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Abstract
Joint filtering is a fundamental problem in com-
puter vision with applications in many different
areas. Most existing algorithms solve this prob-
lem with a weighted averaging process to aggre-
gate input pixels. However, the weight matrix of
this process is often empirically designed and not
robust to complex input. In this work, we propose
to learn the weight matrix for joint image filter-
ing. This is a challenging problem, as directly
learning a large weight matrix is computationally
intractable. To address this issue, we introduce
the correlation of deep features to approximate
the aggregation weights. However, this strategy
only uses inner product for the weight matrix esti-
mation, which limits the performance of the pro-
posed algorithm. Therefore, we further propose to
learn a nonlinear function to predict sparse residu-
als of the feature correlation matrix. Note that the
proposed method essentially factorizes the weight
matrix into a low-rank and a sparse matrix and
then learn both of them simultaneously with deep
neural networks. Extensive experiments show
that the proposed algorithm compares favorably
against the state-of-the-art approaches on a wide
variety of joint filtering tasks.

1. Introduction
Joint image filtering is a fundamental problem in computer
vision which enhances an input image (e.g., a noisy depth
map) by exploiting the information from a paired guidance
image (e.g., a clear RGB image). It has broad applications
in different areas, such as depth restoration (Ham et al.,
2018), depth upsampling (Park et al., 2011), image mat-
ting (Levin et al., 2007), image colorization (Levin et al.,
2004), natural image denoising (Buades et al., 2005), human
segmentation (Xu et al., 2018), optical flow estimation (Sun

1Carnegie Mellon University, Pittsburgh, PA, USA 2SenseTime,
Beijing, China 3SenseTime, Hong Kong. Correspondence to: Xi-
angyu Xu <xuxiangyu2014@gmail.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

et al., 2010; Su et al., 2019), texture removal (Xu et al.,
2011; Li et al., 2019), super-resolution (Xu et al., 2019a),
cross-domain restoration (Yan et al., 2013), and light field
reconstruction (Zheng et al., 2018).

While existing algorithms use different tools to solve the
joint image filtering problem, they mostly share the same
basic remark that the filtering is achieved in a weighted
averaging process (Tomasi & Manduchi, 1998; Buades et al.,
2005; Kopf et al., 2007; Park et al., 2011; He et al., 2013;
Zhang et al., 2014a;b; Ham et al., 2018): y = W (x,g)x,
where x ∈ Rm and g ∈ Rm respectively represent the
input and guidance images that both have m pixels and
are reshaped into vectors column-wisely. x and g are both
given beforehand according to the application and can be
identical (He et al., 2013; Buades et al., 2005). y ∈ Rm is
the filtered output image. W ∈ Rm×m is the weight matrix
of the image filtering process, which is a function of the
input and the guidance image (Ham et al., 2018; Li et al.,
2019; Park et al., 2011; He et al., 2013). The i-th row of W
represents the weights for aggregating all the pixels in the
input image x to generate the i-th pixel of the output y.

The strategies of deciding W are the key factors to distin-
guish different joint filtering approaches. For example, the
bilateral filter (Tomasi & Manduchi, 1998; Kopf et al., 2007)
constructs a weight matrix using spatially-variant Gaussian
kernels. The non-local means algorithm (Buades et al.,
2005; Zhang et al., 2014a) aggregates global information of
the guidance image and derives a dense weight matrix for fil-
tering. In addition, the optimization-based methods (Ferstl
et al., 2013; Ham et al., 2018) exploits the global structures
by minimizing a fidelity function, which involves solving
a large linear system and can also be seen as weighted av-
eraging with an inverse weight matrix. Although achieving
impressive results, existing approaches design the weight
matrixW with hand-crafted features (Park et al., 2011; Kopf
et al., 2007) or empirical priors (Ferstl et al., 2013; Ham
et al., 2018), which are not robust in complex scenarios and
can lead to artifacts when the features are not effective or
the priors are violated for certain samples.

With the rapid advances of deep learning, convolutional
neural networks (CNNs) have been used for joint image
filtering (Xu et al., 2015; Hui et al., 2016; Li et al., 2019),
which can learn to regress the desired output by absorbing
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knowledge from a large amount of training data and out-
perform the classical algorithms. These models can also be
seen as an implicit form of weighted averaging as they usu-
ally stack a couple of convolution layers, which essentially
combines several Toeplitz matrices to approximate the la-
tent weight matrix (Gray, 2006). As the learned convolution
kernels are fixed and not dependent on x and g, nonlinear
activation functions are applied between convolution layers
such that the learned deep network can achieve desirable
effects for different pixels of different input images.

In this paper, we use the data-driven models in a differ-
ent way and propose to explicitly learn sample-dependent
weight matrix for joint image filtering. However, this is a
challenging task as the weight matrix has a dimension of
m2, and the ultra-high dimensionality makes the estimation
computationally intractable. For example, the weight matrix
of a 256 × 256 input image has more than 6e4 × 6e4 en-
tries, which is too large to be directly generated by a neural
network. To alleviate this problem, we introduce the feature
correlation (Gan et al., 2018) to estimate the relationship
between different pixels to approximate the weight matrix
W . However, this strategy only uses a simple and fixed
function (i.e., inner product) for computing the aggregation
weights. For better approximating W , we further propose
to learn a nonlinear function with neural networks to predict
sparse residuals for improving the weights of the feature
correlation matrix.

The proposed method is in spirit similar to the Robust
PCA (Candès et al., 2011), which factorizes W into a low-
rank matrix and a sparse matrix. The low-rank matrix is able
to capture global information of the image, and the sparse
matrix can better exploit local image structures. In this man-
ner, the proposed method can effectively learn the latent
weight matrix W and achieve high-quality results for joint
image filtering. Different from previous approaches (Candès
et al., 2011; Chen et al., 2011) which achieve the factoriza-
tion by minimizing the nuclear norm and the `1 norm of
factorized matrices, we encode the low-rank and sparse
constraints in a specifically-designed neural network.

We make the following contributions in this work. First,
we explicitly learn the weighted averaging model of joint
image filtering and solve the high-dimensionality problem
by using the correlation of deep features. We also introduce
an efficient way for its computation. Second, we propose
to learn a nonlinear function to estimate residuals for a
subset of the entries in the weight matrix. We use neural
networks to predict the locations of the non-zero entries of
the sparse residual matrix, which is able to better exploit
the local structures and thus distribute the learned sparse
residuals more effectively. Third, we show that the proposed
algorithm is essentially similar to the Robust PCA which
factorizes a large matrix into a low-rank and a sparse matrix

which could be more easily handled due to the special matrix
structures. Extensive experiments on different benchmark
datasets demonstrate that the proposed method compares
favorably against the state-of-the-art approaches on a wide
variety of joint image filtering tasks.

2. Related Work
Most classical joint image filtering algorithms use heuristic
strategies to construct the weight matrix for pixel aggrega-
tion (Tomasi & Manduchi, 1998; Kopf et al., 2007; Buades
et al., 2005; He et al., 2013; Zhang et al., 2014a). As a
typical example, the bilateral filtering (Tomasi & Manduchi,
1998; Kopf et al., 2007) uses a weight matrix by design-
ing spatially-variant Gaussian kernels, which can reduce
noise and remain edges in the output. However, it only
captures local information and cannot exploit global struc-
tures of the image. To solve this problem, the non-local
means (Buades et al., 2005; Zhang et al., 2014a) uses a
dense weight matrix to aggregate pixels globally for better
filtering performance. Nevertheless, these methods often
use simple and hand-crafted features to decide the weight,
such as color similarity, spatial location, and super-pixel. In
contrast, we propose to learn a dense weight matrix from
large amount of image data, which can benefit from more
powerful deep features.

On the other hand, optimization-based methods have been
proposed for joint image filtering, which mostly rely on
empirical smoothness priors and can be seen as an im-
plicit weighted averaging process with a inverse weight
matrix (Park et al., 2011; Ferstl et al., 2013; Ham et al.,
2018). To properly use the smoothness prior, Park et al.
propose a large-neighborhood regularization term to protect
the thin structures of the filtered image (Park et al., 2011).
However, the regularization function only constrains the
first-order derivative of the output and thus favors constant
results in smooth image regions. To solve this problem,
Ferstl et al. (Ferstl et al., 2013) apply the second-order total
generalized variation prior for piece-wise smoothness of the
output. Further, Ham et al. (Ham et al., 2018) introduce the
dynamic guidance (i.e., the intermediate result) in the regu-
larization term, such that the smoothness constraint can be
relaxed for some outliers. However, these methods are not
robust for complex scenarios and tend to generate artifacts
when the empirical priors are violated.

Recently, deep CNNs have also been used for joint image
filtering (Xu et al., 2015; Hui et al., 2016; Li et al., 2019;
Pan et al., 2019; Su et al., 2019). Most of this kind of meth-
ods (Xu et al., 2015; Hui et al., 2016; Li et al., 2019) treat
the problem as a general regression task similar to other
computer vision problems, such as monocular depth (Eigen
et al., 2014) and optical flow estimation (Dosovitskiy et al.,
2015). These approaches learn to regress the desired output
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with stacked convolutional layers, which essentially com-
bines several Toeplitz matrices with nonlinear activation
functions to approximate the latent weight matrix (Gray,
2006). However, these methods use the same convolution
kernels for different spatial locations and different input
images, which does not well meet the requirement of the
problem for spatially-variance and input-dependence. Dif-
ferent from the above algorithms, most recent works (Su
et al., 2019; Pan et al., 2019; Mildenhall et al., 2018; Xu
et al., 2020) directly learn spatially-variant kernels for joint
image filtering. However, these methods only consider local
information, and the global structures are largely neglected.
By contrast, we propose to explicitly learn the weighted
averaging process which is both spatially-variant and input-
dependent and can effectively exploit both local and global
information.

Closely related to our work, the Robust PCA factorizes an
observable matrix into a low-rank and a sparse matrix by
minimizing the nuclear norm and the `1 norm of the targets
with Principal Component Pursuit (Candès et al., 2011).
Different from it, we achieve the factorization of a latent
weight matrix by learning with deep neural networks.

3. Algorithm
In this work, we propose to explicitly learn the weight ma-
trix W for joint image filtering. Since the latent matrix is
ultra-high dimensional, it is difficult to directly predict it
with a neural network. To solve this problem, we introduce
the feature correlation (Gan et al., 2018; Fu et al., 2019) to
estimate the relationship between different pixels to approx-
imate the weight matrix W . While this feature correlation
strategy is able to achieve impressive results for joint im-
age filtering, it only uses a simple and fixed function (i.e.,
inner product) for computing the aggregation weights. For
better approximating W , we further propose to learn a non-
linear function to predict residuals to improve the weights
of the feature correlation matrix. Since it is computationally
intractable to predict residuals for all pixels with a neural
network, we only estimate the residuals for a small set of
pixels, and the estimated values are added to the feature cor-
relation matrix for final image filtering. The above process
is in spirit similar to the Robust PCA (Candès et al., 2011)
which factorizes W into a low-rank matrix L and a sparse
matrix S. As the latent matrix W cannot be observed, we
propose to learn both L and S from data to approximate
it. Detailed explanations about the learning process are
presented as follows.

3.1. Feature correlation

As explained in Section 1, the weight Wij represents the
relationship between two pixels i and j, and decides how
much the pixel j contributes to the output at pixel i. And

a simple and effective method to represent the relationship
between two pixels is the feature correlation (Gan et al.,
2018): φ(x,g)i · φ(x,g)j , where “·” denotes inner product,
and φ is a feature extractor implemented as a CNN in our
model. φ(x,g) ∈ Rm×d represents the features extracted
from the input and the guidance image, where φi (the i-th
row of φ(x,g)) represents a d-dimensional feature vector
of pixel i. Since d� m, φ can be efficiently learned with
modern deep learning tools (Abadi et al., 2016).

Different from (Gan et al., 2018) which only correlates
features in a local region, we compute the feature correlation
globally, and the obtained correlation matrix forms the low-
rank part of our model:

L = [φ(x,g)U ][φ(x,g)V ]>, (1)

where U ∈ Rd×d and V ∈ Rd×d are two learnable matrices
that transform the original vectors to new feature spaces for
more flexible filtering effects. [·] represents ReLU activation
function (Nair & Hinton, 2010) which ensures the weights
are nonnegative. We also normalize the matrix L such that
each row sums to one. Note that (1) is in spirit similar to
the self-attention model of (Zhang et al., 2019; Wang et al.,
2018; Fu et al., 2019) where the softmax function is used to
estimate dense affinity matrices, and thereby the low-rank
property cannot be guaranteed.

3.2. Learning sparse residuals

While the learned feature correlation matrix L can capture
the relationship between different pixels, the entries of L
are computed by a simple and fixed function, i.e., the inner
product of feature vectors. To more accurately approximate
the latent aggregation weights, we can learn a nonlinear
function η̃ to predict weight residuals for improving the
entries of L:

Sij = η̃(ϕi, ϕj), (2)

where ϕ is also a feature extractor similar to φ, and η̃ can
be modeled with a multi-layer neural network taking the
feature vectors as input.

However, to estimate the residuals for all weights in L is
computationally intractable. Therefore, for each pixel i (or
the i-th row of S), we only predict residuals for a subset
of the pixels denoted as D(i), and for any pixel j /∈ D(i),
Sij = 0. That is to say, we can use the learned function η̃
to improve a subset of the entries of the low-rank matrix L,
which correspond to the non-zero entries of S.

Since the local structures (He et al., 2013; Kopf et al., 2007)
are critical in joint image filtering, a straightforward way
to decide D(i) is to sample a rigid neighborhood of pixel i,
e.g., a 3 × 3 patch centered at i, and then the residuals of
the aggregation weights can be estimated for the pixels in
the rigid region.
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Nevertheless, the neighboring pixels relevant to image fil-
tering often lies in irregular shape along edges and image
structures, and the rigid sampling strategy does not exploit
this information, which thereby cannot effectively obtain
the most informative pixels. Instead of using a rigid image
patch, we learn an adaptive sampling strategy with a CNN
κ to search for the most informative pixels for joint image
filtering. In other words, we use κ to learn the locations of
the non-zero entries of the sparse matrix S.

The network also takes the image features ϕ as input, and the
output κ(ϕ) ∈ Rm×2k is the predicted sampling locations
for all the non-zero entries in S, where k � m. Specifi-
cally, we can rewrite the i-th row of the matrix κi ∈ R2k as
{(xit, yit) : t = 1, 2, . . . , k)} which represents the k sam-
pling locations of pixel i in the image coordinate system.
Since we column-wisely reshape the images into vectors, a
pixel (xit, yit) in the image coordinate system corresponds
to (xit − 1)h+ yit in the vector where h denotes the height
of the image. Thus, the pixel subset D(i), where the weight
residuals are estimated for pixel i, can be formulated as
D(i) = {(xit − 1)h+ yit : t = 1, 2, . . . , k}.

Note that xit and yit are not integers. Thus, we do not
directly compute Si,(xit−1)h+yit

for the sparse matrix S.
Instead, we need to estimate the integer entries of S sur-
rounding (xit, yit):

N (i, t) = {Si,bxit−1ch+byitc, Si,bxit−1ch+byit+1c,

Si,bxitch+byitc, Si,bxitch+byit+1c}.

However, we cannot simply use (2) to estimate the above
entries inN (i, t), as this function (e.g., Si,bxit−1ch+byitc =
η̃(φi, φbxit−1ch+byitc)) is not differentiable with respect to
xit and yit, and thereby cannot be used to train the network
κ for learning the suitable locations of the non-zero entries.

Instead, we introduce the bilinear-weight method which has
been used in the optical flow literature (Sun et al., 2018;
Xu et al., 2019b) to transform geometrical locations into
coefficients of the weight values. Specifically, we replace
η̃ with a new function η which takes the whole feature
matrix ϕ as input, and the output η(ϕ) ∈ Rm×k is used
to predict the latent values of non-interger locations of S,
i.e., Si,(xit−1)h+yit

= ηit. Then we distribute this latent
value to all the surrounding entries in N (i, t) with bilin-
ear weights. For example, for the first integer location
bxit − 1ch+ byitc, we have:

Si,bxit−1ch+byitc = (1− (xit − bxitc))·
(1− (yit − byitc))Si,(xit−1)h+yit

, (3)

where the entry is given larger weight when it is closer to the
predicted sampling location (xit−1)h+yit. The estimation
of the other entries in N (i, t) can be performed similarly.
Note that (3) is differentiable to the predicted locations xit
and yit, and thus κ can also be trained together with η.

3.3. More details and explanations

With the estimated matrices L and S, the final filtered result
can be easily obtained by y = Lx+ Sx.

While the estimation of image features can be fast
and computationally efficient with modern deep learning
tools (Abadi et al., 2016), directly performing the image
filtering with L (i.e., Lx) still requires the computation and
storage of a large matrix of size m2, and the computational
complexity is (d + 1)m2 + 2d2m float-point operations
(FLOPs)1. However, as the dimension of the feature vec-
tor is usually much smaller than the image resolution (i.e.,
d � m), we can significantly reduce the complexity of
this problem by alternatively changing the order of the ma-
trix multiplications. According to (1), we can compute
the lower-dimensional matrix multiplications first and then
the complexity of Lx will become as small as 2dm+ 2d2

FLOPs. This computation reduction essentially relies on the
low-rank property of L.

Since for each row of S the number of non-zero entries is
no larger than 4k, we have support(S) ≤ 4km. To estimate
Sx, we only need to consider the locations with non-zero
residuals, and thus the computational complexity for the
sparse part is no larger than 4km FLOPs.

As we have rank(L) ≤ d and support(S) ≤ 4km, the pro-
posed algorithm is essentially similar to the Robust PCA,
where W is factorized into a low-rank and a sparse matrix.
Eventually, the low-rank matrix aggregates global informa-
tion of the image for joint image filtering, and the sparse
matrix further learns a nonlinear function to improve the
inner product and refine the neighboring weights for better
exploiting local image structures.

Network structure. We use the encoder-decoder struc-
ture (Ronneberger et al., 2015; Mildenhall et al., 2018)
for extracting image features, where the batch normaliza-
tion (Ioffe & Szegedy, 2015) and ReLU activation (Nair &
Hinton, 2010) are applied between convolutional layers sim-
ilar to (He et al., 2016). We ensure the output has the same
spatial resolution as the input by modifying the padding pa-
rameter of the convolutional layer. Note that we do not use
batch normalization for ϕ as we empirically find it leads to
unstable performance in training. We also use convolutional
layers with ReLU for η and κ. We use (Glorot & Bengio,
2010) for initializing the networks.

Suppose we have an image dataset {x(i),g(i), ỹ(i)}Ni=1

where ỹ(i) is the ground truth, and the output of our network
is y(i). The proposed network is trained with the follow-
ing mean squared error (MSE) loss: 1

N

∑
i ‖y(i) − ỹ(i)‖22.

x,g,y can be different for different tasks, which are respec-

1The definition of FLOPs follows (Zhang et al., 2018), i.e., the
number of multiply-adds.
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(a) Guidance (b) Ground truth (c) Bicubic (d) JBU

(e) Ham (f) DJF (g) PAC (h) Ours

Figure 1. Qualitative comparison for depth upsampling. Example from the test set of NYUv2 (Nathan Silberman & Fergus, 2012) with
an upsampling factor of 8×.

tively specified in each experiment below.

4. Experiments
We evaluate the proposed method on four different tasks of
joints image filtering, i.e., depth upsampling, optical flow
upsampling, depth denoising, and natural image denoising.

4.1. Implementation

In all the experiments, we set the feature dimension as d =
64 for the low-rank matrix, and the number of sampling
locations as k = 9 for the sparse matrix. During training,
we use the Adam optimizer (Kingma & Ba, 2015) with
learning rate 1e-4. We randomly crop 256 × 256 patches
from the input and the guidance images, and use a batch
size of 20. During the test phase, we chop the whole input
into overlapped patches and process each patch separately
to save memory usage. The reconstructed patches are then
placed back to the corresponding locations and averaged in
overlapped regions similar to (Schuler et al., 2013).

4.2. Depth map upsampling

The main problem of existing depth sensors is that they
often capture the depth map at a low resolution, which is
caused by chip size limitations, such as the Time-of-Flight
(ToF) camera (Park et al., 2011). Joint depth upsampling
aims to super-resolve the low-resolution depth map x to
obtain a high-resolution one y with the guidance of a paired
high-resolution intensity image g.

To generate training data, we use the NYUv2 depth
dataset (Nathan Silberman & Fergus, 2012) which consists
of 1449 image/depth pairs. Following the protocols of (Li
et al., 2019), we use 1000 data pairs for training and the
rest for testing. Similar to (Li et al., 2019), we generate

the low-resolution depth maps from the ground truth using
nearest-neighbor downsampling with a factor of 4×, 8×,
and 16× respectively. The low-resolution map is first up-
sampled with bicubic interpolation before fed into the neural
network.

We provide both quantitative and qualitative evaluations
of the proposed algorithm against the state-of-the-art joint
depth upsampling approaches, including MRF (Diebel &
Thrun, 2006), GF (He et al., 2013), JBU (Kopf et al., 2007),
Ham (Ham et al., 2018), DMSG (Hui et al., 2016), FBS (Bar-
ron & Poole, 2016), DJF (Li et al., 2019), and PAC (Su et al.,
2019).

Table 1 shows the quantitative results in terms of the root
mean squared errors (RMSE). For the baseline methods, we
use the default parameters in the original implementations.
The proposed algorithm performs well against the state-of-
the-art methods across all three upsampling factors.

For more intuitive study, we present a visual example from
the test dataset in Figure 1. The JBU (Kopf et al., 2007)
uses hand-crafted features which are agnostic to structural
consistency between the target and guidance images, and
thus transfers erroneous details as shown in Figure 1(d). The
Ham (Ham et al., 2018) algorithm relies on empirical prior
to build a non-convex model, where the prior can be violated
in complex scenarios and the non-convex optimization can
result in local minimum solution. As shown in Figure 1(d),
it produces oversmoothing artifacts and inaccurate depth.
The deep learning based methods, i.e., DJF (Li et al., 2019)
and PAC (Su et al., 2019), can exploit large amount of
training data and generate much better results as shown in
Figure 1(f) and (g). However, they still cannot effectively
restore high-quality depth maps, especially around the edges
and fine details, as they do not explicitly learn the spatially-
variant weighted averaging process and cannot exploit the
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(a) Input (b) Ground truth (c) Bilinear

(d) DJF (e) PAC (f) Ours

Figure 2. Qualitative evaluation for optical flow upsampling. Ex-
ample from the Sintel dataset (Butler et al., 2012) with an upsam-
pling factor of 8×.

(a) Guidance (b) Ground truth (c) Noisy input (d) GF

(e) MUJF (f) DJF (g) SV (h) Ours

Figure 3. Qualitative comparison for depth denoising. Example
from the benchmark dataset (Lu et al., 2014).

global structures which are important for reducing depth
ambiguity (Eigen et al., 2014). In contrast, the results of
our algorithm are smoother, sharper and more accurate with
respect to the ground truth.

4.3. Optical flow upsampling

Optical flow estimation is an important task in computer vi-
sion, and it is often time-consuming and memory-intensive
to compute the high-resolution flow map directly. Most ex-
isting approaches (Sun et al., 2018; Dosovitskiy et al., 2015)
perform the optical flow estimation at a low resolution and
then upsample the flow map with simple interpolation func-
tions, such as bilinear and bicubic upsampling. As the inten-
sity images can provide important structure information for

Table 1. Quantitative evaluations of the joint depth upsampling
task for upsampling factors 4×, 8× and 16× in terms of RMSE.

Methods 4× 8× 16×
Bicubic 8.16 14.22 22.32

MRF (Diebel & Thrun, 2006) 7.84 13.98 22.20
GF (He et al., 2013) 7.32 13.62 22.03

JBU (Kopf et al., 2007) 4.07 8.29 13.35
Ham (Ham et al., 2018) 5.27 12.31 19.24

DMSG (Hui et al., 2016) 3.78 6.37 11.16
FBS (Barron & Poole, 2016) 4.29 8.94 14.59

DJF (Li et al., 2019) 3.38 5.86 10.11
PAC (Su et al., 2019) 2.39 4.59 8.09

Ours 2.16 4.32 7.66

the optical flow, especially around motion boundaries, it is
desirable to apply joint image filtering to the task of optical
flow upsampling. The input x here is the low-resolution
optical flow map, and the guidance g is the high-resolution
image.

For this task, we experiment with the Sintel dataset (Butler
et al., 2012). The quantitative result in Table 2 indicates that
our method is effective for joint optical flow upsampling
and can achieve state-of-the-art performance in terms of
the End-Point-Error (EPE). We also qualitatively compare
our method against the baselines in Figure 2. While the
PAC (Su et al., 2019) algorithm can learn spatially-variant
and data-dependent kernels, it does not generate as good
flow fields as ours due to that it uses fixed simple functions
(e.g., Gaussian kernel) to estimate the relationship between
different pixels and only considers information within a
limited local regions. In contrast, we learn a non-linear
function η to improve the weight matrix and can effectively
exploit both global and local structures for processing the
motion fields. As shown in Figure 2(f), the optical flow
produced by our method is more accurate than the baselines.

4.4. Joint depth denoising

The depth map obtained by ranging sensors can be affected
by acquisition noise, e.g., when the active illumination en-
ergy is limited for ToF cameras. Similar to the joint depth
upsampling, the joint image filtering techniques can also
be used for depth denoising, where the input x is the noisy
depth map, and the guidance g is the clear intensity image.

For training the depth denoising model, we also use the
NYUv2 depth dataset (Nathan Silberman & Fergus, 2012)
described in Section 4.2 . We add Gaussian noise with noise
level ranging from 0 to 26 to each ground truth depth map
similar to (Pan et al., 2019). Following the protocols of (Pan
et al., 2019), we evaluate the proposed method using the test
set of (Lu et al., 2014), where Gaussian noise with noise
level 20 is added to each test image.

We compare our method with the state-of-the-art depth de-
noising approaches: GF (He et al., 2013), JBU (Kopf et al.,
2007), MUJF (Shen et al., 2017), MUGIF (Guo et al., 2018),
DJF (Li et al., 2019), and SV (Pan et al., 2019).

As shown in Table 3, the proposed algorithm can achieve
consistently better results than the baselines in terms of

Table 2. Quantitative evaluation for optical flow upsampling with
upsampling factors 4×, 8×, and 16× in terms of EPE.

Methods 4× 8× 16×
Bilinear 0.465 0.901 1.628

DJF (Li et al., 2019) 0.176 0.438 1.043
PAC (Su et al., 2019) 0.105 0.256 0.592

Ours 0.096 0.236 0.548
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Table 3. Quantitative evaluations for the joint depth denoising task on the benchmark dataset (Lu et al., 2014) in terms of PSNR, SSIM
and RMSE.

Metrics GF JBU MUJF MUGIF DJF SV Ours

PSNR 30.79 26.08 30.67 34.07 32.58 36.44 37.74
SSIM 0.9214 0.7820 0.9282 0.9657 0.9016 0.9762 0.9807
RMSE 7.75 12.96 7.76 5.26 6.14 4.02 3.43

all the evaluation metrics: PSNR, SSIM, and RMSE. We
also present a visual example in Figure 3. The classical
methods GF (He et al., 2013) and MUJF (Shen et al., 2017)
use simple features to construct the weight matrix which
cannot effectively remove heavy depth noise as shown in
Figure 3(d) and (e). DJF (Li et al., 2019) learns fixed con-
volution kernels to regress the final output, which relies on
very deep structures and high nonlinearity to approximate a
spatially-variant and input-dependent solution. However, it
may suffer from the overfitting problem which can lead to
severe artifacts when the test image is significantly differ-
ent from the training dataset as shown in Figure 3(f). The
SV approach (Pan et al., 2019) estimates spatially-variant
kernels and thus can better generalize to challenging test
data and generate more accurate result in Figure 3(g). Nev-
ertheless, the predicted kernels of SV are relatively small
(1×1), which limits its ability to exploit pixels from a larger
region. In contrast, our method explicitly aggregates global
information by learning a spatially-variant weight matrix
and achieves higher-quality results as shown in Figure 3(h).

4.5. Natural image denoising

We also apply the proposed method to natural image de-
noising where the input x and guidance g are identical, i.e.,
the noisy intensity image. We adopt the MIRFLICKR 25K
dataset (Huiskes & Lew, 2008) for training, which consists
of 24550 images after data cleaning. We use two popular
benchmarks for evaluation, i.e., Set12 and BSD68 (Dabov
et al., 2007) with noise levels of 15, 25, and 50.

We quantitatively and qualitatively evaluate the proposed
approach against the state-of-the-art methods including
BM3D (Dabov et al., 2007), WNNM (Gu et al., 2014),
TNRD (Chen & Pock, 2016), DnCNN (Zhang et al., 2017),
and NLRN (Liu et al., 2018). As shown in Table 4, our
method compares favorably against the baselines on differ-
ent noise levels, which demonstrates the effectiveness of the
proposed strategy for learning the weight matrix.

For qualitative evaluation, we present an example from
Set12 with noise level 50 in Figure 4. The state-of-the-
art approaches are not effective in recovering image details
and produce oversmoothing artifacts in Figure 4(c)-(d). In
contrast, the proposed algorithm employs the low-rank ma-
trix and the sparse matrix to jointly filter the noisy input
image, which can better exploit the global and local informa-

tion. Hence, the sharp edges and the fine details can be well
recovered under severe image noise as shown in Figure 4(e).

4.6. Ablation study

We conduct the ablation study on the joint depth upsam-
pling task as shown in Table 5. A simple variant of our
method is to only use the low-rank matrix L for image fil-
tering without learning the sparse residuals. As shown in
Table 5, this approach (i.e., the first row) does not perform
as well as the models with η (i.e., the second and third rows),
which demonstrates the effectiveness of learning a nonlinear
function to refine the entires of the low-rank matrix. Fur-
thermore, the proposed method learns the locations of the
sparse entries of S with a neural network κ, which can more
effectively exploit the local image structures such that the
function η can be applied to more informative pixels. The
second row of Table 5 shows that the model without learning
κ is also inferior to our full model.

4.7. Visualization of the learned matrix

As discussed in Section 3.3, the proposed method is similar
to the Robust PCA (Candès et al., 2011), where the latent
matrix W is factorized as a low-rank matrix L and a sparse
matrix S. For better understanding of this process, we show
an example from the joint depth upsampling and visualize
the factorized matrices in Figure 5. Whereas we only show
the matrices of a small image patch, the low-rank property
of L can already be easily identified according to the simple
patterns. This may be due to the fact that image data have
low intrinsic dimensionality (Belkin & Niyogi, 2003). For
the sparse matrix, the non-zero entries mostly lie around
the main diagonal and other diagonals, which demonstrates
that the learned sparse residuals mainly exploit the local
structures for improving L. Since we reshape the images
into vectors in a column-wise manner, the number of non-
zero diagonals in S indicates the horizontal range that the
learned sparse locations span. The vertical range can be
similarly represented by row-wisely reshaping the image.
As shown in Figure 5(b), the learned sparse matrix can
exploit pixels from an approximately 11×11 pixels region
while the number of the sampling locations is much smaller
(k = 9 in this work). This also explains the importance and
effectiveness of learning the sampling strategy η.

In addition, we also show a row of the weight matrix to vi-
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(a) Input (b) Ground truth (c) DnCNN (d) NLRN (e) Ours

Figure 4. Qualitative evaluation for natural image denoising. Example from the Set12 with noise level of 50.

Table 4. Quantitative evaluation for the natural image denoising task on Set12 and BSD68 in terms of PSNR and SSIM.

Dataset Noise level BM3D WNNM TNRD DnCNN NLRN Ours

Set12
15 32.37/0.8952 32.70/0.8982 32.50/0.8958 32.86/0.9031 33.16/0.9070 33.18/0.9096
25 29.97/0.8504 30.28/0.8557 30.06/0.8512 30.44/0.8622 30.80/0.8689 30.88/0.8726
50 26.72/0.7676 27.05/0.7775 26.81/0.7680 27.18/0.7829 27.64/0.7980 27.83/0.8071

BSD68
15 31.07/0.8717 31.37/0.8766 31.42/0.8769 31.73/0.8907 31.88/0.8932 31.89/0.8958
25 28.57/0.8013 28.83/0.8087. 28.92/0.8093 29.23/0.8278 29.41/0.8331 29.46/0.8377
50 25.62/0.6864 25.87/0.6982 25.97/0.6994 26.23/0.7189 26.47/0.7298 26.56/0.7374

Table 5. Ablation study of the proposed model for joint depth up-
sampling with scale factors 4×, 8× and 16× in terms of RMSE.

Methods 4× 8× 16×
w/o learning η and κ 2.50 4.57 7.99

w/o learning κ 2.21 4.43 7.81
ours full model 2.16 4.32 7.66

sualize the learned weighted averaging process in the image
coordinate system. Specifically, we sample a pixel in the red
square region of Figure 5(a), which is shown as the yellow
point in Figure 6(b). Then we show the correlation weights
between the yellow pixel and all the pixels in the image
in Figure 6(a), which correspond to a row of the low-rank
matrix L. Note that the locations with similar depth as the
sampled yellow pixel have higher response in Figure 6(a),
which demonstrates that the proposed method can effec-
tively aggregate informative pixels globally for the image
filtering. Moreover, Figure 6(b) shows the learned sampling
locations and weight residuals for the yellow pixel, which
represents the non-zero entries on a row of S. The sparse en-
tries mostly lie along the object boundaries to better exploit
local information and thus can effectively help improve the
joint image filtering performance.

5. Conclusions
In this work, we propose to explicitly learn the weighted
averaging process for joint image filtering. We first exploit
the feature correlation to alleviate the ultra-high dimension-
ality issue of the weight matrix. We further propose to learn
sparse residuals to improve the correlation matrix. The pro-
posed learning process is similar to the Robust PCA where
the weight matrix is factorized into a low-rank and a sparse
matrix. We provide comprehensive evaluation and analysis

0.0
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0.4

0.6

0.8

1.0
Low-rank Sparse

(a) guidance image (b) learned matrices

Figure 5. Visualizing the learned matrix factorization. As the
weight matrix is too large, we only show the factorized matrices
of a 40×40 image patch (red square in (a)). The values in the
matrices are normalized for better visualization.

(a) row of L (b) row of S

Figure 6. Visualizing a row of the weight matrix. Brighter color
represents higher response in (a), and darker red indicates higher
weights in (b). See the text for more explanations.

of the proposed method, and demonstrate the effectiveness
of our approach on a wide variety of joint filtering tasks.
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