
Appendix for
MetaFun: Meta-Learning with Iterative Functional Updates

A. Functional Gradient Descent
Functional gradient descent (Mason et al., 1999; Y. Guo & Williamson, 2001) is an iterative optimisation algorithm for
finding the minimum of a function. However, the function to be minimised is now a function on functions (functional).
Formally, a functional L : H → R is a mapping from a function space H to a 1D Euclidean space R. Just like gradient
descent in parameter space which takes steps proportional to the negative of the gradient, functional gradient descent updates
f following the gradient in function space. In this work, we only consider a special function space called Reproducing
kernel Hilbert space (RKHS) (Appendix A.1), and calculate functional gradients in RKHS (Appendix A.2). The algorithm is
further detailed in Appendix A.3.

A.1. Reproducing Kernel Hilbert Space

A Hilbert spaceH extends the notion of Euclidean space by introducing inner product 〈·, ·〉H which describes the concept
of distance or similarity in this space. A RKHS Hk is a Hilbert space of real-valued functions on X with the reproducing
property that for all x ∈ X there exists a unique kx ∈ Hk such that the evaluation functional Ex(f) = f(x) can be
represented by taking the inner product of this element kx and f , formally as:

Ex(f) = 〈kx, f〉Hk
. (1)

Since kx′ ∈ Hk for any x′ ∈ X , we can define a kernel function k(x, x′) : X × X → R by letting

k(x, x′) = kx′(x) = 〈kx, kx′〉Hk
. (2)

Using properties of inner product, it is easy to show that the kernel function k(x, x′) is symmetric and positive definite, and
we call it the reproducing kernel of the Hilbert spaceHk.

A.2. Functional Gradients

Functional derivative can be thought of as describing the rate of change of the output with respect to the input in a functional.
Formally, functional derivative at point f in the direction of g is defined as:

∂L

∂f
(g) = lim

ε→0

L(f + εg)− L(f)
ε

, (3)

which is a function of g. This is known as Fréchet derivative in a Banach space, of which the Hilbert space is a special case.

Functional gradient, denoted as∇fL, is related to functional derivative by the following equation:

∂L

∂f
(g) = 〈∇fL, g〉Hk

. (4)

Thanks to the reproducing property, it is straightforward to calculate functional derivative of an evaluation functional in
RKHS:

Ex(f + εg) = 〈f + εg, kx〉Hk

= 〈f, kx〉Hk
+ ε〈g, kx〉Hk

(5)
∂Ex

∂f
(g) = 〈kx, g〉Hk

(6)



MetaFun Appendix

Therefore, the functional gradient of an evaluation functional is:

∇fEx = kx. (7)

For a learning task with loss function ` and a context set {(xi, yi)}i∈C, the overall supervised loss on the context can be
written as:

L(f) =
∑
i∈C

`(f(xi), yi). (8)

In this case, the functional gradient of L can be easily calculated by applying the chain rule:

∇fL =
∑
i∈C

`′(f(xi), yi)kxi (9)

=
∑
i∈C

k(·, xi)`′(f(xi), yi). (10)

A.3. Functional Gradient Descent

To optimise the overall loss on the entire context in Equation (8), we choose a suitable learning rate α, and iteratively update
f with:

f (t+1)(x) = f (t)(x)− α∇fL(f (t))(x) (11)

= f (t)(x)− α
∑
i∈C

k(x, xi)`′(f (t)(xi), yi) (12)

In order to evaluate the final model fT (x) at iteration T , we only need to compute

f (T )(x) = f (0)(x)−
T−1∑
t=0

α
∑
i∈C

k(x, xi)`′(f (t)(xi), yi), (13)

which does not depend on function values outside the context from previous iterations t < T .

B. Experimental Details
We run experiments on Nvidia’s GeForce GTX 1080 Ti, and it typically takes about 20–40 minutes to train a few-shot model
on a single GPU card until early-stopping is triggered (after seeing 10k–100k tasks). For miniImageNet and tieredImageNet,
we conduct randomised hyperparameters search (Bergstra & Bengio, 2012) for hyperparameters tunning. Typically, 64
configurations of hyperparameters are sampled for each problem, and the best configuration is chosen by comparing accuracy
on the validation set. The considered range of hyperparameters is given in Table 1, and the chosen hyperparameters are
shown in Table 2. For regression tasks, we simply use hyperparameters listed in Table 3 for both MetaFun-DFP and
MetaFun-KFP.



MetaFun Appendix

Table 1. Considered Range of Hyperparameters. The random generators such as
randint or uniform use numpy.random syntax, so the first argument is in-
clusive while the second argument is exclusive. Whenever a list is given, it means
uniformly sampling from the list. u+ and u− will be followed by a linear transforma-
tion with an output dimension of dim-reprs.

Components Architecture

Shared MLP m nn-sizes × nn-layers
MLP for positive labels u+ nn-sizes × nn-layers
MLP for negative labels u− nn-sizes × nn-layers
Key/query transformation MLP a dim(x) × embedding-layers
Decoder linear with output dimension dim(x)

Hyperparameters Considered Range

num-iters randint(2, 7)
nn-layers randint(2, 4)
embedding-layers randint(1, 3)
nn-sizes [64, 128]
dim-reprs =nn-sizes
Initial representation r0 [zero, constant, parametric]

Outer learning rate 10−5 × uniform(-5, -4)
Initial inner learning rate [0.1, 1.0, 10.0]
Dropout rate uniform(0.0, 0.5)
Orthogonality penalty weight 10uniform(-4, -2)

L2 penalty weight 10uniform(-10, -8)

Label smoothing [0.0, 0.1, 0.2]



MetaFun Appendix

Table 2. Results of randomised hyperparameters search. Hyperparameters shown in this table are not guaranteed
to be optimal within the considered range, because we conduct randomised hyperparameters search. However,
models configured with these hyperparameters perform reasonably well, and we used them to report final
results comparing to other methods. Furthermore, dropout is only applied to the inputs. Orthogonality penalty
weight and L2 penalty weight are used in exactly the same way as in Rusu et al. (2019). Inner learning rate α
is trainable so only an initial inner learning rate is given in the table.

miniImageNet tieredImageNet
Hyperparameters (for MetaFun-DFP) 1-shot 5-shot 1-shot 5-shot

num-iters 2 5 3 5
nn-layers 3 2 2 3
embedding-layers 2 2 1 1
nn-sizes 64 128 128 128
Initial state zero constant constant constant

Outer learning rate 8.56× 10−5 3.71× 10−5 5.55× 10−5 5.78× 10−5

Initial inner learning rate 0.1 10.0 1.0 1.0
Dropout rate 0.397 0.075 0.123 0.223
Orthogonality penalty weight 3.28× 10−3 1.56× 10−3 1.37× 10−3 2.58× 10−3

L2 penalty weight 1.32× 10−10 2.60× 10−10 1.92× 10−9 1.63× 10−9

Label smoothing 0.2 0.2 0.1 0.0

miniImageNet tieredImageNet
Hyperparameters (for MetaFun-KFP) 1-shot 5-shot 1-shot 5-shot

num-iters 3 6 4 4
nn-layers 3 2 2 3
embedding-layers 2 2 1 1
nn-sizes 64 64 64 128
Initial state zero parametric parametric zero

Outer learning rate 4.21× 10−5 8.60× 10−5 8.01× 10−5 4.50× 10−5

Initial inner learning rate 0.1 0.1 0.1 0.1
Dropout rate 0.424 0.359 0.115 0.148
Orthogonality penalty weight 2.69× 10−3 2.73× 10−4 1.06× 10−4 7.33× 10−3

L2 penalty weight 1.19× 10−9 1.68× 10−9 4.90× 10−9 6.22× 10−9

Label smoothing 0.2 0.2 0.1 0.1



MetaFun Appendix

Table 3. Hyperparameters for regression tasks. Local update function and
the predictive model will be followed by linear transformations with output
dimension of dim-reprs and dim(y) accordingly.

Components Architecture

Local update function nn-sizes × nn-layers
Key/query transformation MLP a nn-sizes × embedding-layers
Decoder nn-sizes × nn-layers
Predictive model nn-sizes × (nn-layers-1)

Hyperparameters Considered Range

num-iters 5
nn-layers 3
embedding-layers 3
nn-sizes 128
dim-reprs =nn-sizes
Initial representation r0 zero

Outer learning rate 10−4

Initial inner learning rate 0.1
Dropout rate 0.0
Orthogonality penalty weight 0.0
L2 penalty weight 0.0



MetaFun Appendix

References
Bergstra, J. and Bengio, Y. Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13

(Feb):281–305, 2012.

Mason, L., Baxter, J., Bartlett, P. L., Frean, M., et al. Functional gradient techniques for combining hypotheses. Advances in
Large Margin Classifiers. MIT Press, 1999.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., and Hadsell, R. Meta-learning with latent
embedding optimization. In International Conference on Learning Representations, 2019.

Y. Guo, P. Bartlett, A. S. and Williamson, R. C. Norm-based regularization of boosting. Submitted to Journal of Machine
Learning Research, 2001.


