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Abstract
Label distribution covers a certain number of la-
bels, representing the degree to which each label
describes the instance. When dealing with label
ambiguity, label distribution could describe the
supervised information in a fine-grained way. Un-
fortunately, many training sets only contain sim-
ple logical labels rather than label distributions
due to the difficulty of obtaining label distribu-
tions directly. To solve this problem, we consider
the label distributions as the latent vectors and
infer them from the logical labels in the train-
ing datasets by using variational inference. After
that, we induce a predictive model to train the
label distribution data by employing the multi-
output regression technique. The recovery ex-
periment on fourteen label distribution datasets
and the predictive experiment on ten multi-label
learning datasets validate the advantage of our
approach over the state-of-the-art approaches.

1. Introduction
Learning with ambiguity is a hot topic in recent machine
learning and data mining research. A learning process is
essentially building a mapping from the instances to the
labels. This paper mainly focuses on the ambiguity at the la-
bel side of the mapping, i.e., one instance is not necessarily
mapped to one label (Tsoumakas & Katakis, 2006). Dur-
ing the past decade, the techniques for learning with label
ambiguity have been widely employed to learn from data
with rich semantics, such as text (Rubin et al., 2012), image
(Cabral et al., 2011), audio (Lo et al., 2011), video (Wang
et al., 2011), etc. For learning with label ambiguity, the log-
ical labels are always assigned to the instance, partitioning
the supervised information into relevance/irrelevance labels
rigidly (Gibaja & Ventura, 2015; Zhang & Zhou, 2014).
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Figure 1. An example of the relative importance among relevant /
irrelevant labels

However, the relevance or irrelevance of a label to an in-
stance is essentially relative in the real-world tasks. When
multiple labels are associated with an instance, the relative
importance among them is more likely to be different rather
than exactly equal. For instance, when “sand” and “sailboat”
are relevant to the two images in Fig. 1, “sand” is more
significant than “sailboat” in image (a) and the opposite
scenario occurs in image (b). On the other hand, the “ir-
relevance” of each irrelevant label may be very different.
For instance, “bus” is more irrelevant than “sun” to the two
images in Fig. 1, since “sun” often appears with “sand”and
“sailboat” on the beach. Therefore, assigning the logical
label lyx ∈ {0, 1} to each instance x with the relevant (ir-
relevant) label y ignores the relative importance among the
relevant (irrelevant) labels.

To solve this problem, a more natural way to label an in-
stance x is to assign a real number dyx to each possible label
y, representing the degree to which y describes x. Such dyx
is called the description degree of y to x. For a particular
instance, the description degrees of all the labels constitute
a real-valued vector called label distribution (Geng, 2016).
Therefore, label distribution is more fine-grained to describe
the supervised information in the tasks of learning with label
ambiguity.

However, label distributions are not explicitly available in
most training sets as quantifying the description degrees is
costly. It needs to be somehow recovered from the training
set, a process which is named as label enhancement (LE)
(Xu et al., 2018). After the label distributions are recov-
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ered, more effective supervised learning can be achieved
by leveraging the label distributions (Li et al., 2015; Hou
et al., 2016). Note that although some label enhancement
methods have been proposed (Xu et al., 2019; Li et al., 2015;
Hou et al., 2016), there is no theoretical explanation about
the recovered label distribution and the process of label
enhancement.

In this paper, a theoretical explanation about the essence of
label enhancement is proposed. By inducing the generative
model of the label distribution and adopt the variational
inference technique, a variational lower bound of the la-
bel distribution is given and a novel LE approach called
Label Enhancement via Variational Inference (LEVI) is pro-
posed to infer the label distributions from the logical labels.
In addition, we show how our method can support multi-
label learning (Tsoumakas & Katakis, 2006), and evaluate
it against several state-of-the-art methods.

The rest of this paper is organized as follows. Firstly, some
related work is briefly reviewed and discussed in Section
2. Secondly, technical details of the theoretical explanation
and proposed approach LEVI are introduced in Section 3.
Then, LEVI for multi-label learning is proposed in Section4.
After that, the results of the comparative experiments are
reported in Section 5. Finally, conclusions are drawn in
Section 6.

2. Related Work
Label distribution explicitly models label ambiguity with
the description degree, which is not the probability that y
correctly labels x, but the proportion that y accounts for in a
full class description of x. Therefore, label distribution can
be distinguished from the previous studies on probabilistic
labels (Quost & Denœux, 2009; Denœux & Zouhal, 2001;
Smyth et al., 1995), where the basic assumption is that only
one ‘correct’ label is assigned to each instance. Probabilistic
labels are mainly used when the real label of the instance
cannot be obtained with certainty. In practice, it is usually
difficult to determine the probability (or confidence) of a
label. In most cases, it relies on the prior knowledge of
the human experts, which is a highly subjective and vari-
able process. As a result, the problem of learning from
probabilistic labels has not been extensively studied to date.

From the conceptual point of view, it is worthwhile to dis-
tinguish description degree from the concept membership
used in fuzzy classification. Membership is designed to han-
dle the status of partial truth, which is a truth value which
ranges between completely true and completely false. On
the other hand, description degree reflects the ambiguity
of the label description of the instance, i.e., one label may
only partially describe the instance, but it is completely true
that the label describes the instance. Fortunately, although

the concept of membership is fundamentally different from
description degree, some methods (Gayar et al., 2006; Jiang
et al., 2006) which focus on generating membership can be
applied to generate label distributions(Xu et al., 2019).

Label distribution learning (LDL) is a novel learning
paradigm, which labels an instance with a label distribu-
tion and learns a mapping from instance to label distribution
straightly. LDL has been successfully applied to many real
applications, such as facial landmark detection (Su & Geng,
2019), age estimation (Gao et al., 2018; Geng et al., 2013),
head pose estimation (Geng & Xia, 2014), multi-label rank-
ing for natural scene images (Geng & Luo, 2014), zero-shot
Learning (Huo & Geng, 2017) and emotion analysis from
texts (Zhou et al., 2016). According to the theoretical anal-
ysis (Wang & Geng, 2019), LDL is approximate to the
optimal classifier via learning on the instances labeled by
the ground-truth label distributions. However, in most train-
ing sets, the label distribution is not explicitly available.
There are few work to deal with this situation. One recent
paper (Li et al., 2015) adopts the propagation technique
to generate the label distributions without considering the
correlations between the labels.

Label enhancement (LE) is a process to recover the label
distributions from the logical labels in the training datasets.
GLLE (Xu et al., 2018), LP (Li et al., 2015) and ML (Hou
et al., 2016) are three representative algorithms of LE. They
assume that the label distribution space should share similar
local topological structure in the feature space. GLLE con-
structs a local similarity matrix to preserve the topological
structure information of the feature space, LP adopts label
propagation technique to propagate labeling-importance in-
formation, ML adopts the local linear embedding technique
to achieve identified label degrees. Nonetheless, these meth-
ods all rely on the smoothness assumption (Zhu et al., 2005),
i.e., the points close to each other are more likely to share
a label. This assumption, however, might restrict modeling
capacity, as graph edges need to be necessarily encoded
which introduces additional bias.

In the next section, a novel label enhancement approach will
be introduced. Different from existing label enhancement
approaches, the generative model of the label distribution is
proposed and the label distribution could be recovered via
variational inference with limited assumption. The predic-
tive model by employing multi-output regression techniques
is also induced to leveraging the recovered label distribu-
tions for multi-label learning.

3. The LEVI Method
First of all, the main notations used in this paper are listed as
follows. The instance variable is denoted by x, the particular
i-th instance is denoted by xi, the label variable is denoted
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by y, the particular j-th label value is denoted by yj , the log-
ical label vector of xi is denoted by li = (ly1

xi
, ly2
xi
, ..., lyc

xi
)>,

where c is the number of possible labels. The description
degree of y to x is denoted by dyx, and the label distribution
of xi is denoted by di = (dy1

xi
, dy2
xi
, ..., dyc

xi
)>. Let X = Rq

denote the q-dimensional feature space.

3.1. Variational Lower Bound

Since the difficulty and costly of quantifying the label distri-
butions, people instead, choose simplifying the supervised
information by the logical labels. Therefore, the logical la-
bels are observed discrete vectors and the label distribution
are latent vectors. We assume that the label distribution is
generated from some prior distribution p(d), and then the
logical label vector l is generated from some conditional
distribution p(l|d).

Computation of the exact posterior distribution is intractable
due to the nonlinear, non-conjugate dependencies between
the random variables. To allow for tractable and scalable
inference and parameter learning, variational inference is
adopted. We introduce a fixed-form distribution q(d|l,x)
with parameters w that approximates the true posterior dis-
tribution p(d|l,x). We then follow the variational principle
to derive a lower bound on the marginal likelihood of the
model. This bound forms our objective function and ensures
that our approximate posterior is as close as possible to the
true posterior.

We begin with the definition of Kullback-Leibler divergence
(KL divergence) between p(d|l,x) and q(d|l,x):

KL[q(d|l,x)||p(d|l,x)] = Eq(d|l,x)[log q(d|l,x)

− log p(d|l,x)].
(1)

Applying Bayes rule:

KL[q(d|l,x)||p(d|l,x)] = Eq(d|l,x)[log q(d|l,x)−
log p(l|d)− log p(x|d)− log p(d) + log p(l,x)].

(2)

Here, log p(l,x) comes out of the expectation because it
dose not depend on d :

KL[q(d|l,x)||p(d|l,x)] = log p(l,x)− Eq(d|l,x)

[log p(l|d) + log p(x|d)] + KL[q(d|l,x)||p(d)].
(3)

Since this KL-divergence is non-negative, we have :

log p(l,x) ≥ Eq(d|l,x)[log p(l|d) + log p(x|d)]

−KL[q(d|l,x)||p(d)].
(4)

We construct the approximate posterior distribution q as an
inference model, which has become a popular approach for
efficient variational inference (Kingma & Welling, 2014;
Rezende et al., 2014). Using an inference network, we avoid

the need to compute per data point variational parameters,
but can compute a set of global variational parameters in-
stead. This allows us to amortise the cost of inference by
generalizing between the posterior estimates for all latent
variables through the parameters of the inference model, and
allows for fast inference at both training and testing time.
Then, the ELBO (Evidence Lower Bound) is written as

L(x, l;ϑ,η,w) = Eqw(d|l,x)[log pϑ(l|d) + log pη(x|d)]

−KL[qw(d|l,x)||p(d)].

(5)

Here the inference network is introduced for q(d|l,x), and
we parameterize them as deep neural networks whose out-
puts form the parameters of the distribution qw(d|l,x). The
logical label vector l and the instance x are generated from
the deep neural networks distribution pϑ(l|d) and pη(x|d)
, respectively.

3.2. Label Enhancement Objective

The bound in Eq. (5) provides a unified objective function
for optimisation of all the parameters w, ϑ and φ of the
generative and inference models. By expanding the label
distribution to d ∈ Rc, we assume that the prior over the
latent label distribution be the centered isotropic multivari-
ate Gaussian N (0, I). We let the variational approximate
posterior be a multivariate Gaussian with a diagonal covari-
ance structure N (µ,Σ), where the mean and covariance
matrix of the approximate posterior, µ and Σ, are outputs
of the MLP with parameter w. Then the KL divergence in
the ELBO can be computed:

KL[qw(d|l,x)||p(d)] =
1

2
{tr(Σ) + µ>µ− k

− log |Σ|}.
(6)

where k is the dimensionality of the distribution.

Then, we assume pϑ(l|d) be a multivariate Bernoulli whose
probabilities τ are computed from d with the MLP parame-
terized byϑ , and pη(x|d) be a multivariate Gaussian whose
means ρ are computed from d with the MLP parameterized
by η . Then the first part of the ELBO can be computed:

Eqw(d|l,x)[log pϑ(l|d) + log pη(x|d)] =

1

L

L∑
m=1

c∑
i=1

li log τ
(m)
i + (1− li) · log

(
1− τ (m)

i

)
− 1

L

L∑
m=1

1

2
‖x− ρ(m)‖22.

(7)

Note that back-propagate the error through a layer that sam-
ples d from qw(d|l,x), which is a non-continuous operation
and has no gradient. In order to to move the sampling to
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an input layer ,the reparameterization trick (Rezende et al.,
2014) is induced to sample d by:

d = µ+ Σε, (8)

where ε ∼ N (0, I) . In this case, Eq. (7) can be computed
and differentiated.

Since the label distributions inherit from the initial labels
relevance and irrelevance, we add the least squares for the
label distribution and the initial labels into the objective
function. Then, we formulate the label enhancement prob-
lem into an optimization framework over Eq. (7) and Eq.
(6), and yields the target function for minimization:

T (ϑ,η,w) =
1

L

L∑
m=1

1

2
‖x− ρ(m)‖22 + λ‖d(m) − l‖22

−
c∑

i=1

li log τ
(m)
i + (1− li) · log

(
1− τ (m)

i

)
+

1

2
{tr(Σ) + µ>µ− k − log |Σ|},

(9)
where λ is a hyper-parameter, Σ = MLPΣ(l,x;w),
µ = MLPµ(l,x;w), τ (m) = MLPτ (d(m);ϑ), ρ(m) =
MLPρ(d(m);η), d(m) = µ+ Σε(m), ε ∼ N (0, I).

During optimization we use the standard stochastic gradient
based optimization methods such as SGD or AdaGrad. Af-
ter ϑ,η,w are determined, the label distribution di of each
instance xi is sampled from the posterior di ∼ qw(d|li,xi).
Finally, we normalize di by using the softmax normaliza-
tion.

4. LEVI for Multi-Label Learning
In this section, LEVI is leveraged for multi-label learning
(MLL) (Zhang & Zhou, 2014), which is the most represen-
tative learning paradigm for learning with label ambiguity.
When the label distribution di of each xi has been recovered
by LEVI, the original MLL training set can be transformed
into E = {(xi,di)|1 ≤ i ≤ n}. Then, we generalize a
regressor to solve the multi-dimensional case. In addition,
our regressor not only concerns the distance between the
predicted and the real values, but also the sign consistency
of them. It leads to the minimization of

Ω(Θ, b) =
1

2

c∑
j=1

‖θj‖2 +C1

n∑
i=1

Ω1i +C2

n∑
i=1

Ω2i, (10)

where Θ = [θ1, ...,θc], b = [b1, ..., bc], Ω1 and Ω2 are the
regression loss and the sign loss, respectively.

As shown in Eq. (10), the first term of Ω(Θ, b) controls the
complexity of the induced model. In addition, the second

term of Ω(Θ, b) is defined to consider all dimensions into a
unique restriction and yield a single support vector for all
dimensions:

Ω1i =

{
0 ri < ε

r2i − 2riε+ ε2 ri ≥ ε,
(11)

where ri = ‖ei‖ =
√
e>i ei, ei = di−ϕ(xi)

>Θ−b. This
will create an insensitive zone determined by ε around the
estimate, i.e., the loss of r less than ε will be ignored. The
third term is used to make the signs of the predictive output
and the logical label same as much as possible:

Ω2i = −
c∑

j=1

lji (ϕ(xi)
>θj + bj). (12)

The meaning of Eq. (12) is that if the signs of the predictive
output and the logical label are different, there will be some
positive loss, otherwise the loss will be negative.

It is a piecewise quadratic problem whose optimum can
be integrated as solving a system of linear equations for
j = 1, . . . , c:[
C1Φ

>FΦ + I C1Φ
>a

C1a
>Φ C11

>a

] [
θj

bj

]
=

[
C1Φ

>Fdj + C2Φ
>lj

C1a
>dj + C21

>lj

]
,

(13)
where Φ = [ϕ(x1), ..., ϕ(xn)]>, a = [a1, ..., an]>, F k

i =
aiδ

k
i (δki is the Kronecker’s delta function), and lj =

[lj1, . . . , l
j
n]>. Then, the direction of the optimal solution

of Eq. (13) is used as the descending direction for the opti-
mization of Ω(Θ, b), and the solution for the next iteration
(Θ(k+1) and b(k+1)) is obtained via a line search algorithm
along this direction.

Finally, the predicted label set for unseen instance is deter-
mined via virtual label bipartition (Li et al., 2015). An extra
virtual label y0 is added into the original label set, i.e., the
extended original label setY ′ = Y∪{y0} = {y0, y1, ..., yc}.
In this paper, the origin value ly0

x is set to 0.5. Once the
recovered label distribution and the predictive model have
been learned on the extended original label set, the extended
label distribution d∗ corresponding to the test instance x∗

can be predicted. Then, the predicted label set for x∗ is
determined as:

f(x) = {yj | d
yj
x > dy0

x , 1 ≤ j ≤ c}. (14)

5. Experiments
5.1. Recovery Experiment

We consider the following learning setting. With each in-
stance, a label distribution is associated. The training set,
however, contains for each instance not the actual distribu-
tion, but logical labels. As shown in Fig. 2, we recover
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Figure 2. The schematic diagram of the recovery experiment.

the label distributions from the logical labels via the LE
algorithms, and then compare the recovered label distribu-
tions with the ground-truth label distributions. The label
set includes the labels with the highest weights in the dis-
tribution, and is the smallest set such that the sum of these
weights exceeds a given threshold. This setting can model,
for instance, the way in which users label images or add
keywords to texts: it assumes that users add labels starting
with the most relevant ones, until they feel the labeling is
sufficiently complete.

The logical labels in the datasets can be binarized from
the real label distributions as follows. For each instance
x, the greatest description degree dyj

x is found, and the
label yj is set to relevant label, i.e., lyj

x = 1. Then, we
calculate the sum of the description degrees of all the current
relevant labels H =

∑
yj∈Y+ d

yj
x , where Y+ is the set of

the current relevant labels. If H is less than a predefined
threshold T , we continue finding the greatest description
degree among other labels excluded from Y+ and select
the label corresponding to the greatest description degree
into Y+. This process continues until H > T . Finally, the
logical labels to the labels in Y+ are set to 1, and other
logical labels are set to 0. In our experiments, T = 0.5.

5.1.1. DATASETS

There are in total one artificial dataset and 13 real-world
label distribution datasets1. These real-world datasets (Geng,
2016) collected from biological experiments on the yeast
genes, facial expression images, natural scene images and
movies, respectively. Some basic statistics about these 14
datasets are given in Table 1.

1http://palm.seu.edu.cn/xgeng/LDL/index.htm

Table 1. Statistics of the 14 datasets used in the recovery experi-
ment

No. Dataset #Examples #Features #Labels

1 Artificial (Ar) 2601 3 3

2 SJAFFE (SJ) 213 243 6
3 Yeast-spoem (spoem) 2,465 24 2
4 Yeast-spo5 (spo5) 2,465 24 3
5 Yeast-dtt (dtt) 2,465 24 4
6 Yeast-cold (cold) 2,465 24 4
7 Yeast-heat (heat) 2,465 24 6
8 Yeast-spo (spo) 2,465 24 6
9 Yeast-diau (diau) 2,465 24 7

10 Yeast-elu (elu) 2,465 24 14
11 Yeast-cdc (cdc) 2,465 24 15
12 Yeast-alpha (alpha) 2,465 24 18
13 SBU 3DFE (3DFE) 2,500 243 6
14 Movie (Mov) 7,755 1,869 5

Table 2. The distribution distance/similarity measures

Measure Formula

Chebyshev ↓ Dis1(d, d̂) = maxj |dj − d̂j |

Clark ↓ Dis2(d, d̂) =

√∑c
j=1

(dj−d̂j)
2

(dj+d̂j)
2

Canberra ↓ Dis3(d, d̂) =
∑c

j=1

|dj−d̂j |
dj+d̂j

Kullback-Leibler ↓ Dis4(d, d̂) =
∑c

j=1 dj ln
dj

d̂j

cosine ↑ Sim1(d, d̂) =

∑c
j=1 dj d̂j√∑c

j=1
d2
j

√∑c
j=1

d̂2
j

intersection ↑ Sim2(d, d̂) =
∑c

j=1 min(dj , d̂j)

The artificial dataset is generated to show in a visual way
whether the LE algorithms can recover the label distributions
from the logical labels. In this dataset, the instance x is of
three-dimensional and there are three labels. In order to
show the results of LE algorithms in a direct and visual way,
the examples of the toy dataset are selected from a certain
manifold in the feature space. The first two components
of the instance x, x1 and x2, are located at a grid of the
interval 0.04 within the range [−1, 1], and there are in total
51 × 51 = 2601 instances. The third component x3 is
calculated by

x3 = sin((x1 + x2)× π). (15)

The label distribution d = [dy1
x , d

y2
x , d

y3
x ] of x =

[x1, x2, x3]> is created to deliberately make the descrip-
tion degree of one label depend on those of other labels
(Geng, 2016).

5.1.2. EVALUATION MEASURES

The output of LE algorithm is label distribution rather than
logical output of clustering or classification, which makes
some commonly used measures inapplicable. As suggested
in (Geng, 2016), we select six measures , i.e., Chebyshev
distance (Cheb), Clark distance (Clark), Canberra metric
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(Canber), Kullback-Leibler divergence (KL), cosine coeffi-
cient (Cosine) and intersection similarity (Intersec), which
belong to the Minkowski family, the χ2 family, the L1 fam-
ily, the Shannon’s entropy family, the inner product family,
and the intersection family, respectively. The first four are
distance measures and the last two are similarity measures.

Suppose the real label distribution is d = [d1, d2, ..., dc],
the predicted label distribution is d̂ = [d̂1, d̂2, ..., d̂c], then
the formulae of the six measures are summarized in Table
2, where the “↓” after the distance measures indicates “the
smaller the better”, and the “↑” after the similarity mea-
sures indicates “the larger the better”. Considering that the
selected measures all come from different families, the se-
lected measures are significantly different in both syntax
and semantics.

5.1.3. METHODOLOGY

The five LE algorithms, i.e., FCM (Gayar et al., 2006), KM
(Jiang et al., 2006), LP (Li et al., 2015), ML (Hou et al.,
2016), GLLE (Xu et al., 2018), and our LEVI are all applied
to the 14 real-world datasets shown in Table 1. For each
compared algorithm, we adopt the suggested configuration
in their literature, i.e., the parameter α in LP is set to 0.5,
the number of neighbors K for ML is set to c + 1, the
parameter β in FCM is set to 2, and the kernel function in
KM is Gaussian kernel. For GLLE, the parameter λ1 and λ2
are chosen among {10−2, 10−1, ..., 100}, and the number
of neighbors K is set to c+ 1. The kernel function in GLLE
is Gaussian kernel. For LEVI, the MLPs are constructed
with three hidden layers, each with 500 hidden units and
softplus activation functions.

5.1.4. RECOVERY PERFORMANCE

In order to visually show the results of the LE algorithms
on the artificial dataset, the description degrees of the three
labels are regarded as the three color channels of the RGB
color space, respectively. In this way, the color of a point in
the feature space will visually represent its label distribution.
Thus, the label distribution recovered by the LE algorithms
can be compared with the ground-truth label distribution
through observing the color patterns on the manifold. For
easier comparison, the images are visually enhanced by
applying a decorrelation stretch process. The results are
shown in Fig. 3. It can be seen that LEVI recovers almost
identical color patterns with the ground-truth. GLLE, LP,
ML can also recover similar color patterns with the ground-
truth. However, FCM, KM fails to obtain a reasonable
result.

For quantitative analysis, table 3 tabulates the results of the
five LE algorithms on all real-world the datasets, and the
best performance on each dataset is highlighted by boldface.
For each evaluation metric, ↓ indicates the smaller the better

(a) Ground-Truth

(b) LEVI (c) FCM

(d) KM (e) LP

(f) ML (g) GLLE

Figure 3. Comparison between the ground-truth and recovered la-
bel distributions (regarded as RGB colors) on the artificial mani-
fold.

while ↑ indicates the larger the better. Note that since each
LE algorithm only runs once, there is no record of standard
deviation. we can find that our method achieves optimal
average rank in terms of all the six evaluation metrics.

5.2. Predictive Experiment

In this experiment, the effective performance of LEVI for
MLL prediction can be validated.

5.2.1. DATASETS

There are ten MLL datasets2 used in the experiments. Some
basic statistics about these datasets are given in Table 4. The
MLL datasets cover a broad range of cases with diversified
multi-label properties and thus serve as a solid basis for
thorough comparative studies.

5.2.2. EVALUATION MEASURES

Five widely-used MLL evaluation metrics are selected in
this experiment, i.e., Hamming loss, One-error, Coverage,
Ranking loss and Average precision (Zhang & Zhou, 2014).

2mulan.sourceforge.net/datasets.html
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Table 3. Recovery results (value(rank)) evaluated by six LDL measures

Comparing Cheb ↓ Avg.
algorithm SJ spoem spo5 dtt cold heat spo diau elu cdc alpha 3DFE Mov Rank

FCM 0.132(4) 0.233(4) 0.162(4) 0.097(3) 0.141(4) 0.169(5) 0.130(4) 0.124(4) 0.052(4) 0.051(4) 0.044(4) 0.135(4) 0.230(5) 4.08
KM 0.214(6) 0.408(6) 0.277(6) 0.257(6) 0.252(6) 0.175(6) 0.175(6) 0.152(6) 0.078(6) 0.076(6) 0.063(6) 0.238(6) 0.234(6) 6.00
LP 0.107(3) 0.163(3) 0.114(3) 0.128(4) 0.137(3) 0.086(3) 0.090(3) 0.099(3) 0.044(3) 0.042(3) 0.040(3) 0.123(2) 0.161(3) 3.00
ML 0.186(5) 0.403(5) 0.273(5) 0.244(5) 0.242(5) 0.165(4) 0.171(5) 0.148(5) 0.072(5) 0.071(5) 0.057(5) 0.233(5) 0.164(4) 4.85

GLLE 0.087(2) 0.088(2) 0.099(2) 0.052(2) 0.066(2) 0.049(2) 0.062(2) 0.053(2) 0.023(2) 0.022(2) 0.020(2) 0.126(3) 0.122(2) 2.08
LEVI 0.073(1) 0.063(1) 0.067(1) 0.051(1) 0.051(1) 0.033(1) 0.045(1) 0.033(1) 0.017(1) 0.015(1) 0.013(1) 0.092(1) 0.109(1) 1.00

Comparing Clark ↓ Avg.
algorithm SJ spoem spo5 dtt cold heat spo diau elu cdc alpha 3DFE Mov Rank

FCM 0.522(4) 0.401(4) 0.395(4) 0.329(3) 0.433(3) 0.580(4) 0.520(3) 0.838(4) 0.579(3) 0.739(3) 0.821(3) 0.482(3) 0.859(3) 3.38
KM 1.874(6) 1.028(6) 1.059(6) 1.477(6) 1.472(6) 1.802(6) 1.811(6) 1.886(6) 2.768(6) 2.885(6) 3.153(6) 1.907(6) 1.766(6) 6.00
LP 0.502(3) 0.272(3) 0.274(3) 0.499(4) 0.503(4) 0.568(3) 0.558(4) 0.788(3) 0.973(4) 1.014(4) 1.185(4) 0.580(4) 0.913(4) 3.62
ML 1.519(5) 1.004(5) 1.036(5) 1.446(5) 1.440(5) 1.764(5) 1.768(5) 1.844(5) 2.711(5) 2.825(5) 3.088(5) 1.848(5) 1.140(5) 5.00

GLLE 0.377(2) 0.132(2) 0.197(2) 0.143(2) 0.176(2) 0.213(2) 0.266(2) 0.296(2) 0.295(2) 0.306(2) 0.337(2) 0.391(2) 0.569(2) 2.00
LEVI 0.285(1) 0.098(1) 0.136(1) 0.140(1) 0.140(1) 0.147(1) 0.187(1) 0.191(1) 0.222(1) 0.209(1) 0.219(1) 0.304(1) 0.548(1) 1.00

Comparing Canber ↓ Avg.
algorithm SJ spoem spo5 dtt cold heat spo diau elu cdc alpha 3DFE Mov Rank

FCM 1.081(4) 0.534(4) 0.563(4) 0.501(3) 0.734(3) 1.157(3) 0.998(3) 1.895(4) 1.689(3) 2.415(3) 2.883(3) 1.020(3) 1.664(3) 3.31
KM 4.010(6) 1.253(6) 1.382(6) 2.594(6) 2.566(6) 3.849(6) 3.854(6) 4.261(6) 9.110(6) 9.875(6) 11.809(6) 4.121(6) 3.444(6) 6.00
LP 1.064(3) 0.365(3) 0.401(3) 0.941(4) 0.924(4) 1.293(4) 1.231(4) 1.748(3) 3.381(4) 3.644(4) 4.544(4) 1.245(4) 1.720(4) 3.69
ML 3.138(5) 1.226(5) 1.355(5) 2.549(5) 2.519(5) 3.779(5) 3.772(5) 4.180(5) 8.949(5) 9.695(5) 11.603(5) 4.001(5) 1.934(5) 5.00

GLLE 0.781(2) 0.183(2) 0.305(2) 0.248(2) 0.305(2) 0.430(2) 0.548(2) 0.671(2) 0.902(2) 0.959(2) 1.134(2) 0.828(2) 1.045(2) 2.00
LEVI 0.587(1) 0.135(1) 0.208(1) 0.247(1) 0.243(1) 0.295(1) 0.372(1) 0.421(1) 0.674(1) 0.642(1) 0.732(1) 0.635(1) 0.968(1) 1.00

Comparing KL ↓ Avg.
algorithm SJ spoem spo5 dtt cold heat spo diau elu cdc alpha 3DFE Mov Rank

FCM 0.107(4) 0.208(4) 0.123(4) 0.065(3) 0.113(4) 0.147(4) 0.110(4) 0.159(4) 0.059(3) 0.091(3) 0.100(3) 0.094(3) 0.381(5) 3.69
KM 0.558(6) 0.531(6) 0.334(6) 0.617(6) 0.586(6) 0.586(6) 0.562(6) 0.538(6) 0.617(6) 0.630(6) 0.630(6) 0.603(6) 0.452(6) 6.00
LP 0.077(3) 0.067(3) 0.042(3) 0.103(4) 0.103(3) 0.089(3) 0.084(3) 0.127(3) 0.109(4) 0.111(4) 0.121(4) 0.105(4) 0.177(3) 3.38
ML 0.391(5) 0.503(5) 0.317(5) 0.586(5) 0.556(5) 0.556(5) 0.532(5) 0.509(5) 0.589(5) 0.601(5) 0.602(5) 0.565(5) 0.218(4) 4.92

GLLE 0.050(2) 0.027(2) 0.034(2) 0.013(2) 0.019(2) 0.017(2) 0.029(2) 0.027(2) 0.013(2) 0.014(2) 0.013(2) 0.069(2) 0.123(2) 2.00
LEVI 0.031(1) 0.013(1) 0.015(1) 0.011(1) 0.011(1) 0.008(1) 0.014(1) 0.011(1) 0.007(1) 0.006(1) 0.006(1) 0.042(1) 0.081(1) 1.00

Comparing Cosine ↑ Avg.
algorithm SJ spoem spo5 dtt cold heat spo diau elu cdc alpha 3DFE Mov Rank

FCM 0.906(4) 0.878(4) 0.922(4) 0.959(3) 0.922(4) 0.883(4) 0.909(4) 0.882(4) 0.950(3) 0.929(3) 0.922(3) 0.912(4) 0.773(6) 3.85
KM 0.827(6) 0.812(6) 0.882(6) 0.759(6) 0.779(6) 0.779(6) 0.800(6) 0.799(6) 0.758(6) 0.754(6) 0.751(6) 0.812(6) 0.880(5) 5.92
LP 0.941(3) 0.950(3) 0.969(3) 0.921(4) 0.925(3) 0.932(3) 0.939(3) 0.915(3) 0.918(4) 0.916(4) 0.911(4) 0.922(3) 0.929(3) 3.31
ML 0.857(5) 0.815(5) 0.884(5) 0.763(5) 0.784(5) 0.783(5) 0.803(5) 0.803(5) 0.763(5) 0.759(5) 0.756(5) 0.815(5) 0.919(4) 4.92

GLLE 0.958(2) 0.978(2) 0.971(2) 0.988(2) 0.982(2) 0.984(2) 0.974(2) 0.975(2) 0.987(2) 0.987(2) 0.987(2) 0.927(2) 0.936(2) 2.00
LEVI 0.970(1) 0.990(1) 0.987(1) 0.990(1) 0.990(1) 0.992(1) 0.988(1) 0.990(1) 0.993(1) 0.994(1) 0.995(1) 0.957(1) 0.955(1) 1.00

Comparing Intersec ↑ Avg.
algorithm SJ spoem spo5 dtt cold heat spo diau elu cdc alpha 3DFE Mov Rank

FCM 0.821(4) 0.767(4) 0.838(4) 0.894(3) 0.833(3) 0.807(3) 0.836(3) 0.760(4) 0.883(3) 0.847(3) 0.844(3) 0.827(3) 0.677(5) 3.46
KM 0.593(6) 0.592(6) 0.724(6) 0.541(6) 0.559(6) 0.559(6) 0.575(6) 0.588(6) 0.539(6) 0.533(6) 0.532(6) 0.579(6) 0.649(6) 6.00
LP 0.837(3) 0.837(3) 0.886(3) 0.786(4) 0.794(4) 0.805(4) 0.819(4) 0.788(3) 0.782(4) 0.779(4) 0.774(4) 0.810(4) 0.778(4) 3.69
ML 0.661(5) 0.597(5) 0.727(5) 0.546(5) 0.565(5) 0.564(5) 0.580(5) 0.593(5) 0.544(5) 0.538(5) 0.537(5) 0.587(5) 0.779(3) 4.85

GLLE 0.872(2) 0.912(2) 0.901(2) 0.939(1) 0.924(2) 0.929(2) 0.909(2) 0.906(2) 0.936(2) 0.937(2) 0.938(2) 0.850(2) 0.831(2) 1.92
LEVI 0.899(1) 0.937(1) 0.933(1) 0.939(1) 0.940(1) 0.952(1) 0.940(1) 0.942(1) 0.952(1) 0.958(1) 0.960(1) 0.882(1) 0.850(1) 1.00

Table 4. Statistics of the 10 datasets used in MLL predictive exper-
iment

No. Dataset #Examples #Features #Labels

1 cal500 502 68 174
2 emotion 593 72 6
3 medical 978 1,449 45
4 llog 1,460 1,004 75
5 enron 1,702 1,001 53
6 msra 1,868 898 19
7 image 2,000 294 5
8 scene 2,407 294 5
9 slashdot 3,782 1,079 22

10 corel5k 5,000 499 374

Note that for all the five multi-label metrics, their values
vary between [0,1]. Furthermore, for average precision,
the larger the values the better the performance; While for
the other four metrics, the smaller the values the better
the performance. These metrics serve as good indicators
for comprehensive comparative studies as they evaluate the
performance of the learned models from various aspects.

5.2.3. METHODOLOGY

In this paper, we choose to compare the performance of
LEVI against four well established multi-label learning al-
gorithms, including Binary Relevance (BR) (Boutell et al.,
2004), Calibrated Label Ranking (CLR) (Fürnkranz et al.,
2008), Ensemble of Classifier Chains (ECC) (Read et al.,
2011), Random k-labelsets (RAKEL) (Tsoumakas et al.,
2011). For ECC, the ensemble size is set to 30. For RAKEL,
the ensemble size is set to be 2q with k = 3 as suggested in
the literature (Tsoumakas et al., 2011). Note that some work
(Li et al., 2015; Hou et al., 2016; Xu et al., 2019) validate the
effectiveness of LP, ML and GLLE in MLL, LEVI is also
compared with them. In addition, a deep model (MLP which
has the same structure as the encoder of LEVI) trained with
logical labels is compared. For each compared algorithm,
we adopt the suggested configuration in their literature. For
the predictive model in LEVI, the parameters C1 and C2 are
set to 1 and 10.
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Table 5. Predictive performance of each algorithm (mean±std(rank)) measured by five MLL measures.

Comparing Ranking-loss ↓ Avg.

algorithm cal500 emotions medical llog enron image scene msra slashdot corel5k Rank

LEVI 0.177±0.002(1) 0.192±0.008(2) 0.024±0.004(1) 0.154±0.005(3) 0.080±0.003(1) 0.142±0.006(1) 0.062±0.004(1) 0.126±0.010(1) 0.098±0.002(1) 0.118±0.002(3) 1.50

GLLE 0.179±0.002(2) 0.199±0.011(3) 0.025±0.004(2) 0.141±0.008(2) 0.085±0.002(5) 0.165±0.006(4) 0.073±0.004(4) 0.143±0.009(5) 0.098±0.003(2) 0.137±0.003(6) 3.50

MLP 0.182±0.004(3) 0.185±0.009(1) 0.027±0.004(4) 0.129±0.004(1) 0.082±0.005(2) 0.181±0.015(5) 0.091±0.003(5) 0.141±0.009(4) 0.128±0.003(6) 0.134±0.004(5) 3.60

LP 0.190±0.002(4) 0.213±0.009(5) 0.030±0.006(5) 0.180±0.007(6) 0.083±0.002(3) 0.162±0.006(3) 0.070±0.004(3) 0.138±0.012(3) 0.100±0.003(3) 0.123±0.002(4) 3.90

ML 0.190±0.002(4) 0.205±0.006(4) 0.026±0.005(3) 0.156±0.006(5) 0.083±0.002(3) 0.160±0.005(2) 0.069±0.004(2) 0.136±0.012(2) 0.104±0.004(4) 0.117±0.002(2) 3.10

BR 0.258±0.003(8) 0.233±0.016(8) 0.091±0.005(7) 0.328±0.007(8) 0.312±0.009(9) 0.314±0.014(9) 0.229±0.010(9) 0.368±0.021(9) 0.240±0.008(8) 0.416±0.003(8) 8.30

CLR 0.239±0.026(7) 0.222±0.014(6) 0.123±0.026(9) 0.190±0.015(7) 0.089±0.002(6) 0.294±0.009(7) 0.127±0.003(6) 0.288±0.018(7) 0.260±0.007(9) 0.114±0.002(1) 6.50

ECC 0.205±0.004(6) 0.227±0.017(7) 0.032±0.007(6) 0.154±0.009(4) 0.120±0.004(7) 0.276±0.005(6) 0.151±0.005(7) 0.332±0.047(8) 0.123±0.004(5) 0.292±0.003(7) 6.30

RAKEL 0.444±0.005(9) 0.254±0.020(9) 0.095±0.033(8) 0.412±0.010(9) 0.241±0.005(8) 0.311±0.010(8) 0.205±0.008(8) 0.223±0.075(6) 0.190±0.005(7) 0.627±0.004(9) 8.10

Comparing One-error ↓ Avg.

algorithm cal500 emotions medical llog enron image scene msra slashdot corel5k Rank

LEVI 0.116±0.014(1) 0.310±0.017(1) 0.155±0.014(1) 0.738±0.023(1) 0.220±0.009(1) 0.271±0.009(1) 0.193±0.008(1) 0.049±0.015(1) 0.383±0.007(1) 0.658±0.009(1) 1.00

GLLE 0.116±0.014(1) 0.321±0.021(3) 0.181±0.016(4) 0.762±0.025(4) 0.232±0.011(2) 0.312±0.017(3) 0.224±0.008(4) 0.059±0.015(4) 0.440±0.013(3) 0.665±0.009(2) 3.00

MLP 0.125±0.015(3) 0.315±0.018(2) 0.163±0.013(2) 0.753±0.008(3) 0.236±0.014(3) 0.331±0.020(5) 0.259±0.009(5) 0.057±0.021(2) 0.429±0.009(2) 0.685±0.009(5) 3.20

LP 0.136±0.008(5) 0.342±0.019(5) 0.189±0.021(6) 0.769±0.017(5) 0.238±0.014(5) 0.313±0.009(4) 0.220±0.007(3) 0.060±0.015(5) 0.464±0.014(5) 0.666±0.008(3) 4.60

ML 0.135±0.011(4) 0.336±0.015(4) 0.172±0.015(3) 0.745±0.013(2) 0.237±0.015(4) 0.310±0.010(2) 0.219±0.006(2) 0.058±0.016(3) 0.478±0.015(6) 0.681±0.009(4) 3.40

BR 0.921±0.025(9) 0.375±0.027(8) 0.297±0.036(8) 0.884±0.011(8) 0.648±0.019(9) 0.538±0.019(9) 0.475±0.014(9) 0.464±0.032(9) 0.734±0.017(8) 0.919±0.006(9) 8.60

CLR 0.331±0.111(8) 0.356±0.030(7) 0.688±0.143(9) 0.900±0.019(9) 0.376±0.017(6) 0.514±0.014(7) 0.371±0.008(6) 0.312±0.085(7) 0.979±0.003(9) 0.721±0.007(7) 7.50

ECC 0.191±0.021(6) 0.353±0.040(6) 0.182±0.019(5) 0.785±0.009(6) 0.424±0.013(8) 0.486±0.018(6) 0.373±0.008(7) 0.420±0.105(8) 0.481±0.014(7) 0.699±0.006(6) 6.50

RAKEL 0.286±0.039(7) 0.392±0.035(9) 0.208±0.071(7) 0.838±0.014(7) 0.412±0.016(7) 0.515±0.017(8) 0.444±0.012(8) 0.302±0.103(6) 0.453±0.005(4) 0.819±0.010(8) 7.10

Comparing Coverage ↓ Avg.

algorithm cal500 emotions medical llog enron image scene msra slashdot corel5k Rank

LEVI 0.745±0.007(1) 0.320±0.009(2) 0.038±0.007(2) 0.158±0.005(2) 0.236±0.007(4) 0.167±0.006(1) 0.066±0.003(1) 0.529±0.019(1) 0.115±0.002(3) 0.278±0.004(2) 1.90

GLLE 0.747±0.006(2) 0.330±0.010(3) 0.038±0.006(1) 0.147±0.009(1) 0.247±0.007(6) 0.186±0.006(4) 0.075±0.004(4) 0.560±0.013(5) 0.113±0.003(1) 0.333±0.007(6) 3.30

MLP 0.749±0.007(3) 0.308±0.008(1) 0.040±0.005(3) 0.164±0.005(4) 0.230±0.009(1) 0.197±0.012(5) 0.089±0.003(5) 0.543±0.014(2) 0.147±0.003(6) 0.284±0.004(4) 3.40

LP 0.786±0.007(4) 0.339±0.009(5) 0.045±0.009(5) 0.184±0.009(5) 0.236±0.004(2) 0.184±0.006(3) 0.072±0.004(3) 0.551±0.017(4) 0.114±0.004(2) 0.297±0.005(5) 3.80

ML 0.787±0.007(5) 0.330±0.010(3) 0.041±0.008(4) 0.159±0.008(3) 0.236±0.004(2) 0.182±0.006(2) 0.071±0.004(2) 0.549±0.017(3) 0.118±0.004(4) 0.280±0.005(3) 3.10

BR 0.852±0.014(8) 0.363±0.015(8) 0.118±0.007(8) 0.377±0.008(8) 0.601±0.014(9) 0.301±0.012(9) 0.207±0.009(9) 0.759±0.018(9) 0.259±0.009(8) 0.758±0.003(8) 8.40

CLR 0.794±0.010(7) 0.351±0.016(6) 0.143±0.030(9) 0.225±0.016(7) 0.243±0.006(5) 0.286±0.008(7) 0.120±0.007(6) 0.720±0.023(7) 0.272±0.007(9) 0.267±0.004(1) 6.40

ECC 0.788±0.008(6) 0.356±0.013(7) 0.048±0.009(6) 0.192±0.010(6) 0.300±0.009(7) 0.272±0.005(6) 0.141±0.004(7) 0.743±0.033(8) 0.139±0.004(5) 0.562±0.007(7) 6.50

RAKEL 0.971±0.001(9) 0.381±0.019(9) 0.117±0.040(7) 0.459±0.011(9) 0.523±0.008(8) 0.298±0.010(8) 0.186±0.006(8) 0.628±0.210(6) 0.212±0.005(7) 0.886±0.004(9) 8.00

Comparing Hamming-loss ↓ Avg.

algorithm cal500 emotions medical llog enron image scene msra slashdot corel5k Rank

LEVI 0.137±0.002(1) 0.224±0.008(2) 0.012±0.001(2) 0.015±0.000(1) 0.047±0.001(1) 0.157±0.003(1) 0.080±0.002(1) 0.182±0.009(1) 0.039±0.001(1) 0.009±0.000(1) 1.20

GLLE 0.140±0.002(3) 0.225±0.007(3) 0.013±0.001(4) 0.025±0.007(8) 0.052±0.001(5) 0.218±0.006(5) 0.142±0.005(6) 0.200±0.006(5) 0.042±0.001(2) 0.012±0.000(6) 4.70

MLP 0.141±0.002(5) 0.224±0.006(1) 0.012±0.001(2) 0.015±0.000(1) 0.048±0.001(2) 0.177±0.009(2) 0.097±0.003(2) 0.199±0.006(4) 0.043±0.001(3) 0.009±0.000(1) 2.30

LP 0.143±0.002(6) 0.243±0.005(5) 0.019±0.001(6) 0.015±0.000(2) 0.050±0.001(3) 0.188±0.003(4) 0.103±0.002(4) 0.190±0.010(3) 0.048±0.000(4) 0.009±0.000(2) 3.90

ML 0.140±0.002(3) 0.231±0.008(4) 0.019±0.001(6) 0.015±0.000(3) 0.051±0.001(4) 0.180±0.003(3) 0.099±0.002(3) 0.189±0.010(2) 0.048±0.000(4) 0.009±0.000(3) 3.50

BR 0.214±0.004(9) 0.265±0.013(7) 0.022±0.003(8) 0.052±0.003(9) 0.105±0.003(9) 0.287±0.008(8) 0.184±0.005(9) 0.404±0.037(9) 0.130±0.003(9) 0.027±0.000(9) 8.60

CLR 0.165±0.005(8) 0.270±0.011(9) 0.024±0.002(9) 0.019±0.002(7) 0.072±0.002(8) 0.305±0.005(9) 0.181±0.004(8) 0.342±0.033(7) 0.058±0.001(8) 0.011±0.001(5) 7.80

ECC 0.146±0.002(7) 0.254±0.013(6) 0.013±0.001(4) 0.016±0.000(5) 0.064±0.001(7) 0.244±0.005(6) 0.133±0.002(5) 0.353±0.037(8) 0.049±0.001(7) 0.015±0.001(8) 6.30

RAKEL 0.138±0.002(2) 0.269±0.011(8) 0.010±0.003(1) 0.017±0.001(6) 0.058±0.001(6) 0.286±0.007(7) 0.171±0.005(7) 0.237±0.079(6) 0.048±0.001(6) 0.012±0.001(7) 5.60

Comparing Average-precision ↑ Avg.

algorithm cal500 emotions medical llog enron image scene msra slashdot corel5k Rank

LEVI 0.511±0.004(1) 0.773±0.008(2) 0.879±0.014(1) 0.367±0.013(1) 0.697±0.008(1) 0.824±0.005(1) 0.887±0.005(1) 0.826±0.013(1) 0.710±0.005(1) 0.297±0.003(1) 1.10

GLLE 0.501±0.003(3) 0.764±0.011(3) 0.866±0.013(4) 0.353±0.016(2) 0.680±0.005(3) 0.799±0.009(3) 0.869±0.005(4) 0.806±0.011(5) 0.668±0.008(3) 0.285±0.004(3) 3.30

MLP 0.504±0.006(2) 0.778±0.007(1) 0.876±0.011(2) 0.332±0.008(6) 0.688±0.010(2) 0.786±0.014(5) 0.844±0.005(5) 0.808±0.013(4) 0.668±0.006(2) 0.283±0.004(4) 3.30

LP 0.492±0.002(5) 0.752±0.010(5) 0.852±0.018(6) 0.339±0.014(5) 0.664±0.006(4) 0.798±0.005(4) 0.872±0.004(3) 0.810±0.016(3) 0.654±0.009(4) 0.293±0.003(2) 4.10

ML 0.497±0.002(4) 0.758±0.006(4) 0.869±0.013(3) 0.350±0.012(3) 0.662±0.007(5) 0.800±0.005(2) 0.873±0.004(2) 0.813±0.015(2) 0.642±0.010(5) 0.279±0.003(5) 3.50

BR 0.300±0.005(9) 0.730±0.015(8) 0.762±0.022(7) 0.215±0.009(7) 0.381±0.009(9) 0.649±0.012(9) 0.692±0.010(9) 0.540±0.015(9) 0.427±0.014(8) 0.123±0.003(8) 8.30

CLR 0.395±0.042(7) 0.742±0.016(6) 0.400±0.062(9) 0.194±0.018(9) 0.610±0.008(6) 0.666±0.008(7) 0.778±0.004(6) 0.624±0.022(6) 0.250±0.007(9) 0.274±0.002(6) 7.10

ECC 0.463±0.006(6) 0.740±0.021(7) 0.860±0.015(5) 0.342±0.009(4) 0.559±0.008(7) 0.685±0.008(6) 0.766±0.005(7) 0.567±0.048(8) 0.628±0.009(6) 0.264±0.003(7) 6.30

RAKEL 0.353±0.006(8) 0.717±0.023(9) 0.700±0.234(8) 0.197±0.013(8) 0.539±0.006(8) 0.661±0.010(8) 0.713±0.008(8) 0.601±0.200(7) 0.617±0.004(7) 0.122±0.004(9) 8.00

5.2.4. PREDICTIVE PERFORMANCE

Table 5 tabulates the results of all the algorithms (LEVI,
GLLE, MLP, LP, ML, BR, CLR, ECC and RAKEL) on
the ten MLL datasets evaluated by five evaluation metrics,
and the best performance on each dataset is highlighted by
boldface. For each evaluation metric, ↓ indicates the smaller
the better while ↑ indicates the larger the better. All the
algorithms are tested via ten-fold cross validation. The ranks
are given in the parentheses right after the performance
values. The average rank of each algorithm over all the
datasets is also calculated and given in the last row of each
table.

When looking at the average ranks over all the ten real-world
datasets, LEVI achieves rather competitive performance
over other algorithms. Besides, the rankings of each LE
based algorithm on five measures are higher than the four

state-of-the-art MLL algorithms. When compared with the
state-of-the-art MLL algorithms, LEVI ranks 1st in 84.0%
cases and ranks 2nd in 10.0% cases. Thus, LEVI based
MLL algorithm achieves rather superior performance over
the state-of-the-art multi-label learning algorithms across
all the evaluation measures.

6. Conclusion
Label enhancement can recover the label distributions from
the logical labels in the training sets, which reinforces the
supervision information in the training sets. By induce the
generative model of the label distribution and adopt the vari-
ational inference technique, we give a lower bound of the
label distribution and propose a novel LE approach called
Label Enhancement via Variational Inference (LEVI) to in-
fer the label distributions from the logical labels. Extensive



Variational Label Enhancement

comparative studies clearly validate the advantage of LEVI
against other LE algorithms and the effectiveness of MLL
after LE pre-process on the logical-labeled datasets.
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