
Amortized Finite Element Analysis for Fast PDE-Constrained Optimization

A. Finite Element Analysis
The Finite Element Analysis (FEA) is arguably the most powerful approach known for the numerical solutions of problems
characterized by partial differential equations (PDEs). We demonstrate the basic idea by considering the linear Poisson’s
equation as a model problem. As shown in Fig. 8, we start with the strong formulation of the problem and then introduce the
weak formulation upon which the finite element approximation is built, namely, the Galerkin weak formulation. We further
introduce the minimization formulation and the corresponding Galerkin minimization formulation, which is the cornerstone
for the proposed amortized finite element analysis (AmorFEA).

Figure 8. FEA roadmap.

The strong formulation of the Poisson’s equation reads as

−∆u = λ in Ω,

u = 0 on Γ. (28)

For simplicity, we have assumed homogenous Dirichlet boundary conditions. Instead of heuristically approximating the
differential operator like the Finite Difference Method (FDM), FEA employs a more systematic approach by searching the
best possible solution over a constructed finite-dimensional function space.

First, let us multiply a test function v for both sides of the PDE in Eq. 28, integrate over Ω, and use integration by parts to
obtain the weak formulation: find u ∈ V := {v sufficiently smooth

∣∣ v|Γ = 0} such that

a(u, v) = l(λ, v), for all v ∈ V, (29)

where

a(u, v) =

∫
Ω

∇u · ∇v dx, l(λ, v) =

∫
Ω

λv dx. (30)

Second, we construct a finite-dimensional subspace Vh ⊂ V and Vh = span{φ1, ..., φn} is the piece-wise polynomial
function space. Note that for any function v ∈ Vh, there is a unique representation v =

∑n
i=1 viφi. We thus can define an

isomorphism Vh ∼= Rn by v =
∑n
i=1 viφi ↔ v = (v1, ..., vn)>.

The Galerkin weak formulation yields an approximation to Eq. 29 by solving the following system of linear equations:

Au = f , (31)

where A ∈ Rn×n is the stiffness matrix with Aij = a(φi, φj), u ∈ Rn is the solution vector and f ∈ Rn is the source
vector with fi = l(φi, λ). As a remark, if λ is also represented by piece-wise polynomial basis functions, we could further
write f = Bλ withB ∈ Rn×m and Bij = l(φi, φj). It is not difficult to verify thatA is symmetric and positive definite.
By solving Eq. 31, the FEM gives the best possible solution we can find in Vh.

The minimization formulation states that

min
u∈V
L(u), (32)

where

L(u) =
1

2

∫
Ω

∇u · ∇u dx−
∫

Ω

λu dx. (33)
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By setting the functional derivative to be zero, we recover the weak formulation.

Finally, we introduce the Galerkin minimization formulation, which is the discretized version of the minimization formulation
above. Replace u ∈ V in Eq. 32 with u =

∑n
i=1 uiφi ∈ Vh, we get the following finite-dimensional optimization problem:

min
u∈Rn

L(u), (34)

where

L(u) =
1

2
u>Au− f>u. (35)

The quadratic programming problem yields the same solution as Eq. 31. AmorFEA is based on the Galerkin minimization
formulation. Note that for a nonlinear problem, we may have a more complicated nonlinear optimization problem rather
than the quadratic programming.

For further details regarding FEA and its variational formulation, we refer readers to Brezzi & Fortin (2012).

B. Proofs
Lemma 1. A function f : Rn → R is convex if and only if the function g : R→ R given by g(t) = f(x+ ty) is convex (as
a univariate function) for all x in domain of f and all y ∈ Rn. (The domain of g here is all t for which x+ ty is in the
domain of f .)

Proof. This is straightforward from the definition of convexity of multivariable functions.

Proposition 3. The empirical loss function La(W ) of AmorFEA in the linear model is convex.

Proof. We use Lemma 1 to show the function La : Rn×n → R is convex. For any fixedW1 ∈ Rn×n andW2 ∈ Rn×n, let

g(t) =La(W1 + tW2)

=
1

K

K∑
k=1

(1

2

(
(W1 + tW2)fk

)>
A
(
(W1 + tW2)fk

)
− f>k

(
(W1 + tW2)fk

))
=
( 1

2K

K∑
k=1

f>k W
>
2 AW2fk

)
t2 +

( 1

2K

K∑
k=1

(
f>k W

>
2 AW1fk + f>k W

>
1 AW2fk − 2f>k W2fk

))
t

−
( 1

2K

K∑
k=1

f>k W1fk
))

(36)

SinceA is symmetric and positive definite, the coefficient of the quadratic term is always positive:

1

2K

K∑
k=1

f>k W
>
2 AW2fk =

1

2K

K∑
k=1

‖A 1
2W2fk‖22 ≥ 0. (37)

This shows that g(t) is always convex.

Proposition 4. The empirical loss function Ls(W ) of supervised learning in the linear model is convex.
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Proof. We use Lemma 1 to show the function Ls : Rn×n → R is convex. For any fixedW1 ∈ Rn×n andW2 ∈ Rn×n, let

g(t) =Ls(W1 + tW2)

=
1

K

K∑
k=1

(1

2

(
(W1 + tW2)fk −A−1fk

)>(
(W1 + tW2)fk −A−1fk

))
=
( 1

2K

K∑
k=1

f>k W
>
2 W2fk

)
t2 −

( 1

2K

K∑
k=1

(
f>k (W1 −A−1)>W2fk + f>k W

>
2 (W1 −A−1)fk

))
t

+
( 1

2K

K∑
k=1

f>k (W1 −A−1)>(W1 −A−1)fk
))

(38)

The coefficient of the quadratic term is always positive:

1

2K

K∑
k=1

f>k W
>
2 W2fk =

1

2K

K∑
k=1

‖W2fk‖22 ≥ 0. (39)

This shows that g(t) is always convex.

C. Detailed formulations
C.1. Source Field Finding

The potential energy is

L(u, λ) =
1

2

∫
Ω

‖∇u‖22dx+
1

2

∫
Ω

(10u2 + 5u4)dx−
∫

Ω

λudx. (40)

The governing PDE (Eq. 23) can be derived by minimizing Eq. 40.

We set λ(x) = 100exp(
‖x−(0.1,0.1)‖22

0.02 ), solve the governing PDE by FEA and set the solution to be the desired field ud(x)
for Eq. 22.

C.2. Inverse Kinematics of a Soft Robot

We model the soft robot with a neo-Hookean hyperelastic solid (Ogden, 1997). The total potential energy is

L(u, λ) =

∫
Ω

Wdx, (41)

where the energy density W is defined for material bulk and shear moduli µ and κ as:

W =
µ

2

(
(detF )−2/3tr(FFT )− 3

)
+
κ

2
(detF − 1)2, (42)

and F is the deformation gradient,

F = ∇u+ I. (43)

Since our problem is in 2d, we have assumed plain strain condition. The governing PDE (Eq. 27) can be derived by
minimization Eq. 41. The stress tensor P in Eq. 27 is known as the first Piola-Kirchoff stress and can be obtained by

P =
∂W

∂F
. (44)

The boundary constraint r(u, λ) in Eq. 27 is expressed over the bottom side boundary Γb, top side boundary Γt and the side
boundaries Γs respectively as

u = 0 on Γb, (45)
P ·N = 0 on Γt, (46)

Λ = h(λ) on Γs, (47)
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where N is the normal vector to the boundary, Λ is the stretch ratio (see definition in (Holzapfel, 2000))
and h(λ) = 1

1+e−λ
+ 1

2 forces the range of Λ to (0.5, 1.5) in order to avoid extreme and unrealistic deformations.
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