As demonstrated in several studies (Huang et al.,
2007; Laporte et al., 2013; Zhu et al., 2017), non-convex
regularizers perform well both theoretically and empirically
in prediction and feature selection.

Our goal is to develop a regularization technique that both
avoids shrinkage and performs feature selection while learn-
ing a nonlinear function. To allow nonlinearities, Kernel
methods have been considered (Yamada et al., 2014), but
scale quadratically in the number of observations. An al-
ternative approach is to model fg using a neural network
with ¢; regularization on the input weights (Li et al., 2016;
Scardapane et al., 2017; Feng & Simon, 2017). However,
in practice, introducing an £; penalty into gradient descent
does not sparsify the weights and requires post-training
thresholding. Below, we present our method that applies
a differentiable approximation of an ¢, penalty on the first
layer of a neural network.

3. Proposed Method

To implement an ¢, regularization to either linear or non-
linear models, we introduce a probabilistic and computa-
tionally efficient neural network approach. It is well known
that an exact ¢, regularization is computationally expensive

'\ has a one-to-one correspondence to k in the convex setting
via Lagrangian duality.

and intractable for high dimensions. Moreover, the ¢, norm
cannot be incorporated into a gradient descent based op-
timization. To overcome these limitations, a probabilistic
formulation provides a compelling alternative. Specifically,
we introduce Bernoulli gates applied to each of the d input
nodes of a neural network. A random vector S represents
these Bernoulli gates, whose entries are independent and
satisfy P(Sy = 1) = 4 for d € [D], respectively. If we
denote the empirical expectation over the observations as
E X,y then, the empirical regularized risk (Eq. 1) becomes

R(6,) = ExyEg | L(fs(X © 8),Y) + NSl . @)

where E¢| |5||o boils down to the sum of Bernoulli parame-
ters ZdD:l 74. Note that, if we constrain 74 € {0, 1}, this
formulation is equivalent to the constrained version of equa-
tion (1), with a regularized penalty on cardinality rather than
an explicit constraint. Moreover, this probabilistic formula-
tion converts the combinatorial search to a search over the
space of Bernoulli distribution parameters (also motivated in
Section 4). Thus, the problem of feature selection translates
to finding @ and 7v* that minimize the empirical risk based
on the formulation in Eq. 4.

Minimization of the empirical risk via gradient descent
seems like a natural way to simultaneously determine the
model parameters 8 and Bernoulli-based feature selection
parameters 7w*. However, optimization of a loss function,
which includes discrete random variables, suffers from high
variance (see supplementary for more details and (Mnih
& Rezende, 2016)). To overcome this limitation, several
authors have proposed using a continuous approximation
of discrete random variables, such as the Concrete (Jang
et al., 2017; Maddison et al., 2016) or Hard-Concrete (HC)
(Louizos et al., 2017).

We observed that the HC still suffers from high variance and,
thus, is not suited for the task of feature selection. Therefore,
we develop an empirically superior continuous distribution
that is fully differentiable and implemented only to activate
or deactivate the gates linking each feature (node) to the rest
of the network. Our method provides an embedded feature
selection algorithm with superior results in terms of both
accuracy and capturing informative features compared with
the state-of-the-art.

3.1. Bernoulli Continuous Relaxation for Feature
Selection

Feature selection requires stability in the selected set of fea-
tures. The use of logistic distributions such as the Concrete
(Jang et al., 2017; Maddison et al., 2016) and HC (Louizos
et al., 2017) induces high variance in the approximated
Bernoulli variables due to the heavy-tailedness, which often
leads to inconsistency in the set of selected features. To
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address such limitations, we propose a Gaussian-based con-
tinuous relaxation for the Bernoulli variables S, for d € [D).
We refer to each relaxed Bernoulli variable as a stochas-
tic gate (STG) defined by z; = max(0, min(1, ug + €4)),
where €4 is drawn from A/(0, 02) and o is fixed throughout
training. This approximation can be viewed as a clipped,
mean-shifted, Gaussian random variable as shown in the left
part of Fig. 1. Furthermore, the gradient of the objective
with respect to 114 can be computed via the chain rule, which
is commonly known as the reparameterization trick (Miller
et al., 2017; Figurnov et al., 2018).

We can now write our objective as a minimization of the
empirical risk R(0, p):

min ExyEz [L(fo(X ® Z),Y)+ N|Z|lo], (5)
)y K

where Z is a random vector with D independent variables
zq for d € [D]. Under the continuous relaxation, the ex-
pected regularization term in the objective ]%((97 ) (Eq. 5)
is simply the sum of the probabilities that the gates {z4}7_,
are active or ) ;cp; P(2¢ > 0). This sum is equal to

27 ® (14), where @ is the standard Gaussian CDF. To
optimize the empirical surrogate of the objective (Eq. 5),
we first differentiate it with respect to p. This computation
is done using a Monte Carlo sampling gradient estimator
which gives

9z 0
Kz [L/ (k) 8;2 ] +)‘aud¢(a )’

where K is the number of Monte Carlo samples. Thus,
we can update the parameters p4 for d € [D] via gradient
descent.

Altogether, Eq. 5 is optimized using SGD over the model
parameters 6 and the parameters p, where the latter sub-
stitute the parameters 7 in Eq. 4. See Algorithm 1 for a
pseudocode of this procedure.

To remove the stochasticity from the learned gates after train-
ing, we set 24 = max(0, min(1, s14)), which informs what
features are selected. In our experiments, for all synthetic
datasets, we observe that the coordinates of Z converge to
0 or 1. However, when the signal is weak (e.g. the class
samples are not separated) training the gates until conver-
gence may cause overfitting of the model parameters. In
these cases, setting a cutoff value (e.g. 0.5) and performing
early stopping is beneficial. In the supplementary material,
we discuss our choice of o.

4. Connection to Mutual Information

In this section, we use a Mutual Information (MI) perspec-
tive to show an equivalence between a constrained £y-based

optimization for feature selection and an optimization over
Bernoulli distribution parameters.

4.1. Mutual Information based objective

From an information theoretic standpoint, the goal of feature
selection is to find the subset of features S that has the
highest Mutual Information (MI) with the target variable
Y. MI between two random variables can be defined as
I(X;Y)=H(Y)-H(Y|X), where H(Y) and H(Y|X)
are the entropy of py (Y) and the conditional entropy of
pyx (Y] X), respectively (Cover & Thomas, 2006). We
can then formulate the task as selecting S such that the
mutual information between X s and Y is maximized:

mgXI(XS;Y) s.t. |S] =k, (6)

where £ is the hypothesized number of relevant features.

4.2. Introducing randomness

Under mild assumptions, we show that one can replace
the deterministic search over the set S (or corresponding
indicator vector s) with a search over the parameters of the
distributions that model s. Our proposition is based on the
following two assumptions:

Assumption 1: There exists a subset of indices $* with
a cardinality equal to & such that for any i € S* we have
I(Xi; Y‘X\{i}) > 0.

Assumption 2: (X g«c;Y[Xs-) =0.

Discussion of assumptions: Assumption 1 states that in-
cluding an element from &* improves prediction accuracy.
This assumption is equivalent to stating that feature i is
strongly relevant (Kohavi & John, 1997a; Brown et al.,
2012). Assumption 2 simply states that S* is a superset
of the Markov Blanket of the variable Y (Brown et al.,
2012). The assumptions are quite benign. For instance,
they are satisfied if X is drawn from a Gaussian with a
non-degenerate covariance matrix and Y = f(Xs+) + w,
where w is noise independent of X and f is not degenerate.
With these assumptions in hand, we may present our result.

Proposition 1. Suppose that the above assumptions hold for
the model. Then, solving the optimization (6) is equivalent
to solving the optimization

max I(X ®8;Y) st
O<m<1

Y ES)<k (D)

where the coordinates S; are drawn independently at ran-
dom from a Bernoulli distribution with parameter ;.
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Figure 2. Evaluation of the proposed method using synthetic data. Top row: classification using the MADELON dataset with 5 informative
and 495 nuisance features. Bottom row: regression using a modified version of the Friedman dataset, which also consists of 5 informative
and 495 nuisance features. Left column: Accuracy/root mean squared error (RMSE). Middle column: median rank of informative features.
Right column: F1-score that measures success in retrieving the informative features. We also evaluated the accuracy and MSE of a neural
network with no feature selection (DNN). Black bars represent the medians, and dashed red lines are the means. In the middle column,

dashed green lines are the optimal median ranks.

Due to length constraints, we leave the proof of this propo-
sition and how it bridges the MI maximization (6) and risk
minimization (2) to the supplementary material.

5. Related Work

The three most related works to this study are (Louizos
et al., 2017), (Chen et al., 2018) and (Chang et al., 2017).
In (Louizos et al., 2017), they introduce the Hard-Concrete
(HC) distribution as a continuous surrogate for Bernoulli dis-
tributions in the context of model compression. The authors
demonstrate that applying the HC to all of the weights leads
to fast convergence and improved generalization. They did
not evaluate the HC for the task of feature selection where
stability of the selection is an important property.

In (Chen et al., 2018), the Concrete distribution is used
to develop a framework for interpreting pre-trained models.
Their method is focused on finding a subset of features given
a particular sample and, therefore, is not appropriate for gen-
eral feature selection. In (Chang et al., 2017), the Concrete
distribution is used for feature ranking. The method is not
fully embedded and requires model retraining to achieve
feature selection.

Bernoulli relaxation techniques that are based on logistic
distributions (e.g. Concrete/Gumbel-Softmax and HC) are
not suitable for feature selection. Specifically, the use of
the Concrete/Gumbel-Softmax distribution ranks features
but retains all of them (no feature selection). In contrast
to our Gaussian-based relaxation of Bernoulli distributions

(STG), the logistic-based HC yields high-variance gradi-
ent estimates. For model sparsification, this high variance
is not problematic because the sparsity pattern within the
network does not matter as long as the method achieves
enough sparsity as a whole. For feature selection based
on the HC approach, however, the subsets of selected fea-
tures at different runs vary substantially. Thus, the stability
of the HC-based feature selection is poor; see Section 8.
Furthermore, higher gradient variance will also result in
a slower SGD convergence, which has been demonstrated
empirically in Section 6 and the supplementary material.

6. Experiments

Here, we evaluate our proposed embedded feature selection
method. We implemented ? it using both the STG and HC
(Louizos et al., 2017) distributions and tested on several arti-
ficial and real datasets. We compare our method with several
classification and regression algorithms including embedded
methods such as LASSO (Tibshirani, 1996), linear support
vector classification (SVC) (Chang & Lin, 2008), deep fea-
ture selection (DFS) (Li et al., 2016) and group-sparse regu-
larization for deep neural networks (SG-NN) (Scardapane
et al., 2017). Our method is also compared with leading
tree-based wrapper methods - extremely randomized trees
(ERT) (Rastogi & Shim, 2000), random forests (RF) (Diaz-
Uriarte & De Andres, 2006) and XGBoost (XGB) (Chen &
Guestrin, 2016). See the supplementary material for details

Zhttps://github.com/runopti/stg
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Figure 3. Classification accuracy vs. number of selected features. Descriptions of the 9 datasets appear in Table 1.

on the hyper-parameters of all methods.

6.1. Synthetic data in the D > N regime

Now we present empirical results in the challenging regime
where the number of features exceeds the number of samples
(D > N). We use synthetic datasets with informative and
irrelevant nuisance variables. We begin with the MADE-
LON dataset, a hard classification problem suggested in
the NIPS 2003 feature selection challenge (Guyon et al.,
2005). This dataset consists of 5 informative features and
495 nuisance features. See the supplementary material for
additional details on the MADELON dataset.

Next, we present a regression scenario based on a modifica-
tion of the Friedman regression dataset (Friedman, 1991).
In this dataset, all 500 variables are uniformly distributed in
[0, 1], and the response is defined by the following function:

Y = 10sin(X; X2)? +20X3 + 10 sign(X, X5 — 0.2) + &,

where & is drawn from A/ (0,1). Then, Y is centered and
divided by its maximal value.

For the above synthetic classification and regression

datasets, we generate 600 samples of which we use 450
for training, 50 for validation and 100 for a test set. The
hyper-parameter (controlling the number of selected fea-
tures) for each method is optimized based on the valida-
tion performance. The experiment is repeated 20 times,
and the accuracy/root mean squared error (RMSE), median
rank and F1-score that measures feature selection perfor-
mance are presented in Fig. 2. To compute the median
ranks, we utilize the scores that each method assigns to the
features. We then rank all features based on these scores
and compute the median of the ranks of the 5 informative
features. Thus, the optimal median rank in these exam-
ples is 3. The Fl-score measure for feature selection is
defined as F'1 = 2(precision - recall) /(precision + recall),
where precision and recall are computed by comparing the
selected/removed features to the informative/nuisance fea-
tures. For example, a model which retains all of the features
has a recall of 1 with a precision of 5/500.

The results presented in Fig. 2 demonstrate our embedded
method’s ability to learn a powerful predictive model in the
regime of D > N, where the majority of variables are not
informative. Even though our median rank performance
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is comparable to tree-based methods, we outperform all
baseline in F1-scores. This demonstrates that our embedded
method is a strong candidate for the task of finding complex
relations in high dimensional data.

We encourage the reader to look at the supplementary mate-
rial, where we provide additional experiments including a
more challenging variant of the MADELON data, the XOR
data, the two-moons data and 3 artificial regression datasets
based on (Gregorova et al., 2018).

6.2. Classification on real world data

We now turn our attention towards using several real-world
labeled datasets to evaluate our method. Most of the datasets
are collected from the ASU feature selection database avail-
able online 3. The dimensions, sample size and domains of
the data are versatile and are detailed in Table 1. On all of
the datasets - except MNIST (LeCun et al., 1998), RCV-1
(Lewis et al., 2004) and the PBMC (Zheng et al., 2017) -
we perform 5-fold cross validation and report the average
accuracies vs. the number of features that the model uses for
several baselines. For MNIST, RCV-1 and the PBMC - we
used prefixed training and testing sets which are described
in the supplementary material. The results are presented in
Fig. 3.

Compared to the alternative linear embedded methods (i.e.
LASSO and SVC), the nonlinearity of our method provides
a clear advantage. While there are regimes in which the
tree-based methods slightly outperform our method, they
require retraining a model based on the selected features;
however, our method is only trained once and learns the
model and features simultaneously. This experiment also
demonstrates that the STG is more suited for the task of
feature selection than the HC. Note that in this experiment
we did not include the DFS and SG-NN, as they do not
sparsify the weights and, therefore, cannot be evaluated vs.
the number of selected features.

Due to lack of space we leave the real word regression
experiments to the supplementary material.

7. Cox Proportional Hazard Models for
Survival Analysis

A standard model for survival analysis is the Cox Propor-
tional Hazard Model. In (Katzman et al., 2018), the authors
proposed DeepSurv that extends the Cox model to neural
networks. We incorporate our method into DeepSurv to see
how our procedure improves survival analysis based on gene
expression profiles from the breast cancer dataset called
METABRIC (Curtis et al., 2012) (along with additional
commonly used clinical variables.) See the supplementary

3http://featureselection.asu.edu/datasets.php

material for more details about the dataset and experimental
setup.

We compare our method Cox-STG with four other methods:
a Cox model with ¢; regularization (Cox-LASSO), Ran-
dom Survival Forest (RSF) (Ishwaran et al., 2008), Cox-HC,
and the original DeepSurv. We evaluate the predictive abil-
ity of the learned models based on the concordance index
(CI), a standard performance metric for model assessment
in survival analysis; it measures the agreement between
the rankings of the predicted and observed survival times.
The performance of each model in terms of the CI and the
number of selected features are reported in Table 2. The
Cox-STG method outperforms the other baselines indicating
that our approach identifies a small number of informative
variables while maintaining high predictive performance.

8. Evaluating stochastic regularization
schemes

In this section, we elaborate on two aspects of our proposed
method that lead to performance gains: (i) benefits of our
non-convex regularization and injected noise, and (ii) ad-
vantages of the Gaussian based STG over the logistic based
HC distribution in terms of feature selection performance.

To demonstrate these performance gains, we perform a con-
trolled experiment in a linear regression setting. We first
generate the data matrix, X € RN*D D = 64, with values
randomly drawn from A/ (0, 1) and construct the response
variable

y=XB"+w, (8)

where the values of the noise w;,7 = 1, ..., N are drawn
independently from A(0,0.5). As suggested by (Wain-
wright, 2009), we use a known sparsity ||3"(|, = k, set
by k = [0.4D%75] = 10. For each number of samples N
in the range [10, 250], we run 200 simulations and count
the portion of correctly recovered informative features (i.e.
the support of 3*). For LASSO, the regularization parame-
202 log(D—k) log(k)
N

ter was set to its optimal value ay =
(Wainwright, 2009). For STG and HC, we set Ay = Cay,
such that C' is a constant selected using a cross validated
grid search in the range [0.1, 10]. To evaluate the effect of
non-convex regularization and noise injection, we compare
the STG to a deterministic non-convex (DNC) counterpart
of our method (see definition below) and LASSO, which is
convex. To gain insights on (ii), we also compare the HC.

We define the deterministic non-convex (DNC) objective as

N

1 - D Hd
I&L“N;(BT””" ©Z—yn)? +A;q’ (ﬁ) O

where ® is the standard Gaussian CDF. Combined with Z ,
this non-convex regularized objective is deterministic and
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Table 1. Description of the real-world data used for empirical evaluation.

BASEHOCK RELATHE RCV1I PCMAC ISOLET GISETTE COIL20 MNIST PBMC
Features (D) 7862 4322 47236 3289 617 5000 1024 784 17126
Train size 1594 1141 2320 1554 1248 5600 1152 60000 2074
Test size 398 285 20882 388 312 1400 288 10000 18666
Classes 2 2 2 2 26 2 20 10 2
Data type Text Text Text Text Audio Image Image Image scRNA-seq

Table 2. Performance comparison of survival analysis on METABRIC. We repeat the experiment 5 times with different training/testing

splits and report the mean and standard deviation on the testing set.

DEEPSURV RSF Cox-LASSO Cox-HC Cox-STG
C-INDEX 0.612 (0.009) 0.626 (0.006) 0.580 (0.003) 0.615(0.007) 0.633 (0.005)
# FEATURES 221 (ALL) 221 (ALL) 44 (0) 14 (1.72) 2 (0)

differentiable, and its solution can be searched via gradient
descent.

As demonstrated in Fig. 4, the non-convex formulation
requires less samples for perfect recovery of informative
features than the LASSO. The injected noise based on the
HC and STG provides a further improvement. Finally, we
observe that the STG is more stable and has a lower variance
than the HC, as shown by the shaded colors.

Application of the deterministic formulation is associated
with a phenomenon that causes the gradient of an input
feature to vanish and never acquire a nonzero value if it is
zeroed out in an early training phase. In contrast, when we
apply STG, a feature that at a certain step has a zero value
is not permanently locked because the gate associated with
it may change its value from zero to one at a later phase
during training. This is due to the injected noise that allows
our proposed method to reevaluate the gradient of each
gate. In Fig. 4, we demonstrate this “second chance” effect
using N = 60 samples and presenting the gate’s values
(throughout training) for an active feature.

The advantage of the Gaussian-based STG distribution over
the HC distribution stems from the heavier tail of HC, whose
form is a logistic distribution. We demonstrate that the
heavy-tail distribution is not suitable for feature selection
due to its high variance. An ideal feature selection algorithm
is expected to identify a consistent set of features across dif-
ferent runs (feature stability), but HC selects many different
features in each run resulting in high variance or lack of
stability of the selected features.

To further examine the effect of heavy tail distributions, we
train two identical neural networks on MNIST but use two
different distributions for the gates: Gaussian-STG and HC.
Both regularization parameters are tuned to retain 6 fea-
tures. In Fig. 5, we show that the selected features from the
Gaussian-STG are much more consistent across 20 runs than
HC. Furthermore, the variance in the number of selected
features is 3.8 for HC and 1 for STG. The average accura-
cies of STG and HC on the test are comparable: 92.4% and
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# of samples N

— STG

0.8
—— DNC

0.6
—
N

0.4

0.2

O

10° 10t 102 104

# of epoch

103

Figure 4. Feature selection in linear regression (see Section 8).
The goal is to identify the subset of informative features. Top:
Probability of recovering the informative features as a function of
the number of samples. Comparison between STG, HC, LASSO
and DNC. Bottom: The value of a gate z; throughout training. In
STG, injected noise may lead to a “second chance” effect, which
in this example occurs after 4000 epochs (black line). In the
deterministic DNC setting (green line), a feature’s elimination
causes its gradient to vanish for the rest of the training.

91.7%, respectively.

9. Feature Selection with Correlations

Lastly, we evaluate our proposed method using data with cor-
related features. In real-world, high-dimensional datasets,
many features are correlated. Such correlations introduce
a challenge for feature selection. For instance, in the most
extreme case if there are copies of the same feature, then it
is not clear which to select. As another example consider
if a large subset of features are a function of a small subset
of features that we wish to identify. That large subset of
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.

d | )

Figure 5. Comparing stability of feature selection by STG and
HC. We train our method to classify 3s and 8s (from MNIST)
with a regularization parameter tuned to retain ~ 6 features. We
repeat the experiment using 20 random initializations. Dark pixels
represent the union of selected features based on the STG (top) and
HC (bottom) overlaid on top of two randomly sampled examples
from each class. This demonstrates that an HC-based feature
selection does not provide a stable selection of features across
different runs.

seemingly useful features can confound a feature selection
method. Below, we consider a number of examples in vari-
ous correlated feature settings and demonstrate the strong
performance of STG.

We first evaluate the proposed method in a linear setting. To
introduce correlated features, we extend the linear regres-
sion experiment described in Section 8 using a correlated
design matrix with a covariance matrix whose values are
defined by ¥; ; = 0.3/"=7I. We run 100 simulations and
present the probability of recovering the correct support of
(B*. Fig. 6 shows that even if the features are correlated,
STG successfully recovers the support with fewer samples
than HC, DNC, and LASSO.
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Figure 6. Feature selection in linear regression using a correlated
design matrix. Probability of recovering the informative features
as a function of the number of samples. Comparison between STG,
HC, LASSO and DNC.

Next we evaluate our method in a non-linear setting using

a variant of the MADELON dataset, which includes corre-
lated features. Following (Guyon et al., 2005), the first 5
informative features of MADELON are used to create 15
additional coordinates based on a random linear combina-
tion of the first 5. A Gaussian noise A (0, 1) is injected
to each feature. Next, additional 480 nuisance coordinates
drawn from N (0, 1) are added. Finally, 1% of the labels are
flipped. * We use 1, 500 points from this dataset and evalu-
ate the ability of STG to detect the informative features.

Fig. 9 shows the precision of feature selection (black line)
and the number of selected features (red line) as a function
of the regularization parameter \ in the range [0.01, 10]. We
observe that there is a wide range of A values in which our
method selects only relevant features (i.e. the precision is
1). Furthermore, there is a wide range of A values in which
5 features are selected consistently.
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# of selected features
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Figure 7. An empirical evaluation of the effect the regularization
parameter A has on the precision of feature selection (black line)
and the number of selected features (red line). The precision and
the number of selected features are presented on the left and right
side of the y-axis, respectively. The means are displayed as solid
lines while the standard deviations are marked as shaded regions
around the means.

10. Conclusion

In this paper, we propose a novel embedded feature selection
method based on stochastic gates. It has an advantage over
previous ¢; regularization based methods in its ability to
achieve a high level of sparsity in nonlinear models such as
neural networks, without hurting performance.

We justify our probabilistic feature selection framework
from an information theoretic perspective. In experiments,
we demonstrate that our method consistently outperforms
existing embedded feature selection methods in both syn-
thetic datasets and real datasets.

*generated using dataset.make_classification
from scikit-learn (http://scikit-learn.org/)


http://scikit-learn.org/
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