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Appendix: Understanding and Stabilizing GANs’ Training Dynamics Using
Control Theory
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A. Dynamics for different GANs.
In this section, we apply the local linearization technique
to Dirac GANs with various objective functions, including
vanilla GAN, non-saturation GAN (Goodfellow et al., 2014),
LS-GAN (Mao et al., 2017) and Hinge-GAN (Miyato et al.,
2018). Following the notations in the main body, the training
dynamics of general Dirac GANs are given by:

dφ(t)

dt
=
∂V1(φ; θ)

∂φ
= h′1(φc)c− h′2(φθ)θ, (A.1)

dθ(t)

dt
=
∂V2(θ;φ)

∂θ
= h′3(φθ)φ. (A.2)

By applying the local linearization technique to both φ and θ
around the equilibrium point (φc, θc) = (0, c), the dynamic
can be approximated as:[

dφ(t)
dt
dθ(t)
dt

]
≈

[
∂2V1(φ;θ)
∂φ2

∂2V1(φ;θ)
∂θ∂φ

∂2V2(φ;θ)
∂φ∂θ

∂2V2(φ;θ)
∂θ2

] [
φ(t)− φe
θ(t)− θe

]
(A.3)

= T

[
φ(t)− φe
θ(t)− θe

]
= T

[
φ(t)

θ(t)− c(t)

]
, (A.4)

and T can be denoted as:

T =

[
h′′1(φc)c2 + h′′2(φθ)θ2 h′2(φθ) + h′′2(φθ)θφ
h′3(φθ) + h′′3(φθ)φθ h′′3(φθ)φ2

]
.

Here h′′i (x) is the second order derivative of hi(x) for i ∈
{1, 2, 3}. Below we assume c = 1 and start the case by case
analysis for various types of GANs.

A.1. Vanilla GAN

In vanilla GAN, we have:

h1(x) = log(σ(x)), (A.5)
h2(x) = log(1− σ(x)), (A.6)

h3(x) = − log(1− σ(x)), (A.7)

where σ(·) denotes the sigmoid function. Then we have:

h′1(x) = (1− σ(x)), h′′1(x) = −σ(x)(1− σ(x)), (A.8)
h′2(x) = −σ(x), h′′2(x) = −σ(x)(1− σ(x)), (A.9)
h′3(x) = σ(x), h′′3(x) = σ(x)(1− σ(x)). (A.10)

and for T:

T =

[
− 1

2 − 1
2

1
2 0

]
. (A.11)

It indicates that

Φ(s) = − 1

2s+ 1
(Θ(s)− C(s)) (A.12)

Θ(s) =
1

2s
Φ(s). (A.13)

Then we can solve the dynamics of vanilla GAN as:{
Φ(s) = 2s

4s2+2s+1C(s),

Θ(s) = 1
4s2+2s+1C(s).

(A.14)

A.2. Non-saturation GAN

Non-saturation GAN (NS-GAN) shares the same equilib-
rium point and the objective function for the discriminator.
It modifies h3 as h3(x) = log(σ(x)) and we have:

h′3(x) = (1− σ(x)), h′′3(x) = −σ(x)(1− σ(x)). (A.15)

By substituting the above equation to T, the dynamic of
NS-GAN is equivalent to vanilla GAN and therefore shares
the same transfer function.

A.3. Hinge GAN

For Hinge GAN, we have:

h1(x) = min{−1 + x, 0}, (A.16)
h2(x) = min{−1− x, 0}, (A.17)

h3(x) = x. (A.18)

Then we have:

h′1(x) = 1, h′′1(x) = 0, (A.19)
h′2(x) = −1, h′′2(x) = 0, (A.20)
h′3(x) = 1.h′′3(x) = 0. (A.21)

Therefore the Hinge GAN actually shares the same dynam-
ics as WGAN around the equilibrium point.
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A.4. Least Square GAN

The objective function of least square GAN (LS-GAN) is:

V1(φ; θ) = −(φc− 1)2 − (φθ)2, (A.22)

V2(θ;φ) = −(φθ)2. (A.23)

In this case, there’s no equilibrium point. We modify the
discriminator as D(x) = φx+ 0.5 which is equilvalent to
convert the objective functions as follows:

h1(x) = −(x− 0.5)2, (A.24)

h2(x) = −(x+ 0.5)2, (A.25)

h3(x) = −(x− 0.5)2, (A.26)

and therefore we have:

h′1(x) = −2(x− 0.5), h′′1(x) = −2, (A.27)
h′2(x) = −2(x+ 0.5), h′′2(x) = −2, (A.28)
h′3(x) = −2(x− 0.5), h′′3(x) = −2. (A.29)

Then the T can be denoted as:

T =

[
−4 −1
1 0

]
. (A.30)

We have:

Φ(s) = − 1

s+ 4
(Θ(s)− C(s)), (A.31)

Θ(s) =
1

s
Φ(s). (A.32)

Then we can solve the dynamics of LSGAN as:{
Φ(s) = s

s2+4s+1C(s),

Θ(s) = 1
s2+4s+1C(s).

(A.33)

B. Dynamics with Lipschitz Continuity
In this section, we prove that around the equilibrium, the dy-
namics of regularized D with Lipschitz constraint is equiv-
alent to the unregularized D as in Eqn. (20). With the dy-
namics defined by the corresponding gradient flow, we only
need to prove that updating D according to Eqn. (20) will
not violate the Lipschitz constraints, at least locally around
the equilibrium. Here we make the following assumptions:

1. Both p(x) and pG(t, x) are C1-smooth: dp(x)
dx and

dpG(t,x)
dx exists and is continuous ∀ t.

2. q(x) → 0 and dq(x)
dx → 0 when x → 0 for q ∈

{p, pG}.

3. There exists an M such that |dq(x)dx |2 < M for q ∈
{p, pG}.

The above assumptions are satisfied for most probability
density functions.

The distance in the function space is defined as d(p1, p2) =
supx∈Rn |p1(x) − p2(x)| which always exists because of
the 2-nd conditions above. We define ΩL = {p(x)|p(x) ∈
C1, |dp(x)dx |2 < L ∀x.} and B(ε) = {p(x)|p(x) ∈
C1, supx |p(x)| < ε}. Then we have the follow theorem:

Theorem 1. There exists η > 0, such that ∀D(x) ∈ Ω0.5,
we have D(x) + η(p(x)− pG(x)) ∈ Ω1.

Proof. By denotingD′(x) = D(x)+η(p(x)−pG(x)), We
have:

d(D(x) + η(p(x)− pG(x)))

dx
(B.1)

=
dD(x)

dx
+ η(

p(x)

dx
− pG(x)

dx
).

Therefore, we have

|d(D(x) + η(p(x)− pG(x)))

dx
|2 (B.2)

≤|dD(x)

dx
|2 + η(|p(x)

dx
|2 + |pG(x)

dx
)|2 (B.3)

≤0.5 + η(M +M). (B.4)

By letting η = 1
4M , we have |d(D

′)
dx |2 ≤ 0.75. Therefore we

have D′(x) ∈ Ω1.

The above theorem indicates that when D(x) is sufficient
close to the equilibrium and the learning rate is sufficient
small, then the dynamics of D still follows Eqn. (11) for
Dirac GAN and Eqn. (22) for normal GANs. The simulated
results of Dirac GAN in Fig. 1 and the bad performance of
SN-GAN with WGAN’s objective in Sec. 6.2 agree with
this argument.

C. Interpreting CLC in the Parameter Space
In this paper, we mainly analyze our proposed method in
the function space, including dynamic analysis and con-
troller designing. Instead, our proposed method can also be
interpreted as certain regularization terms on the Jacobian
matrix of the training dynamics. Below we provide a formal
demonstration.

First, we denote the equilibrium of G and D as (θ∗, φ∗),
where pG(x; θ∗) = p(x) and D(x;φ∗) = 0 for all x. Note
that φ∗ is also a global minimum point of the regularization
term R(D) =

∫
D2(x)dx. Then we have ∂2R(D)

∂φ2 � 0.

We denote U(D,G) as the objective function of the mini-
max optimization problem in WGAN without CLC regular-
ization. Then the Jacobian matrix of the training dynamic
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can be denoted as:

J =

(
∂2U(D,G)

∂φ2

∂2U(D,G)
∂φ∂θ

∂2U(D,G)
∂θ∂φ

∂2U(D,G)
∂θ2

)
. (C.1)

Because of the linearity of the derivation operation, the
training dynamics of the WGAN with CLC regularization
is denoted as:

J ′ = J − JL = J −

(
∂2L(D)
∂φ2 0

0 0

)
, (C.2)

where we abuse the 0 to denote the zero matrix with certain
size to match the size of J . Since ∂2R(D)

∂φ2 � 0, we have
−JL � 0. Therefore, the CLC regularization introduces a
negative semi-definite matrix to the original Jacobian matrix,
which is helpful to stabilize the training dynamics of GANs.

D. Understanding Existing Work as
Closed-loop Control

A side contribution of this paper is to understand existing
methods (Gidel et al., 2018) uniformly as certain CLC con-
trollers. The momentum is an example where Gidel et al.
(2018) provide some theoretical analysis of momentum in
training GANs. Here we re-analyze the momentum using
Dirac GAN under the perspective of control theory.

The momentum method (Qian, 1999) is powerful when
training neural networks, whose theoretical formulation is
given by:

φ̃t+1 = βφ̃t + (1− β)∇φt, φt+1 = φt + ηφ̃t+1, (D.1)

where ∇φ is the input of φ’s dynamic, i.e., uD = c − θ.
The β is the coefficient for the exponential decay. However,
momentum instead is not helpful when training GANs (Rad-
ford et al., 2015; Mescheder et al., 2018; Brock et al., 2018;
Gulrajani et al., 2017) where smaller β or even zero is rec-
ommended to achieve better performance.

In control theory, the momentum is equivalent to adding an
exponential decay to the input of the dynamics (An et al.,
2018):

h̃(t) =

∫ t

0

h(u) exp(−τ(t− u))du. (D.2)

The LT of an exponential decay dynamic is 1
s+τ , i.e.,

H̃(s) = 1
s+τH(s). τ > 0 denotes the decay coefficient

which depends on β. Therefore, we can formulate the dy-
namics of Dirac GAN in the following:

mφ(t) =
∫ t
0
(c(u)− θ(u)) exp(−τ(t− u))du,

dφ
dt = mφ(t),
dθ
dt = φ(t).

(D.3)

By applying LT, we have Mφ(s) = 1
s+τ (C(s)−Θ(s) and

Φ can be represented as:

Φ(s) =
s

s3 + τs2 + 1
C(s).

With a positive τ , there is at least one pole of this dynamic
whose real part is larger than 0, indicating the instability
of the dynamics for GANs with momentum. The result is
consistent with (Gidel et al., 2018).

E. Further Experimental Results on Synthetic
Data

In this section, we evaluate our proposed method on a mix-
ture of Gaussian on the two dimensions. The data distri-
bution consists of 8 2D isotropic Gaussian distributions
arranged in a ring, where the radius of the ring is 1, and the
deviation of each component Gaussian distribution is 0.05.
For the coefficient λ, we follow the setting in the spectral
normalization as λ ∈ {0.01, 0.05, 0.1}. We adopt two-layer
MLPs for both the generator and the discriminator which
consist of 128− 512 units. The batch size is is 512.

The generated results are illustrated in Fig. 1 and we further
provide the dynamics of the generator distribution in Fig. 2.
As we can see, the unregularized WGAN and SGAN suffer
from severe model collapse problem and cannot cover the
whole data distribution. Besides, the oscillation can be ob-
served during the training process of WGAN: the generator
distribution oscillates among the modes of data distribution.
Our method can successfully cover all modes compared to
the WGAN and SGAN and the dynamics are converged
instead of oscillation.
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WGAN SGAN Reg-WGAN CLC-WGAN(0.1) CLC-WGAN(0.01)

Figure 1: The generated samples for mixture of gaussian distribution. The red points demonstrate the location of data
distribution and the blue points are generated samples. Each distribution is plotted using kernel density estimation with
50,000 samples.

1000 its 2000 its 5000 its 10000 its 20000 its 50000 its 100000 its

CLC-GAN(0.1)

CLC-GAN(0.01)

CLC-GAN(0.05)

WGAN

SGAN

Reg-WGAN

WGAN-GP

Figure 2: The training dynamics of various GANs on synthetic data.
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