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Abstract
In video prediction tasks, one major challenge is
to capture the multi-modal nature of future con-
tents and dynamics. In this work, we propose
a simple yet effective framework that can effi-
ciently predict plausible future states, where the
key insight is that the potential distribution of a
sequence could be approximated with analogous
ones in a repertoire of training pool, namely, ex-
pert examples. By further incorporating a novel
optimization scheme into the training procedure,
plausible predictions can be sampled efficiently
from distribution constructed from the retrieved
examples. Meanwhile, our method could be seam-
lessly integrated with existing stochastic predic-
tive models; significant enhancement is observed
with comprehensive experiments in both quanti-
tative and qualitative aspects. We also demon-
strate the generalization ability to predict the mo-
tion of unseen class, i.e., without access to corre-
sponding data during training phase. Project Page:
https://sites.google.com/view/vpeg-supp/home.

1. Introduction
Video prediction involves accurately generating possible
forthcoming frames in a pixel-wise manner given several
preceding images as inputs. As a natural routine for un-
derstanding the dynamic pattern of real-world motion, it
facilitates many promising downstream applications, e.g.,
robot control, automatous driving and model-based rein-
forcement learning (Kurutach et al., 2018; Nair et al., 2018;
Pathak et al., 2017).

Srivastava et al. (2015) first proposes to predict simple digit
motion with deep neural models. Video frames are syn-
thesized in a deterministic manner (Denton & Birodkar,
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Figure 1. Illustration of stochastic prediction with different prior
schemes. Rectangle box refers to input. φqz is for uncertainty
modelling and φpre is the prediction model. We omit the output
part for simplicity. Blue line corresponds to stochastic modelling
and dashed line is the sampling procedure of random variable. (A)
Prediction with fixed Gaussian prior, which does not consider the
temporal dependency between different time steps. (B) Prediction
with parametric prior, which lacks explicit supervision signal for
multi-modal future modelling. (C) Proposed prediction scheme
with similar examples retrieved in training dataset. These examples
are utilized construct an explicit multi-modal distribution target
for the training of prediction model.

2017), which also suffers to achieve long-range and high-
quality prediction, even with large model capacity (Finn
et al., 2016). Babaeizadeh et al. (2018) shows that the distri-
bution of frames is a more important aspect that should be
modelled. Variational based methods (e.g., SVG (Denton
& Fergus, 2018) and SAVP (Lee et al., 2018)) are naturally
developed to achieve good performance on simple dynamics
such as digit moving (Srivastava et al., 2015) and robot arm
manipulation (Finn et al., 2016).

However, real-world motion commonly follows multi-
modal distributions. With the increase of motion diversity
and complexity, variational inference with prior Gaussian
distribution is insufficient to cover the wide spectrum of fu-
ture possibilities. Meanwhile, downstream tasks mentioned
in the first paragraph require prediction model with capa-
bility to model real-world distribution (i.e., can the multi-
modal motion pattern be effectively captured?) and high
sampling efficiency (i.e., fewer samples needed to achieve
higher prediction accuracy). These are both important fac-
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tors for stochastic prediction, which are also the focus issues
in this paper. Recent work introduces external information
(e.g., object location (Ye et al., 2019; Villegas et al., 2017b))
to ease the prediction procedure, which is hard to generalize
to other scenes.

Predictive models can heavily rely on similarity between
past experiences and the new ones, implying that sequences
with similar motion might fall into the same modal with a
high probability. The key insight of our work, deduced from
the above observation, is that the potential distribution of
sequence to be predicted can be approximated by analogous
ones in a data pool, namely, examples.

In other words, our work (termed as VPEG, Video
Prediction via Example Guidance) bypasses implicit op-
timization of latent variable relying on variational inference;
as shown in Fig. 1C, we introduce an explicit distribution
target constructed from analogous examples, which are em-
pirically proved to be critical for distribution modelling. To
guarantee output predictions are multi-modal distributed,
we further propose a novel optimization scheme which con-
siders the prediction task as a stochastic process for explicit
motion distribution modelling. Meanwhile, we incorporate
the adversarial training into proposed method to guaran-
tee the plausibility of each predicted sample. It is also
worth mentioning that our model is able to integrate with
the majority of existing stochastic predictive models. Imple-
menting our method is simply replacing variational method
with the proposed optimization framework. We conduct
extensive experiments on several widely used datasets, in-
cluding moving digit (Srivastava et al., 2015), robot arm
motion (Finn et al., 2016), and human activity (Zhang et al.,
2013). Considerable enhancement is observed both in quan-
titative and qualitative aspects. Qualitatively, the high-level
semantic structure, e.g., human skeleton topology, could
be well preserved during prediction. Quantitatively, our
model is able to produce realistic and accurate motion with
fewer samples compared to previous methods. Moreover,
our model demonstrates generalization ability to predict un-
seen motion class during testing procedure, which suggests
the effectiveness of example guidance.

2. Related Work
Distribution Modelling with Stochastic Process. In this
filed, one major direction is based on Gaussian process (de-
noted as GP) (Rasmussen & Williams, 2006). Wang et al.
(2005) proposes to extend basic GP model with dynamic
formation, which demonstrates appealing ability of learn-
ing human motion diversity. Another promising branch
is determinantal point process (denoted as DPP) (Affandi
et al., 2014; Elfeki et al., 2019), which focuses on diversity
of modelled distribution by incorporating a penalty term
during optimization procedure. Recently, the combination

of stochastic process and deep neural network, e.g., neural
process (Garnelo et al., 2018) leads to a new routine towards
applying stochastic process on large-scale data. Neural pro-
cess (Garnelo et al., 2018) combines the best of both worlds
between stochastic process (data-driven uncertainty mod-
elling) and deep model (end-to-end training with large-scale
data). Our work, which treads on a similar path, focuses on
the distribution modelling of real-world motion sequences.

Video Prediction. Video prediction is initially considered
as a deterministic task which requires a single output at
a time (Srivastava et al., 2015). Hence, many works fo-
cus on the architecture optimization of the predictive mod-
els. Conv-LSTM based model (Shi et al., 2015; Finn et al.,
2016; Wang et al., 2017; Xu et al., 2018a; Lotter et al., 2017;
Byeon et al., 2018; Wang et al., 2019) is then proposed to en-
hance the spatial-temporal connection within latent feature
space to pursue better visual quality. High fidelity predic-
tion could be achieved by larger model and more computa-
tion sources (Villegas et al., 2019). Flow-based prediction
model (Kumar et al., 2020) is proposed to increase the inter-
pretability of the predicted results. Disentangled representa-
tion learning (Denton & Birodkar, 2017; Gao et al., 2018)
is proposed to reduce the difficulty of human motion mod-
elling (Yan et al., 2017) and prediction. Another branch of
work (Jia et al., 2016) attempts to predict the motion with dy-
namic network, where the deep model is flexibly configured
according to inputs, i.e., adaptive prediction. Deterministic
model is infeasible to handle multiple possibilities. Stochas-
tic video prediction is then proposed to address this problem.
SV2P (Babaeizadeh et al., 2018) is firstly proposed as an
stochastic prediction framework incorporated with latent
variables and variational inference for distribution mod-
elling. Following a similar inspiration, SAVP (Lee et al.,
2018) demonstrates that the combination of GAN (Good-
fellow et al., 2014) and VAE (Kingma & Welling, 2014)
facilitates better modelling of the future possibilities and sig-
nificantly boosts the generation quality of predicted frames.
Denton & Fergus (2018) proposes to model the unknown
true distribution in a parametric and learnable manner, i.e.,
represented by a simple LSTM (Hochreiter & Schmidhu-
ber, 1997) network. Recently, unsupervised keypoint learn-
ing (Kim et al., 2019) (i.e., human pose (Xu et al., 2020))
is utilized to ease the modelling difficulty of future frames.
Domain knowledge, which helps to reduce the motion am-
biguity (Ye et al., 2019; Tang & Salakhutdinov, 2019; Luc
et al., 2017), is proved to be effective in future prediction.
In contrast to these works above, we are motivated by one
insight that prediction is based on similarity between the
current situation and the past experiences. More specifi-
cally, we argue that the multi-modal distribution could be
effectively approximated with analogous ones (i.e., exam-
ples) in training data and real-world motion could be further
accurately predicted with high sampling efficiency.
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Figure 2. Overall framework of proposed video prediction method.
The whole procedure is split into two consecutive phases presented
at the top and bottom rows respectively. Top row refers to retrieval
process of proposed method, while bottom rows is the prediction
model with example guidance. It is optimized as a stochastic
process to effectively capture the future motion uncertainty.

3. Method
Given M consecutive frames as inputs, we are to predict
the future N frames in the pixel-wise manner. Suppose
the input (context) frames X is of length M , i.e., X =
{xt}Mt=1 ∈ RW×H×C×M , where W,H,C are image width,
height and channel respectively. Following the notation
defined, the prediction output Y is of length N , i.e., Y =
{yt}Nt=1 ∈ RW×H×C×N . We denote the whole training
set as Ds. Fig. 2 demonstrates the overall framework of
the proposed method. Details are presented in following
subsections.

3.1. Example Retrieval via Disentangling Model

We conduct the retrieval procedure in training set Ds. To
avoid trivial solution, X is excluded from Ds if X is in the
training set Ds. Direct search in the image space is infeasi-
ble because it generally contains unnecessary information
for retrieval, e.g., the appearance of foreground subject and
detailed structure of background. Alternatively, a better
solution is retrieving in disentangled latent space. Many pre-
vious methods (Denton & Birodkar, 2017; Tulyakov et al.,
2018; Villegas et al., 2017a; Denton & Fergus, 2018) have
made promising progress in learning to disentangle latent
feature. Two competitive methods, i.e., SVG (Denton &
Fergus, 2018) and Kim et al. (2019) are adopted as the dis-
entangling model in our work. Kim et al. (2019) proposes
an unsupervised method to extract keypoints of arbitrary
object, whose pretrained model is directly used to extract
the pose information as motion feature in our work. Note
that the motion feature remains valid when input is only one
frame, where the single state is treated as motion feature.
SVG (Denton & Fergus, 2018) unifies the disentangling
model and variational inference based prediction into one
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Figure 3. Four typical patterns of retrieved examples on PennAc-
tion (Zhang et al., 2013) dataset. The five solid lines refer to top-5
examples searched in Ds and orange-dot line is the ground truth
motion sequence. The blue-star line is predicted sequence. The in-
put sequence generally falls into one variation pattern of retrieved
examples, which confirms the key insight of our work.

stage. We remove the prediction part and train the disentan-
gling model as:

(bt,ht) = φdse(xt), t ∈ {i, j}, (1)

Ldse = ||φdec(bi,hj)− xj ||22, (2)

where i, j are two random time steps sampled from one se-
quence, φdse and φdec are disentangling model and decoder
(for image reconstruction) respectively. Ldse indicates two
frames from the same sequence share similar background
and should be able to reconstruct each other by exchanging
the motion feature. By optimizing this loss function, appear-
ance feature b∗ is expected to be constant while h∗ contains
the motion information, which leads the disentanglement
model to learn to extract motion feature in a self-supervised
way. Both disentanglement models SVG (Denton & Fer-
gus, 2018) and Kim et al. (2019) could be presented in
a unified way as shown in Fig. 2. Next we focus on the
retrieval procedure. Note that all input frames are used
in this part. We denote the feature used for retrieval as
F ∈ RCf×M = {ft}Mt=1, where Cf is the number of feature
dimension.

Given input sequence X, whose motion feature denoted as
F, and training set Ds, we conduct nearest-neighbor search
as:

Ωi = S(||Fi − F||22,K), (3)

where Fi refers to the extracted feature of Xi ∈ Ds.
S(•,K) refers to top K selection from a set in the ascend-
ing order. Ωi is the retrieved index set corresponding to ith
sample. Note that the subscript i is omitted for simplicity
in following contexts. K is treated as a hyper-parameter
in our experiments, whose influence is validated through
ablation study in Sec. 4. We perform first-order difference
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along the temporal axis to focus on state difference during
the retrieval procedure if multiple frames are available. We
plot retrieved examples (solid line, K = 5) together with
the input sequence (orange-dot line) in Fig. 3. Here we have
two main observations: (1) The input sequence generally
falls into one motion pattern of retrieved examples, which
confirms the key insight of our work. (2) The examples
have non-Gaussian distribution, which implies the difficulty
on the optimization side by a variational inference method.
We present more visual evidence in supplementary material
to demonstrate the common existence of such similarity
between F and FΩ.

Discussion of Retrieval Efficiency. Note that the retrieval
module is introduced in this work, which is an additional
step compared to the majority of previous methods. One
concern would thus be the retrieval time, which is highly
correlated with efficiency of the whole model. We would
like to clarify that the retrieval step is highly efficient: (1)
It is executed in the low dimensional feature space (i.e.,
f ∈ RCf ) rather than in the image space, which requires
less computation; (2) It is implemented with the efficient
quick-sort algorithm. The averaged retrieval complexity is
O(NlogN), where N is the number of video sequences. For
example, on the PennAction dataset (Zhang et al., 2013)
(containing 1172 sequences in total) the whole running (in-
cluding retrieval) time of predicting 32 frames is 354ms,
while the retrieval time only takes 80ms.

3.2. Example Guided Multi-modal Prediction

3.2.1. STOCHASTIC VIDEO PREDICTION REVISITED

The majority works (Denton & Birodkar, 2017; Ye et al.,
2019; Denton & Fergus, 2018; Lee et al., 2018) of stochastic
video prediction are based on variational inference. We first
briefly review previous works in this field and then analyze
the inferiority of stochastic prediction based on variational
inference.

These methods use a latent variable (denoted as z) to model
the future uncertainty. The distribution of z (denoted as pz)
is trained to match with a (possibly fixed) prior distribution
(denoted as qz) as follows,

L = ||φpre(F1:t−1, zt)− ft||22 + LKL(pz||qz), (4)

where φpre, qz , LKL() are the prediction model, target
distribution and Kullback-Leibler divergence function (Kull-
back & Leibler, 1951) respectively. pz is generally mod-
elled with deep neural network (e.g., φpz

(ft−1)). qz is fixed,
e.g., N (0, I). This implies that the predicted image Xt is
controlled by N (0, I), not real-world motion distribution.
Denton & Fergus (2018) proposes to model the potential
distribution with φqz (f t), which still lacks an explicit super-
vision signal on the distribution of motion feature.

Algorithm 1 Example Guided Video Prediction
Input: Training Set Ds, disentangling model φdse, pre-
dictor φpre and discriminator φdcm.
#Example retrieval phase
for Input sequence X in Ds do

Get motion feature F = φdse(X),
Example retrieval to obtain FΩ as Eqn. 3.

end for
#Prediction phase
repeat

Get a random batch of (F,FΩ) pairs.
#Optimization as a stochastic process
for i = 1 to N do

Sample noise zi,t+1 as Eqn. 8,
Predict next state f̂i,t+1 as Eqn. 9,

end for
Optimize w.r.t. Eqn. 10, 11, 12 and 13.

until the training objective Lfin (Eqn. 14) converged.

The essence of the modelling difficulty is from the opti-
mization target of the LKL term. Under the framework of
variational inference, the form of qz is generally restricted
to a normal distribution for tractability. However, this is
in conflict with the multi-modal distribution nature of real-
world motion. We need a more explicit and reliable target
and thus propose to construct it with similar examples fΩ

whose retrieval procedure is described in Sec. 3.1.

3.2.2. PREDICTION WITH EXAMPLES

Given retrieved examples fΩ, we first construct a new dis-
tribution target and then learn to approximate it. The most
straightforward way is directly replacing the prior distribu-
tion qz with the new one. More specifically, at time step t
the distribution model φpz

is trained as:

µ̂t, σ̂t = φpz
(F̂1:t−1), zt ∼ N (µ̂t, σ̂t), (5)

µt, σt = φqz (fΩ
t ),LKL = log(

σt
σ̂t

) +
σ̂t + (µt − µ̂t)

2

2σt
,

(6)
where zt models the possibility of future state and µt, σt are
commonly supervised with LKL.

However, it is difficult to obtain promising results with
the above method which simply replaces ft with fΩ

t . The
reason mainly lies in two aspects: Firstly, the diversity of
predicted motion feature at time step t (denoted as f̂t) lacks
an explicit supervision signal. Secondly, the distribution of
latent variable zt (i.e.,N (µt, σt)) is infeasible to accurately
represent the motion diversity of fΩ

t , because no dedicated
training objective is designed for this target.

Optimization as Stochastic Process. Motivated by the
above two issues, we consider the prediction task as a
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stochastic process targeting at explicit distribution mod-
elling. The whole prediction procedure is conducted in
motion feature space. The inputs of prediction model φpre
include fΩ

t and ft. We calculate the mean and variance of
example feature fΩ

t , i.e., E(fΩ
t ) and V(ft), for the subse-

quent random sampling in motion space. The prediction
procedure at time step t is conducted as follows,

(µt, σt) = φqz (E(fΩ
t ),V(fΩ

t )), (7)

(z1,t, ..., zN,t)
i.i.d.∼ N (µt, σt), (8)

f̂i,t+1 = φpre(f̂i,t, zi,t, f
Ω
t ), i = 1, ..., N, (9)

where (z1,t, ..., zN,t) is a group of independent and identi-
cally sampled values and zi,t ∈ Rh. The subscript i, t refers
to ith sample at time step t. Predicted state f̂i,t is not fed into
φqz , where we empirically get sub-optimal results. Because
at initial training stage f̂i,t is noisy and non-informative,
which in turn acts as a distractor for training φqz . The pre-
diction model is trained as follows,

Lrcn = ||f̂j,t+1 − ft+1||22, (10)

Ldst = ||V({f̂i,t+1}Ni=1)− V(fΩ
t+1)||22, (11)

where j = mini ||{f̂i,t+1}Ni=1 − ft+1||22. Lrcn indicates
that the best matched one is used for training (Xu et al.,
2018b). Empirically, it is proved to be useful for stabilizing
prediction when having multiple outputs.

Ldst aims to restrict the variety of N predicted features
to match with fΩ

t+1. In this way, the motion information
of examples is effectively utilized and the distribution of
predicted sequences is explicitly supervised. Meanwhile,
to guarantee the plausibility of each predicted sequence,
we incorporate the adversarial training into our method.
More specifically, a motion discriminator φdcm is utilized
to facilitate realistic prediction.

LD =
1

2
(φdcm(1− F) + φdcm(1 + F̂i)), (12)

LG = −φdcm(1− F̂i), (13)

where i ∈ [1, N ], LD,LG are adversarial losses for φdcm
and φpre (Goodfellow et al., 2014). Adversarial training
effectively guarantees the predicted sequence not drifting
far away from the real-wold motion examples. For clarity
we present the whole prediction procedure in Alg. 1.

Improvement upon existing models. Our work mainly fo-
cuses on multi-modal distribution modelling and sampling
efficiency, which is adaptive to multiple neural models. In
Sec. 4, we demonstrate extensive results by combining pro-
posed framework with two baselines, i.e., SVG (Denton &

Ours

SVG-LP

DFN

Example

Figure 4. Visualization of prediction results on MovingMnist (Sri-
vastava et al., 2015) dataset under stochastic setting. First row
refers to ground truth. Following three rows correspond to exam-
ple, predicted sequences of proposed model, SVG (Wichers et al.,
2018) and DFN (Shi et al., 2015) respectively.

Fergus, 2018) and Kim et al. (2019). The final objective is
shown below:

Lfin = λ1Lrcn + λ2Ldst + λ3LD + λ4LG. (14)

For training and implementation details, (hyper-parameter
and network architecture), please refer to the supplementary
material.

4. Experiments
4.1. Datasets and Evaluation Metrics

We evaluate our model with three widely used video pre-
diction datasets: (1) MovingMnist (Srivastava et al., 2015),
(2) Bair RobotPush (Ebert et al., 2017) and (3) PennAc-
tion (Zhang et al., 2013). Following the evaluation practice
of SVG (Babaeizadeh et al., 2018) and Kim et al. (2019), we
calculate the per-step prediction accuracy in terms of PSNR
and SSIM. The overall prediction quality of video frames is
evaluated with Fréchet Video Distance (FVD) (Unterthiner
et al., 2018). To ensure fair evaluation, we compare with
models whose source code is publicly available. Specifically,
on MovingMnist (Srivastava et al., 2015) dataset we com-
pare with SVG (Denton & Fergus, 2018) and DFN (Shi et al.,
2015); On RobotPush (Ebert et al., 2017) dataset SVG (Den-
ton & Fergus, 2018), SV2P (Babaeizadeh et al., 2018) and
CDNA (Finn et al., 2016) are treated as baselines; On Penn-
Action (Zhang et al., 2013) dataset the works of Kim et al.
(2019); Li et al. (2018); Wichers et al. (2018); Villegas et al.
(2017b) are used for comparison. Note that to follow the
best practice of the baseline model (Kim et al., 2019), the
prediction procedure on the PennAction Dataset (Zhang
et al., 2013) is a implementation-wise variant of Eqn. 7-9.
More specifically, the random noise is sampled only at the
first time stamp. Please refer to prediction procedure of the
baseline model (Kim et al., 2019) for more details. In all
experiments we empirically set N = K = 5.
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Mode Model T=1 T=3 T=5 T=7 T=9 T=11 T=13 T=15 T=17

D
DFN 25.3 23.8 22.9 22.0 21.2 20.1 19.5 19.1 18.9
SVG-LP 24.7 22.8 21.3 19.5 18.8 18.2 17.9 17.7 17.4
Ours 25.6 23.2 22.5 21.7 20.8 20.3 19.8 19.5 19.3

S
DFN 25.1 22.1 18.9 16.5 16.2 15.7 15.2 14.9 14.3
SVG-LP 25.4 23.9 22.9 19.5 19.0 18.7 18.7 18.2 17.6
Ours 26.0 24.8 23.1 22.1 21.0 20.5 19.7 19.5 19.2

Table 1. Prediction accuracy on MovinMnist dataset (Srivastava
et al., 2015) in terms of PSNR. Mode refers to experiment setting,
i.e., stochastic (S) or deterministic (D). We compare our model
with SVG-LP (Denton & Fergus, 2018) and DFN (Jia et al., 2016).

Demo1

Demo2

Ours

SVG-LP

SV2P

Figure 5. Comparison of the predicted sequences on Robot-
Push (Ebert et al., 2017) dataset. Rows from top to bottom:
ground truth, two retrieved examples, predicted results of our
model, SVG (Denton & Fergus, 2018) and SV2P (Babaeizadeh
et al., 2018).

4.2. Motivating Experiments: Moving Digit Prediction

For MovingMnist (Srivastava et al., 2015) dataset, in-
puts/outputs are of length 5 and 10 respectively during train-
ing. Note that this dataset is configured with two different
settings, i.e., to be deterministic or stochastic. The deter-
ministic version implies that the motion is determined by
initial direction and velocity, while for the stochastic one,
a new direction and velocity are applied after the digit hit-
ting the boundary. The prediction model should be able to
accurately estimate motion patterns under both settings.

Deterministic Motion Prediction. Tab. 1 shows predic-
tion accuracy (in terms of PSNR) from T=1 to T=17. One
can observe that our model outperforms SVG-LP (Denton
& Fergus, 2018) by a large margin and is comparable to
DFN (Jia et al., 2016). Under deterministic setting the re-
trieved examples provide exact motion information to facili-
tate prediction procedure. We present corresponding visual
results in supplementary material and please refer to it.

Stochastic Motion Prediction. Under stochastic setting,
the best PSNR value of 20 random samples is reported (bot-
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Figure 6. Evaluation in terms of SSIM on RobotPush (Ebert et al.,
2017) dataset. Left figure: X-axis is the time step and Y-axis
is SSIM. Right figure: X-axis refers to the number of random
samples during evaluation and Y-axis is averaged SSIM over a
whole predicted sequence.

tom three rows of Tab. 1). Considerable improvement over
SVG-LP (Denton & Fergus, 2018) could be observed from
Tab. 1. Despite the retrieved example sequence not perfectly
matching with ground truth (Fig. 4, first two columns re-
fer to input.), informative motion pattern is provided, i.e.,
bouncing back after reaching the boundary. The determin-
istic model (DFN (Jia et al., 2016)), which only produces
a single output, is infeasible to properly handle stochastic
motion. For example, the blur effect (last row in Fig. 4) is
observed after hitting the boundary.

Deterministic and stochastic datasets possess different mo-
tion patterns and distributions. Non-stochastic method (e.g.,
DFN (Jia et al., 2016)) is insufficient to capture motion
uncertainty, while SVG-LP (Denton & Fergus, 2018), em-
pirically restricted by the stochastic prior nature in varia-
tional inference, is not capable of accurately predicting the
trajectory under the deterministic condition. Under deter-
ministic setting, retrieved examples generally follow similar
trajectory, whose variance is low. For the stochastic ver-
sion, searched sequences are highly diverse but follow the
same motion pattern, i.e., bouncing back when hitting the
boundary. Guided by examples from these experiences, our
model is able to reliably capture the motion pattern under
both settings. It implies that compared to fixed/learned prior,
the motion variety could be better represented by similar
examples. Please refer to supplementary material for more
visual results.

4.3. Robot Arm Motion Prediction

Experiments on RobotPush (Ebert et al., 2017) dataset take 5
frames as inputs and predict the following 10 frames during
training. As illustrated in Fig. 6 (first column refers to input),
we present quantitative evaluation in terms of SSIM. For the
stochastic method, the best value of 20 random samples is
presented. Fig. 6 implies that our method outperforms all
previous methods by a large margin. We find CDNA (Finn
et al., 2016) (deterministic method) is inferior to stochastic
ones. We attribute this to the high uncertainty of robot
motion in this dataset. Our model, facilitated by example
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Metric K=2 K=3 K=4 K=5 K=6 K=7

PSNR 17.81 18.19 18.28 18.35 18.31 18.25
SSIM 0.78 0.82 0.83 0.84 0.84 0.83

Table 2. Influence of the example number K evaluated in terms
of PSNR (first row) and SSIM (second row) on RobotPush (Ebert
et al., 2017) dataset. Note that each number reported in this table
is averaged over the whole predicted sequence.

guidance, is capable of capturing the real motion dynamics
in a more efficient manner. To comprehensively evaluate
the distribution modelling ability and sampling efficiency of
the proposed method, we calculate the mean accuracy w.r.t.
the number of samples (denoted as P ): Fig. 6 shows the
accuracy improvement for all stochastic methods along with
the increase of P , which tends to be saturated when P is
large. It is worth mentioning that our model still outperforms
SVG (Denton & Fergus, 2018) by a large margin when
P is sufficiently large, e.g., 100. This clearly indicates a
higher upper bound of accuracy achieved by our model (with
guidance of retrieved examples) compared to variational
inference based method, i.e., superior capability to capture
real-world motion pattern.

Predicted sequences are shown in Fig. 5. For row arrange-
ment please refer to the caption. The key region (highlighted
with red boxes) of predicted frames is zoomed in for better
visualization of details (last column). Compared to stochas-
tic baselines, our model achieves higher image quality of
predicted sequences, i.e., object edges and general structure
are better preserved. Meanwhile, the overall trajectory is
more accurately predicted by our model if compared to two
stochastic baselines, which is mainly facilitated by the effec-
tive guidance of retrieved examples. For more visual results
please refer to the supplementary material.

4.4. Human Motion Prediction

We report the experimental results on a human daily activity
dataset, i.e., PennAction (Zhang et al., 2013). We follow the
setting of Kim et al. (2019), which is also a strong baseline
for comparison. More specifically, the class label and first
frame are fed as inputs. Note that under this situation we re-
trieve the examples according to the first frame in sequences
with an identical action label.

To evaluate the multi-modal distribution modelling capa-
bility, Fig. 7A presents the best prediction sequence of 20
random samples in terms of PSNR and please refer to the
caption for row arrangement. First column refers to input.
The pull-up action generally possesses two motion modal-
ities, i.e., up and down. We can observe that Kim et al.
(2019) fails to predict corresponding motion precisely even
with 20 samples (third time step highlighted with red-boxes).
Our model, guided by similar examples (last two rows in
Fig. 7A), is capable of synthesizing the correct motion pat-

Metric [1] [2] [3] [4] Ours

Action Acc↑ 15.89 40.00 47.14 68.89 73.23
FVD↓ 4083.3 3324,9 2187.5 1509.0 1283.5

Table 3. Quantitative evaluation of predicted sequences in terms of
Fréchet Video Distance (FVD) (Unterthiner et al., 2018) (lower is
better) and action recognition accuracy (higher is better). Previous
works [1]-[4] refer to (Li et al., 2018; Wichers et al., 2018; Villegas
et al., 2017b) respectively. Experiment is conducted on PennAction
dataset (Zhang et al., 2013).

tern compared to the groundtruth sequence. Meanwhile,
from Fig. 7B we can notice that Kim et al. (2019) fails to
preserve the general structure during prediction. The human
topology is severely distorted especially at the late stage
of prediction (last 3 time steps highlighted with red-boxes).
As comparison the structure of subject is well maintained
predicted by our model, which is visually more natural than
the results of Kim et al. (2019). This implies reliably captur-
ing the motion distribution facilitates better visual quality
of final predicted image sequences. We present more visual
results in supplementary material and please refer to it.

For quantitative evaluation, we follow Kim et al. (2019)
to calculate the action recognition accuracy and FVD (Un-
terthiner et al., 2018) score. As shown in Tab. 3, our model
outperforms all previous methods in terms of both action
recognition accuracy and FVD score by a large margin. This
mainly benefits from the retrieved examples, which provides
effective guidance for future prediction.

4.5. Ablation Study

Does example guidance really help? To evaluate the ef-
fectiveness of retrieved examples, we replace the retrieval
procedure described in Sec. 3.1 with the random selection,
i.e., the examples have no motion similarity with inputs. We
conduct this experiment on MovingMnist (Srivastava et al.,
2015) dataset. Results are presented in Fig. 8 and please
refer to caption for detailed row arrangement. Due to the
lack of motion similarity between examples and the input
sequence, the predicted sequence demonstrates unnatural
motion. The double-image effect of digit 5 (last row in
Fig. 8), resulting from the misleading information of motion
trajectory provided by random examples, implies the critical
value of retrieval procedure proposed in Sec. 3.1. In supple-
mentary material, we also present visualization evidence to
demonstrate the inferiority of simply combining example
guidance and variational inference. Please refer to it.

Does the proposed model really capture multi-modal
distribution? We present the sampled motion features
(Fig. 9) in RobotPush (Ebert et al., 2017) dataset to evaluate
the capability of distribution modelling. For row arrange-
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Figure 7. Qualitative evaluation of human motion prediction on PennAction (Zhang et al., 2013) dataset. We present ground truth, results
of Kim et al. (2019), predicted sequence of our model and two searched examples. The left part refers to a pull-up action with multi-modal
futures based on the current input and searched examples are capable of matching with possibilities. The right part aims to show that our
model is capable of preserving the general structure during prediction. Red-boxes highlight the corresponding evidences on both sides.

Random

Demo1

Random

Demo2

Prediction

Figure 8. Prediction results with random example guidance on
MovingMnist (Srivastava et al., 2015) dataset. The top and bottom
rows correspond to ground truth and predicted sequence, while the
middle two rows are randomly selected examples in this dataset.
Unnatural motion is observed during prediction (last row).

ment please refer to the caption. For sub-figures from B to
D, red-dot lines refer to predicted sequences and blue ones
are ground truth. We can observe that the sampled states
of SVG (Denton & Fergus, 2018) and SV2P (Babaeizadeh
et al., 2018) are not multi-modal distributed. Guided by
retrieved examples whose multi-modality distribution gen-
erally cover the ground truth motion, our model is able to
predict the future motion in a more efficient way. Mean-
while, we present more visualization results to show that
predicted sequences are not simply copied from examples
and they are highly diverse.

Influence of Example Number K. As illustrated in Tab. 2,
we conduct corresponding ablation study aboutK on Robot-
Push (Ebert et al., 2017) dataset. Performance under two
metrics, i.e., PSNR and SSIM, is reported. PSNR and SSIM
are averaged over the whole sequence and the best of 20 ran-
dom sequences is reported. K ranges from 2 to 7. We can
see that both PSNR and SSIM keep increase when K is no
larger than 5 and then decrease. It indicates that multi-modal
examples facilitate better modelling the target distribution,

A: Demo

D: SV2PC: SVG-LP

B: Ours

Figure 9. Visualization of retrieved examples and randomly sam-
pled sequences on RobotPush (Ebert et al., 2017) dataset. Top left
refers to searched examples, while the other three figures corre-
spond to sampled sequences by proposed model, SVG (Wichers
et al., 2018) and SV2P (Babaeizadeh et al., 2018) respectively.

but noise information (or irrelevant motion pattern) might
be introduced when K is too large.

4.6. Motion Prediction Beyond Seen Class

To further evaluate the generalization ability of the proposed
model, we are motivated to predict the motion sequence on
unseen class. The majority of video prediction methods are
merely able to forecast the motion pattern accessible during
training, which are hardly generalizable to novel motion.
We conduct experiments on PennAction (Zhang et al., 2013)
dataset. We choose three actions, i.e., golf swing, pull ups
and tennis serve as known action during training and base-
ball pitch as the unseen motion used during testing. Our
model as well as that of Kim et al. (2019) is retrained with-
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Figure 10. Predicted results of unseen motion. Contents from top
to bottom are ground truth sequence, retrieved example, prediction
of our model and the results of (Kim et al., 2019) respectively.

out label class. During testing, the examples for guidance
are retrieved baseball pitch sequences. Fig. 10 demonstrates
the predicted results. For row arrangement please refer to
the caption. We can observe that Kim et al. (2019) fails
to give rational prediction regarding the input, where there
should be a baseball pitch motion but visually resemble
tennis serve. Facilitated by the guidance of examples, our
model produces a visually natural tennis serve sequence,
which clearly demonstrates the generalization capability of
proposed model. We argue that the majority of previous
works are (implicitly) forced to memorize motion categories
in the training set. In contrast to the paradigm, our work is
relieved from such burden because the retrieved examples
contain the category information in assistance of prediction.
We thus focus only on intra-class diversity. If given exam-
ples with unseen motion categories, our model is still able to
give reasonable predictions, thanks to the example guidance.
We present more visual results in supplementary material
and please refer to it.

5. Conclusion
In this work, we present a simple yet effective framework
for multi-modal video prediction, which mainly focuses on
the capability of multi-modal distribution modelling. We
first retrieve similar examples in the training set and then
use these searched sequences to explicitly construct a dis-
tribution target. With proposed optimization method based
on stochastic process, our model achieves promising perfor-
mance on both prediction accuracy and visual quality.
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E. B., and Garnett, R. (eds.), NeurIPS, 2019.

Wang, J. M., Fleet, D. J., and Hertzmann, A. Gaussian
process dynamical models. In NeurIPS, 2005.

Wang, Y., Long, M., Wang, J., Gao, Z., and Yu, P. S. Predrnn:
Recurrent neural networks for predictive learning using
spatiotemporal lstms. In NIPS, 2017.

Wang, Y., Jiang, L., Yang, M., Li, L., Long, M., and Fei-Fei,
L. Eidetic 3d LSTM: A model for video prediction and
beyond. In ICLR, 2019.

Wichers, N., Villegas, R., Erhan, D., and Lee, H. Hierarchi-
cal long-term video prediction without supervision. In
ICML, 2018.

Xu, J., Ni, B., Li, Z., Cheng, S., and Yang, X. Structure
preserving video prediction. In CVPR, 2018a.

Xu, J., Ni, B., and Yang, X. Video prediction via selective
sampling. In NeurIPS, 2018b.

Xu, J., Yu, Z., Ni, B., Yang, J., Yang, X., and Zhang, W.
Deep kinematics analysis for monocular 3d human pose
estimation. In CVPR, 2020.

Yan, Y., Xu, J., Ni, B., Zhang, W., and Yang, X. Skeleton-
aided articulated motion generation. In ACM MM, 2017.

Ye, Y., Singh, M., Gupta, A., and Tulsiani, S. Compositional
video prediction. In ICCV, 2019.

Zhang, W., Zhu, M., and Derpanis, K. G. From actemes to
action: A strongly-supervised representation for detailed
action understanding. In ICCV, 2013.


