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Supplementary Material of Video Prediction via Example Guidance ∗

1. Implementation Details
1.1. Disentangling Model φdse

Disentangling mode φdse generally follows the autoencoder
architecture. As presented in the main manuscript, the de-
tailed implementation of disentangling model φdse varies ac-
cordingly on different datasets. More specifically, on Mov-
ingMnist (Srivastava et al., 2015) and Bair RobotPush (Ebert
et al., 2017) dataset we build φdse based on SVG (Denton
& Fergus, 2018), while on PennAction (Zhang et al., 2013)
dataset φdse is identical to the work of Kim et al. (2019).
In the following paragraph we present detailed implemen-
tation details on MovingMnist (Srivastava et al., 2015) and
Bair RobotPush (Ebert et al., 2017) dataset. Please refer
to Kim et al. (2019) for training and network details on
PennAction (Zhang et al., 2013) dataset.

On MovingMnist (Srivastava et al., 2015) Dataset. The
encoder part consists of 5 convolutional layers with kernel
size 3 and stride 2. The output channel of all 5 layers are
16 / 32 / 64 / 128 / 128 respectively. Batch-normalization
layer (Ioffe & Szegedy, 2015) is applied after each convolu-
tional layer. The activation layer is LeakyReLU (Xu et al.,
2015) with leaky rate 0.2. Note that the final activation layer
is replaced with Tanh function. The decoder part consists of
5 de-convolutional layers with kernel size 3 and stride 2. The
output channel of all 5 layers are 128 / 64 / 32/ 16 / 1 respec-
tively (digit is gray scale image). Batch-normalization (Ioffe
& Szegedy, 2015) along with LeakyReLU (Xu et al., 2015)
(leaky rate 0.2) layers are applied after convolutional layers,
where the activation function of outputs is replaced with
sigmoid.

On RobotPush (Ebert et al., 2017) Dataset. The architec-
ture on this dataset is inspired from vgg net (Simonyan &
Zisserman, 2015) and consists of 5 blocks. Each of the first
2 blocks contains 2 convolutional layers with kernel size 3
and stride 1. That of the middle 2 blocks contains 3 convolu-
tional layers with same kernel size and stride. The outputs of
first 4 blocks are processed by a maxpooling laye with kernel
size 2 and stride 2. The output channels of all 5 blocks are
64 / 128 / 256 / 512 / 512 respectively. Batch-normalization
layer (Ioffe & Szegedy, 2015) is applied after each con-
volutional layer. The activation layer is LeakyReLU (Xu
et al., 2015) with leaky rate 0.2. The decoder part consists
of 5 de-convolutional blocks with kernel size 3 and stride
2. The architecture of each block is a mirrored version of

∗Project page: https://sites.google.com/view/vpeg-supp/home

the encoder. The maxpooling layer is replaced with nearest-
neighbour upsampling layer. Batch-normalization (Ioffe &
Szegedy, 2015) along with LeakyReLU (Xu et al., 2015)
(leaky rate 0.2) layers are applied after all convolutional
layers, where the activation function of outputs is replaced
with sigmoid.

Skip Connection. As mentioned in the main manuscript,
skip connection is used between the encoder and decoder
part. More specifically, the outputs of first 4 layers of en-
coder (on MovingMnist (Srivastava et al., 2015) dataset) or
first 4 blocks (on RobotPush (Ebert et al., 2017) daatset) are
feed as skip connections to the decoder part.

1.2. Prediction Model φpre, φqz
Both φpre and φqz are two-layer LSTM (Hochreiter &
Schmidhuber, 1997) networks. For φpre, as mentioned in
Eqn. 9 in the main manuscript, the input consists of three
components, i.e., current feature f̂i,t, random noise zi,t and
example guidance fΩ

t:t+1 respectively. Example guidance
fΩ
t:t+1 is processed with first-order temporal difference and

then feed into one fully connected layer which fuses N ex-
amples into single one. Therefore the dimensions of three
components on three datasets are 128 / 20 / 128 (Mov-
ingMnist (Srivastava et al., 2015) dataset); 512 / 20 / 512
(RobotPush (Ebert et al., 2017) dataset); 89 / 10 / 89 (Penn-
Action (Zhang et al., 2013) dataset). The input dimension
of feature on PennActionn (Zhang et al., 2013) dataset is
defined by 40*2+9=89, where 40 is the 2D key-point num-
ber and 9 refers to the number of action classes. All three
input components are fused by a fully connected layer to
1024 dimension. For φpre, the input and output dimension
is thus defined by fΩ

t and zi,t on corresponding datasets
respectively.

Training details. Note that the disentangling model re-
quires training process on MovingMnist (Srivastava et al.,
2015) and RobotPush (Ebert et al., 2017) datasets. This part
is implemented with Pytorch (Paszke et al., 2019) frame-
work. Adam optimizer (Kingma & Ba, 2015) is applied with
learning rate η = 1e−4, α = 0.5 and β = 0.9. The weight
decay rate is 1e−5. On both MovingMnist (Srivastava et al.,
2015) and RobotPush (Ebert et al., 2017) datasets, the model
is trained with 50 epoches with stepped learning rate de-
cay at 20th epoch (0.1) and 40th epoch (0.01) respectively.
The prediction model is implemented with Pytorch (Paszke
et al., 2019) framework on MovingMnist (Srivastava et al.,
2015) and RobotPush (Ebert et al., 2017) datasets, while
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Figure 1. Visualization of retrieved examples on PennAction (Zhang et al., 2013) dataset. For all sub-figures, the X-axis stands for time
step and Y-axis refers to the value corresponding to one dimension of learned motion feature. For notation, the 5 solid lines are retrieved
example sequence and blue star refers to predicted sequence. Orange-dot line is the ground truth.

tensorflow (Abadi et al., 2015) on PennAction (Zhang et al.,
2013) dataset. For all datasets, Adam optimizer (Kingma &
Ba, 2015) is applied with learning rate η = 3e−5, α = 0.9
and β = 0.999. The weight decay rate is 1e−4. The pre-
diction model is trained with 300 epoches with stepped
learning rate decay at 100th epoch (0.1) and 200th epoch
(0.01) respectively.

2. Visualization of Retrieved Examples
As illustrated in Fig. 1, we present more retrieved examples
on PennAction (Zhang et al., 2013) dataset. Please refer
to the caption for detailed definition of the figure. Here
we emphasise two main observations mentioned in main
manuscript: (1) The examples generally multi-modal dis-
tributed, which implies the difficulty on the optimization
side by a variational inference method. (2) The input se-
quence generally falls into one motion pattern of retrieved
examples, which confirms the key insight of our work. We
provide more predicted results on this anonymous web-
site 1. Please refer to it.

1https://sites.google.com/view/vpeg-supp/home

3. MovingMnist Prediction
3.1. Visualization of Deterministic Prediction

As shown in Fig. 2, we present a typical result evaluated un-
der deterministic MovingMnist (Srivastava et al., 2015) pre-
diction. Please refer to the caption for detailed experiment
setting. As highlighted by red box in Fig. 2, SVG (Denton
& Fergus, 2018) fails to give accurate prediction even cal-
culating the best of 20 random sequences. In contrast to
SVG (Denton & Fergus, 2018), guided by retrieved exam-
ples our model is able to synthesise plausible future frames.
DFN (Shi et al., 2015) also gives relative accurate predic-
tion under deterministic setting, but it is infeasible to handle
stochastic prediction properly. Details are presented in fol-
lowing paragraph.

3.2. Visualization of Stochastic Prediction

As shown in Fig. 3, we present a typical result evaluated
under stochastic MovingMnist (Srivastava et al., 2015) pre-
diction. Please refer to the caption for detailed experiment
setting. As highlighted by red box in Fig. 2, the predic-
tion results of DFN (Denton & Fergus, 2018) demonstrate
severe image quality degeneration effect, which mainly re-
sults from the incapability of capturing uncertainty of future
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Figure 2. Demonstration of predicted results on MovingMnist (Srivastava et al., 2015) dataset under deterministic setting. Rows from top
to bottom refer to ground truth, retrieved example, predicted results of our model, SVG (Denton & Fergus, 2018) and DFN (Shi et al.,
2015) respectively. Sub-sequences are highlighted with red box for better evaluation.
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Figure 3. Demonstration of predicted results on MovingMnist (Srivastava et al., 2015) dataset under stochastic setting. Rows from top to
bottom refer to ground truth, retrieved example, predicted results of our model, SVG (Denton & Fergus, 2018) and DFN (Shi et al., 2015)
respectively. The best one of 20 random samples (in terms of PSNR) is presented. Sub-sequences are highlighted with red box for better
evaluation.

states. In contrast to DFN (Denton & Fergus, 2018), guided
by retrieved examples our model is able to synthesise plau-
sible future frames, i.e., bouncing back when hitting the
boundary meanwhile generally following the moving tra-
jectory of ground truth sequence. SVG (Shi et al., 2015)
gives more rational prediction than DFN (Denton & Fergus,
2018), but it is infeasible to learn the underlying motion
pattern accurately.

4. Robot Arm Prediction
4.1. Prediction Accuracy Comparison

To evaluate the prediction accuracy on RobotPush (Ebert
et al., 2017) dataset, we compare our model with SVG (Den-
ton & Fergus, 2018) and SV2P (Babaeizadeh et al., 2018).
As shown in Fig. 4. please refer to the caption for detailed

experiment setting. Prediction error is highlighted with red
box for better evaluation, which demonstrates a general
robot arm movements from center to right side. Retrieved
example matches well with the ground truth motion, which
effectively facilitates the prediction model capturing multi-
modal patterns more reliably. We provide more predicted
results on this anonymous website 2. Please refer to it.

4.2. Prediction Diversity Visualization

To evaluate the prediction diversity on RobotPush (Ebert
et al., 2017) dataset, we present randomly sampled se-
quences in Fig. 5. Please refer to the caption for detailed
experiment setting. We can notice that the prediction model
with example guidance is able to synthesise highly diverse

2https://sites.google.com/view/vpeg-supp/home
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Figure 4. Demonstration of predicted results on RobotPush (Ebert et al., 2017) dataset. Rows from top to bottom refer to ground truth,
retrieved example, predicted results of our model, SVG (Denton & Fergus, 2018) and SV2P (Babaeizadeh et al., 2018) respectively. The
best one of 20 random samples (in terms of PSNR) is presented. Sub-sequences are highlighted with red box for better evaluation.
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Figure 5. Illustration of randomly predicted results on RobotPush (Ebert et al., 2017) dataset. 5 rows correspond to 5 randomly predicted
sequences. We can notice that the trajectories of 5 predicted sequences are highly diverse.

future motion patterns.

5. Human Action Prediction
As shown in Fig. 6, we present prediction results on PennAc-
tion (Zhang et al., 2013) dataset. Please refer to the caption
for corresponding experiment setting. Fig. 6 demonstrates
a typical tennis serving action. We highlight the predicted
results with red box for better comparison. We can notice
that Kim et al. (2019) gives irrational prediction, i.e., the
wrong tennis serving direction (please note the difference
of leg movements between ground truth and the results of
Kim et al. (2019)). In contrast to Kim et al. (2019), our
model makes it to synthesise plausible motion (please note
the body leaning direction and leg movements), which is
mainly facilitated by the guidance of retrieved example (last
row in Fig. 6). We provide more predicted results on this

anonymous website 3. Please refer to it.

6. Training under Variational Inference
We present predicted results (Fig. 7) trained under vari-
ational inference as described in Sec. 3.2.2 of the main
manuscript. Please refer to the caption of Fig. 7 for detailed
experimental setting. We can notice that the prediction
model is infeasible to synthesise rational results. Both best
predicted sequence and random sampled one are severely
distorted. The digit 1 is not properly preserved during the
whole prediction procedure. This mainly results from that
the assumption of prior distribution in variational inference
is Gaussian distribution, which is conflict with multi-modal
distributed examples. More specifically, during optimiza-
tion procedure the modelled future dynamics is forced to
approximate uni-modal distribution, which finally leads to

3https://sites.google.com/view/vpeg-supp/home
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Figure 6. Demonstration of predicted results on PennAction (Zhang et al., 2013) dataset. Rows from top to bottom refer to ground truth,
predicted results of Kim et al. (2019), our model and retrieved example respectively. The best one of 20 random samples (in terms of
PSNR) is presented. Sub-sequences are highlighted with red box for better evaluation.
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Figure 7. Demonstration of predicted results on MovingMnist (Srivastava et al., 2015) dataset. Note during training the variational
inference is used instead of proposed one in our work. Rows from top to bottom refer to ground truth, best predicted result of 20 random
samples, one randomly predicted sequences and retrieved example sequence respectively.

sub-optimal results.
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