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Abstract
Q-learning with neural network function approx-
imation (neural Q-learning for short) is among
the most prevalent deep reinforcement learning
algorithms. Despite its empirical success, the
non-asymptotic convergence rate of neural Q-
learning remains virtually unknown. In this paper,
we present a finite-time analysis of a neural Q-
learning algorithm, where the data are generated
from a Markov decision process, and the action-
value function is approximated by a deep ReLU
neural network. We prove that neural Q-learning
finds the optimal policy with O(1/

√
T ) conver-

gence rate if the neural function approximator
is sufficiently overparameterized, where T is the
number of iterations. To our best knowledge, our
result is the first finite-time analysis of neural Q-
learning under non-i.i.d. data assumption.

1. Introduction
Q-learning has been shown to be one of the most important
and effective learning strategies in Reinforcement Learn-
ing (RL) over the past decades (Watkins & Dayan, 1992;
Schmidhuber, 2015; Sutton & Barto, 2018), where the agent
takes an action based on the action-value function (a.k.a.,
Q-value function) at the current state. Recent advance in
deep learning has also enabled the application of Q-learning
algorithms to large-scale decision problems such as mas-
tering Go (Silver et al., 2016; 2017), robotic motion con-
trol (Levine et al., 2015; Kalashnikov et al., 2018) and au-
tonomous driving (Shalev-Shwartz et al., 2016; Schwarting
et al., 2018). In particular, the seminal work by Mnih et al.
(2015) introduced the Deep Q-Network (DQN) to approx-
imate the action-value function and achieved a superior
performance versus a human expert in playing Atari games,
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which triggers a line of research on deep reinforcement
learning such as Double Deep Q-Learning (Van Hasselt
et al., 2016) and Dueling DQN (Wang et al., 2016).

Apart from its widespread empirical success in numerous ap-
plications, the convergence of Q-learning and temporal dif-
ference (TD) learning algorithms has also been extensively
studied in the literature (Jaakkola et al., 1994; Baird, 1995;
Tsitsiklis & Van Roy, 1997; Perkins & Pendrith, 2002; Melo
et al., 2008; Mehta & Meyn, 2009; Liu et al., 2015; Bhandari
et al., 2018; Lakshminarayanan & Szepesvari, 2018; Zou
et al., 2019b). However, the convergence guarantee of deep
Q-learning algorithms remains a largely open problem. The
only exceptions are Yang et al. (2019) which studied the
fitted Q-iteration (FQI) algorithm (Riedmiller, 2005; Munos
& Szepesvári, 2008) with action-value function approxima-
tion based on a sparse ReLU network, and Cai et al. (2019a)
which studied the global convergence of the Q-learning al-
gorithm with an i.i.d. observation model and action-value
function approximation based on a two-layer neural net-
work. The main limitation of the aforementioned work is
the unrealistic assumption that all the data used in the Q-
learning algorithm are sampled i.i.d. from a fixed stationary
distribution, which fails to capture the practical setting of
neural Q-learning.

In this paper, in order to bridge the gap between the empiri-
cal success of neural Q-learning and the theory of conven-
tional Q-learning (i.e., tabular Q-learning, and Q-learning
with linear function approximation), we study the non-
asymptotic convergence of a neural Q-learning algorithm
under non-i.i.d. observations. In particular, we use a deep
neural network with the ReLU activation function to ap-
proximate the action-value function. In each iteration of the
neural Q-learning algorithm, it updates the network weight
parameters using the temporal difference (TD) error and the
gradient of the neural network function. Our work extends
existing finite-time analyses for TD learning (Bhandari et al.,
2018) and Q-learning (Zou et al., 2019b), from linear func-
tion approximation to deep neural network based function
approximation. Compared with the very recent theoretical
work for neural Q-learning (Yang et al., 2019; Cai et al.,
2019a), our analysis relaxes the non-realistic i.i.d. data as-
sumption and applies to neural network approximation with
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an arbitrary number of layers. Our main contributions are
summarized as follows

• We establish the first finite-time analysis of Q-learning
with deep neural network function approximation when
the data are generated from a Markov decision process
(MDP). We show that, when the network is sufficiently
wide, neural Q-learning converges to the optimal action-
value function up to the approximation error of the neural
network function class.

• We establish an O(1/
√
T ) convergence rate of neural

Q-learning to the optimal Q-value function up to the ap-
proximation error, where T is the number of iterations.
This convergence rate matches the one for TD-learning
with linear function approximation and constant step-
size (Bhandari et al., 2018). Although we study a more
challenging setting where the data are non-i.i.d. and the
neural network approximator has multiple layers, our con-
vergence rate also matches the O(1/

√
T ) rate proved in

Cai et al. (2019a) with i.i.d. data and a two-layer neural
network approximator.

To sum up, we present a comprehensive comparison be-
tween our work and the most relevant work in terms of their
respective settings and convergence rates in Table 1.

Notation We denote [n] = {1, . . . , n} for n ∈ N+. ‖x‖2
is the Euclidean norm of a vector x ∈ Rd. For a matrix
W ∈ Rm×n, we denote by ‖W‖2 and ‖W‖F its opera-
tor norm and Frobenius norm respectively. We denote by
vec(W) the vectorization of W, which converts W into a
column vector. For a semi-definite matrix Σ ∈ Rd×d and a
vector x ∈ Rd, ‖x‖Σ =

√
x>Σx denotes the Mahalanobis

norm. We reserve the notations {Ci}i=0,1,... to represent
universal positive constants that are independent of problem
parameters. The specific value of {Ci}i=1,2,... can be dif-
ferent line by line. We write an = O(bn) if an ≤ Cbn for
some constant C > 0 and an = Õ(bn) if an = O(bn) up to
some logarithmic terms of bn.

2. Related Work
Due to the vast volume of work in the literature, we only
review the most relevant work on value based reinforce-
ment learning (e.g., TD learning and Q-learning algorithms).
For policy based reinforcement learning algorithms (Sutton
et al., 2000; Peters & Schaal, 2008; Silver et al., 2014; Pap-
ini et al., 2018; Xu et al., 2019a; 2020; Wang et al., 2020;
Agarwal et al., 2020), we refer readers to the textbook by
Sutton & Barto (2018) for details.

Asymptotic analysis The asymptotic convergence of TD
learning and Q-learning algorithms has been well estab-
lished in the literature (Jaakkola et al., 1994; Tsitsiklis &

Van Roy, 1997; Konda & Tsitsiklis, 2000; Borkar & Meyn,
2000; Ormoneit & Sen, 2002; Melo et al., 2008; Devraj &
Meyn, 2017). In particular, Tsitsiklis & Van Roy (1997)
specified the precise conditions for TD learning with linear
function approximation to converge and gave counterexam-
ples that diverge. Melo et al. (2008) proved the asymptotic
convergence of Q-learning with linear function approxima-
tion from standard ODE analysis and identified a critic con-
dition on the relationship between the learning policy and
the greedy policy that ensures the almost sure convergence.

Finite-time analysis The finite-time analysis of the con-
vergence rate for Q-learning algorithms has been largely
unexplored until recently. In specific, Dalal et al. (2018);
Lakshminarayanan & Szepesvari (2018) studied the conver-
gence of TD(0) algorithm with linear function approxima-
tion under i.i.d. data assumptions and constant step sizes.
Concurrently, a seminal work by Bhandari et al. (2018) pro-
vided a unified framework of analysis for TD learning under
both i.i.d. and Markovian noise assumptions with an extra
projection step. The analysis has been extended by Zou
et al. (2019b) to SARSA and Q-learning algorithms with
linear function approximation. More recently, Srikant &
Ying (2019) established the finite-time convergence for TD
learning algorithms with linear function approximation and
a constant step-size without the extra projection step un-
der non-i.i.d. data assumptions through carefully choosing
the Lyapunov function for the associated ordinary differ-
ential equation of TD update. A similar analysis was also
extended to Q-learning with linear function approximation
(Chen et al., 2019). Hu & Syed (2019) further provided a
unified analysis for a class of TD learning algorithms using
the Markov jump linear system. A multi-step Lyapunov
function based approach (Wang et al., 2019) was recently
proposed to remove the projection step used in Bhandari
et al. (2018); Zou et al. (2019b).

Neural function approximation Despite the empirical suc-
cess of DQN, the theoretical convergence of Q-learning with
deep neural network approximation is still missing in the
literature. Following the recent advances in the theory of
deep learning for overparameterized networks (Jacot et al.,
2018; Chizat & Bach, 2018; Du et al., 2019b;a; Allen-Zhu
et al., 2019b;a; Zou et al., 2019a; Arora et al., 2019; Cao &
Gu, 2019a; Zou & Gu, 2019; Cai et al., 2019b), two recent
work by Yang et al. (2019) and Cai et al. (2019a) proved the
convergence rates of fitted Q-iteration and Q-learning with a
sparse multi-layer ReLU network and two-layer neural net-
work approximation respectively, under i.i.d. observations.

3. Preliminaries
A discrete-time Markov Decision Process (MDP) is denoted
by a tupleM = (S,A,P, r, γ). S and A are the sets of all
states and actions respectively. P : S × A → P(S) is the
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Table 1. Comparison with existing finite-time analyses of Q-learning.

NON-I.I.D. NEURAL APPROXIMATION MULTIPLE LAYERS RATE

BHANDARI ET AL. (2018) 3 7 7 O(1/T )
ZOU ET AL. (2019B) 3 7 7 O(1/T )
CHEN ET AL. (2019) 3 7 7 O(log T/T )

CAI ET AL. (2019A) 7 3 7 O(1/
√
T )

THIS PAPER 3 3 3 O(1/
√
T )

transition kernel such that P(s′|s, a) gives the probability of
transiting to state s′ after taking action a at state s. r : S ×
A → [−1, 1] is a deterministic reward function. γ ∈ (0, 1)
is the discounted factor. A policy π : S → P(A) is a
function mapping a state s ∈ S to a probability distribution
π(·|s) over the action space. Let st and at denote the state
and action at time step t. Then the transition kernel P and
the policy π determine a Markov chain {st}t=0,1,... For any
fixed policy π, its associated value function V π : S → R is
defined as the expected total discounted reward:

V π(s) = E[
∑∞
t=0 γ

tr(st, at)|s0 = s], ∀s ∈ S.

The corresponding action-value function Qπ : S ×A → R
is defined as

Qπ(s, a) = E[

∞∑
t=0

γtr(st, at)|s0 = s, a0 = a]

= r(s, a) + γ

∫
S
V π(s′)P(s′|s, a)ds′,

for all s ∈ S, a ∈ A. The optimal action-value function
Q∗ is defined as Q∗(s, a) = supπ Q

π(s, a) for all (s, a) ∈
S ×A. Based on Q∗, the optimal policy π∗ can be derived
by following the greedy algorithm such that π∗(a|s) = 1
if Q(s, a) = maxb∈AQ

∗(s, b) and π∗(a|s) = 0 otherwise.
We define the optimal Bellman operator T as follows

T Q(s, a) = r(s, a) + γ · E
[
maxb∈AQ(s′, b)|s′ ∼ P(·|s, a)

]
.

(3.1)

It is worth noting that the optimal Bellman operator T is
γ-contractive in the sup-norm and Q∗ is the unique fixed
point of T (Bertsekas, 1995).

4. The Neural Q-Learning Algorithm
In this section, we start with a brief review of Q-learning
with linear function approximation. Then we will present
the neural Q-learning algorithm.

4.1. Q-Learning with Linear Function Approximation

In many reinforcement learning algorithms, the goal is to
estimate the action-value function Q(·, ·), which can be

formulated as minimizing the mean-squared Bellman error
(MSBE) (Sutton & Barto, 2018):

min
Q(·,·)

Eµ,π,P
[
(T Q(s, a)−Q(s, a))2

]
, (4.1)

where state s is generated from the initial state distribution
µ and action a is chosen based on a fixed learning policy π.
To optimize (4.1), Q-learning iteratively updates the action-
value function using the Bellman operator in (3.1), i.e.,
Qt+1(s, a) = T Qt(s, a) for all (s, a) ∈ S × A. However,
due to the large state and action spaces, whose cardinalities,
i.e., |S| and |A|, can be infinite for continuous problems in
many applications, the aforementioned update is impracti-
cal. To address this issue, a linear function approximator is
often used (Szepesvari, 2010; Sutton & Barto, 2018), where
the action-value function is assumed to be parameterized
by a linear function, i.e., Q(s, a;θ) = φ(s, a)>θ for any
(s, a) ∈ S × A, where φ : S × A → Rd maps the state-
action pair to a d-dimensional vector, and θ ∈ Θ ⊆ Rd is
an unknown weight vector. The minimization problem in
(4.1) then turns to minimizing the MSBE over the parameter
space Θ.

4.2. Neural Q-Learning

Analogous to Q-learning with linear function approximation,
the action-value function can also be approximated by a
deep neural network to increase the representation power of
the approximator. Specifically, we define a L-hidden-layer
neural network as follows

f(θ; x) =
√
mWLσL(WL−1 · · ·σ(W1x) · · · ), (4.2)

where x ∈ Rd is the input data, W1 ∈ Rm×d, WL ∈
R1×m and Wl ∈ Rm×m for l = 2, . . . , L − 1, θ =
(vec(W1)>, . . . , vec(WL)>)> is the concatenation of the
vectorization of all parameter matrices, and σ(x) =
max{0, x} is the ReLU activation function. Then, we
can parameterize Q(s, a) using a deep neural network as
Q(s, a;θ) = f(θ;φ(s, a)), where θ ∈ Θ and φ : S×A →
Rd is a feature mapping. Without loss of generality, we
assume that ‖φ(s, a)‖2 ≤ 1 in this paper. Let π be an arbi-
trarily stationary policy. The MSBE minimization problem
in (4.1) can be rewritten in the following form

min
θ∈Θ

Eµ,π,P
[
(Q(s, a;θ)− T Q(s, a;θ))2

]
. (4.3)
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Algorithm 1 Neural Q-Learning with Gaussian Initializa-
tion

1: Input: learning policy π, learning rate {ηt}t=0,1,..., dis-
count factor γ, randomly generate the entries of W

(0)
l

from N(0, 1/m), l = 1, . . . ,m

2: Initialization: θ0 = (W
(1)>
0 , . . . ,W

(L)>
0 )>

3: for t = 0, . . . , T − 1 do
4: Sample data (st, at, rt, st+1) from policy π
5: ∆t = f(θt;φ(st, at)) − (rt +

γmaxb∈A f(θt;φ(st+1, b)))
6: gt(θt) = ∇θf(θt;φ(st, at))∆t

7: θt+1 = ΠΘ(θt − ηtgt(θt))
8: end for

Recall that the optimal action-value function Q∗ is the
fixed point of Bellman optimality operator T which is γ-
contractive. Therefore Q∗ is the unique global minimizer of
(4.3).

The nonlinear parameterization of Q(·, ·) turns the MSBE
in (4.3) to be highly nonconvex, which imposes difficulty
in finding the global optimum θ∗. To mitigate this issue,
we will approximate the solution of (4.3) by project the
Q-value function into some function class parameterized
by θ, which leads to minimizing the mean square projected
Bellman error (MSPBE):

min
θ∈Θ

Eµ,π,P
[
(Q(s, a;θ)−ΠFT Q(s, a;θ))2

]
, (4.4)

where F = {Q(·, ·;θ) : θ ∈ Θ} is some function class
parameterized by θ ∈ Θ, and ΠF is a projection operator.
Then the neural Q-learning algorithm updates the weight
parameter θ using the following descent step: θt+1 = θt −
ηtgt(θt), where the gradient term gt(θt) is defined as

gt(θt) = ∇θf(θt;φ(st, at))
(
f(θt;φ(st, at))

− rt − γmaxb∈A f(θt;φ(st+1, b))
)

def
= ∆t(st, at, st+1;θt)∇θf(θt;φ(st, at)), (4.5)

and ∆t is the temporal difference (TD) error. It should be
noted that gt is not the gradient of the MSPBE nor an unbi-
ased estimator for it. The details of the neural Q-learning
algorithm are displayed in Algorithm 1, where θ0 is ran-
domly initialized, and the constraint set is chosen to be
Θ = B(θ0, ω), which is defined as follows

B(θ0, ω)
def
=
{
θ = (vec(W1)>, . . . , vec(WL)>)> :

‖Wl −W
(0)
l ‖F ≤ ω, l = 1, . . . , L

}
(4.6)

for some tunable parameter ω. It is easy to verify that
‖θ − θ′‖22 =

∑L
l=1 ‖Wl −W′

l‖2F .

5. Convergence Analysis of Neural
Q-Learning

In this section, we provide a finite-sample analysis of neural
Q-learning. Note that the optimization problem in (4.4) is
nonconvex. We focus on finding a surrogate action-value
function in the neural network function class that well ap-
proximates Q∗.

5.1. Approximate Stationary Point in the Constrained
Space

To ease the presentation, we abbreviate f(θ;φ(s, a)) as
f(θ) when no confusion arises. We define the function
class FΘ,m as a collection of all local linearization of f(θ)
at the initial point θ0

FΘ,m = {f(θ0) + 〈∇θf(θ0),θ − θ0〉 : θ ∈ Θ}, (5.1)

where Θ is a constraint set. Following to the local lineariza-
tion analysis in Cai et al. (2019a), we define the approximate
stationary point of Algorithm 1 as follows.

Definition 5.1 (Cai et al. (2019a)). A point θ∗ ∈ Θ is said
to be the approximate stationary point of Algorithm 1 if for
all θ ∈ Θ it holds that

Eµ,π,P
[
∆̂(s, a, s′;θ∗)〈∇θ f̂(θ∗;φ(s, a)),θ − θ∗〉

]
≥ 0,
(5.2)

where f̂(θ;φ(s, a)) := f̂(θ) ∈ FΘ,m and the temporal
difference error ∆̂ is

∆̂(s, a, s′;θ)

= f̂(θ;φ(s, a))−
(
r(s, a) + γmaxb∈A f̂(θ;φ(s′, b))

)
.

(5.3)

For any f̂ ∈ FΘ,m, it holds that 〈∇θ f̂(θ∗),θ − θ∗〉 =

〈∇θf(θ0),θ − θ∗〉 = f̂(θ)− f̂(θ∗). Definition 5.1 imme-
diately implies that for all θ ∈ Θ it holds that

Eµ,π
[(
f̂(θ∗)− T f̂(θ∗)

)(
f̂(θ)− f̂(θ∗)

)]
= Eµ,π,P

[
EP
[
∆̂(s, a, s′;θ∗)

]
〈∇θ f̂(θ∗;φ(s, a)),θ − θ∗〉

]
≥ 0. (5.4)

According to Proposition 4.2 in Cai et al. (2019a), this fur-
ther indicates f̂(θ∗) = ΠFΘ,m

T f̂(θ∗). In other words,
f̂(θ∗) is the unique fixed point of the MSPBE in (4.4).
Therefore, we can show the convergence of neural Q-
learning to the optimal action-value function Q∗ by first
connecting it to the minimizer f̂(θ∗) and then adding the
approximation error of FΘ,m.
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5.2. The Main Theory

Before we present the convergence of Algorithm 1, let us lay
down the assumptions used throughout our paper. The first
assumption controls the bias caused by the Markovian noise
in the observations by assuming the uniform ergodicity of
the Markov chain generated by the learning policy π.
Assumption 5.2. The learning policy π and the transition
kernel P induce a Markov chain {st}t=0,1,... such that there
exist constants λ > 0 and ρ ∈ (0, 1) satisfying

sups∈SdTV (P(st ∈ ·|s0 = s), π) ≤ λρt,

for all t = 0, 1, . . ..

Assumption 5.2 is a standard requirement in the literature
(Bhandari et al., 2018; Zou et al., 2019b; Xu et al., 2019b),
which can be easily satisfied as long as the Markov chain is
irreducible (able to reach any state from another state with a
nonzero probability) and aperiodic. The uniform ergodicity
can also be established via the minorization condition for
irreducible Markov chains (Meyn & Tweedie, 2012; Levin
& Peres, 2017).

For the purpose of exploration, we also need to assume that
the learning policy π satisfies some regularity condition.
Denote bθmax = argmaxb∈A |〈∇θf(θ0; s, b),θ〉| for any
θ ∈ Θ. Similar to Melo et al. (2008); Zou et al. (2019b);
Chen et al. (2019), we define

Σπ =
1

m
Eµ,π

[
∇θf(θ0; s, a)∇θf(θ0; s, a)>

]
, (5.5)

Σ∗π(θ) =
1

m
Eµ,π

[
∇θf(θ0; s, bθmax)∇θf(θ0; s, bθmax)>

]
.

(5.6)

Note that Σπ is independent of θ and only depends on the
policy π and the initial point θ0 in the definition of f̂ . In
contrast, Σ∗π(θ) is defined based on the greedy action under
the policy associated with θ. The scaling parameter 1/m
is used to ensure that the operator norm of Σπ to be in the
order of O(1). It is worth noting that Σπ is different from
the neural tangent kernel (NTK) or the Gram matrix in Jacot
et al. (2018); Du et al. (2019a); Arora et al. (2019), which
are n × n matrices defined based on a finite set of data
points {(si, ai)}i=1,...,n. When f is linear, Σπ reduces to
the covariance matrix of the feature vector.
Assumption 5.3. There exists a constant α > 1 such that
Σπ − αγ2Σ∗π(θ) � 0 for all θ and θ0.

In the above assumption, we essentially require that the
learning policy π is not too bad compared with the greedy
policy. It is worth noting that α > 0 is of constant order
even though the eigenvalues of Σπ and Σ∗π(θ) could be
rather small due to the scaling factor 1/m. Assumption 5.3
is also made for Q-learning with linear function approxima-
tion in Melo et al. (2008); Zou et al. (2019b); Chen et al.

(2019). Moreover, Chen et al. (2019) presented numerical
simulations to verify the validity of Assumption 5.3. Cai
et al. (2019a) imposed a slightly different assumption but
with the same idea that the learning policy π should be not
too far away from the greedy policy. The regularity assump-
tion on the learning policy is directly imposed on the action
value function in Cai et al. (2019a), which can be implied
by Assumption 5.3 and thus is slightly weaker. We note that
Assumption 5.3 can be relaxed to the one made in Cai et al.
(2019a) without changing any of our analysis. Nevertheless,
we choose to present the current version which is more con-
sistent with existing work on Q-learning with linear function
approximation (Melo et al., 2008; Chen et al., 2019).

Theorem 5.4. Suppose Assumptions 5.2 and 5.3
hold. The constraint set Θ is defined as in (4.6).
We set the radius as ω = C0m

−1/2L−9/4, the step
size in Algorithm 1 as η = 1/(2(1 − α−1/2)mT ),
and the width of the neural network as m ≥
C1 max{dL2 log(m/δ), ω−4/3L−8/3 log(m/(ωδ))},
where δ ∈ (0, 1). Then with probability at least
1− 2δ − L2 exp(−C2m

2/3L) over the randomness of the
Gaussian initialization θ0 , it holds that

1

T

T−1∑
t=0

E
[(
f̂(θt)− f̂(θ∗)

)2∣∣θ0]
≤ 1√

T
+
C2τ

∗ log(T/δ) log T

β2
√
T

+
C3

√
logm log(T/δ)

βm1/6
,

where β = 1−α−1/2 ∈ (0, 1) is a constant, τ∗ = min{t =
0, 1, 2, . . . |λρt ≤ ηT } is the mixing time of the Markov
chain {st, at}t=0,1,..., and {Ci}i=0,...,5 are universal con-
stants independent of problem parameters.

Remark 5.5. Theorem 5.4 characterizes the distance be-
tween the output of Algorithm 1 to the approximate sta-
tionary point defined in function class FΘ,m. From (5.4),
we know that f̂(θ∗) is the minimizer of the MSPBE
(4.4). Note that τ∗ is in the order of O(log(mT/ log T )).
Theorem 5.4 suggests that neural Q-learning converges
to the minimizer of MSPBE with a rate in the order of
O((log(mT ))3/

√
T + logm log T/m1/6), which reduces

to Õ(1/
√
T ) when the width m of the neural network is

sufficiently large.

In the following theorem, we show that neural Q-learning
converges to the optimal action-value function within finite
time if the neural network is overparameterized.

Theorem 5.6. Under the same conditions as in Theorem
5.4, with probability at least 1− 3δ − L2 exp(−C0m

2/3L)
over the randomness of θ0, it holds that

1

T

T−1∑
t=0

E
[
(Q(s, a;θt)−Q∗(s, a))2

]
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≤
3E
[(

ΠFΘ,m
Q∗(s, a)−Q∗(s, a)

)2]
(1− γ)2

+
1√
T

+
C1τ

∗ log(T/δ) log T

β2
√
T

+
C2

√
log(T/δ) logm

βm1/6
,

where all the expectations are taken conditional on θ0,
Q∗ is the optimal action-value function, δ ∈ (0, 1) and
{Ci}i=0,...,2 are universal constants.

The optimal policy π∗ can be obtained by the greedy algo-
rithm derived based on Q∗.
Remark 5.7. The convergence rate in Theorem 5.6 can be
simplifies as follows

1

T

T−1∑
t=0

E[(Q(s, a;θt)−Q∗(s, a))2
∣∣θ0]

= Õ

(
E
[(

ΠFΘ,m
Q∗(s, a)−Q∗(s, a)

)2]
+

1

m1/6
+

1√
T

)
.

The first term is the projection error of the optimal Q-value
function on to the function class FΘ,m, which decreases to
zero as the representation power of FΘ,m increases. In fact,
when the width m of the DNN is sufficiently large, recent
studies (Cao & Gu, 2019a;b) show that f(θ) is almost lin-
ear around the initialization and the approximate stationary
point f̂(θ∗) becomes the fixed solution of the MSBE (Cai
et al., 2019a). Moreover, this term diminishes when the
Q function is approximated by linear functions when the
underlying parameter has a bounded norm (Bhandari et al.,
2018; Zou et al., 2019b). As m goes to infinity, we obtain
the convergence of neural Q-learning to the optimal Q-value
function with an O(1/

√
T ) rate.

6. Proof of the Main Results
In this section, we provide the detailed proof of the con-
vergence of Algorithm 1. To simplify the presentation, we
write f(θ;φ(s, a)) as f(θ; s, a) throughout the proof when
no confusion arises.

We first define some notations that will simplify the presen-
tation of the proof. Recall the definition of gt(·) in (4.5). We
define the following vector-value map g that is independent
of the data point.

g(θ) = Eµ,π,P [∇θf(θ; s, a)(f(θ; s, a)

− r(s, a)− γmaxb∈A f(θ; s′, b))], (6.1)

where s follows the initial state distribution µ, a is chosen
based on the policy π(·|s) and s′ follows the transition
probability P(·|s, a). Similarly, we define the following
gradient terms based on the linearized function f̂ ∈ FΘ,m

mt(θ) = ∆̂(st, at, st+1;θ)∇θ f̂(θ),

m(θ) = Eµ,π,P
[
∆̂(s, a, s′;θ)∇θ f̂(θ)

]
,

(6.2)

where ∆̂ is defined in (5.3), and a population version based
on the linearized function.

Now we present the technical lemmas that are useful in
our proof of Theorem 5.4. For the gradients gt(·) defined
in (4.5) and mt(·) defined in (6.2), we have the following
lemma that characterizes the difference between the gradient
of the neural network function f and the gradient of the
linearized function f̂ .

Lemma 6.1. The gradient of neural network function is
close to the linearized gradient. Specifically, if θt ∈
B(Θ, ω) and m and ω satisfy

m ≥ C0 max{dL2 log(m/δ), ω−4/3L−8/3 log(m/(ωδ))},
and C1d

3/2L−1m−3/4 ≤ ω ≤ C2L
−6(logm)−3,

(6.3)

then it holds that

|〈gt(θt)−mt(θt),θt − θ∗〉|

≤ C3(2 + γ)ω1/3L3
√
m logm log(T/δ)‖θt − θ∗‖2

+
(
C4ω

4/3L11/3m
√

logm+ C5ω
2L4m

)
‖θt − θ∗‖2,

with probability at least 1 − 2δ − 3L2 exp(−C6mω
2/3L)

over the randomness of the initial point, and ‖gt(θt)‖2 ≤
(2 + γ)C7

√
m log(T/δ) holds with probability at least 1−

δ − L2 exp(−C6mω
2/3L). where {Ci > 0}i=0,...,7 are

universal constants.

The next lemma upper bounds the bias of the non-i.i.d. data
for the linearized gradient map.

Lemma 6.2. Suppose the step size sequence
{η0, η1, . . . , ηT } is nonincreasing. Then it holds that

E[〈mt(θt)−m(θt),θt − θ∗〉|θ0]

≤ C0(m log(T/δ) +m2ω2)τ∗ηmax{0,t−τ∗},

for any fixed t ≤ T , where C0 > 0 is an universal constant
and τ∗ = min{t = 0, 1, 2, . . . |λρt ≤ ηT } is the mixing
time of the Markov chain {st, at}t=0,1,....

Since f̂ is a linear function approximator of the neural net-
work function f , we can show that the gradient of f̂ satisfies
the following nice property.

Lemma 6.3. Under Assumption 5.3, m(·) defined in (6.2)
satisfies

〈m(θ)−m(θ∗),θ − θ∗〉

≥ (1− α−1/2)E
[(
f̂(θ)− f̂(θ∗)

)2∣∣θ0].
6.1. Proof of Theorem 5.4

Now we can integrate the above results and obtain proof of
Theorem 5.4.
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Proof of Theorem 5.4. By Algorithm 1 and the non-
expansiveness of projection ΠΘ, we have

‖θt+1 − θ∗‖22 = ‖ΠΘ

(
θt − ηtgt

)
− θ∗‖22

≤ ‖θt − ηtgt − θ∗‖22
= ‖θt − θ∗‖22 + η2t ‖gt‖22 − 2ηt〈gt,θt − θ∗〉.

(6.4)

We need to find an upper bound for the gradient norm and a
lower bound for the inner product. According to Definition
5.1, the approximate stationary point θ∗ of Algorithm 1
satisfies 〈m(θ∗),θ − θ∗〉 ≥ 0 for all θ ∈ Θ. The inner
product in (6.4) can be decomposed into

〈gt,θt − θ∗〉
= 〈gt −mt(θt),θt − θ∗〉+ 〈mt(θt)−m(θt),θt − θ∗〉

+ 〈m(θt),θt − θ∗〉
≥ 〈gt −mt(θt),θt − θ∗〉+ 〈mt(θt)−m(θt),θt − θ∗〉

+ 〈m(θt)−m(θ∗),θt − θ∗〉. (6.5)

Substituting (6.5) into (6.4), we have

‖θt+1 − θ∗‖22 ≤ ‖θt − θ∗‖22 + η2t ‖gt‖22
− 2ηt 〈gt −mt(θt),θt − θ∗〉︸ ︷︷ ︸

I1

− 2ηt 〈mt(θt)−m(θt),θt − θ∗〉︸ ︷︷ ︸
I2

− 2ηt 〈m(θt)−m(θ∗),θt − θ∗〉︸ ︷︷ ︸
I3

.

(6.6)

Note that the linearization error characterized in Lemma
6.1 only holds within a small neighborhood of the initial
point θ0. In the rest of this proof, we will assume that
θ0,θ1, . . .θT ∈ B(θ0, ω) for some ω > 0. We will verify
this condition at the end of this proof.

Recall constraint set defined in (4.6). We have Θ =

B(θ0, ω) = {θ : ‖Wl −W
(0)
l ‖F ≤ ω,∀l = 1, . . . , L}

and that m and ω satisfy the condition in (6.3).
Term I1 is the error of the local linearization of f(θ) at
θ0. By Lemma 6.1, with probability at least 1 − 2δ −
3L2 exp(−C1mω

2/3L) over the randomness of the initial
point θ0, we have

|〈gt −mt(θt),θt − θ∗〉|

≤ C2(2 + γ)m−1/6
√

logm log(T/δ) (6.7)

holds uniformly for all θt,θ∗ ∈ Θ, where we used the fact
that ω = C0m

−1/2L−9/4.
Term I2 is the bias of caused by the non-i.i.d. data
(st, at, st+1) used in the update of Algorithm 1. Condi-
tional on the initialization, by Lemma 6.2, we have

E[〈mt(θt)−m(θt),θt − θ∗〉|θ0]

≤ C3(m log(T/δ) +m2ω2)τ∗ηmax{0,t−τ∗}, (6.8)

where τ∗ = min{t = 0, 1, 2, . . . |λρt ≤ ηT } is the mixing
time of the Markov chain {st, at}t=0,1,....
Term I3 is the estimation error for the linear function ap-
proximation. By Lemma 6.3, we have

〈m(θt)−m(θ∗),θt − θ∗〉 ≥ βE
[(
f̂(θt)− f̂(θ∗)

)2∣∣θ0],
(6.9)

where β = (1− α−1/2) ∈ (0, 1) is a constant. Substituting
(6.7), (6.8) and (6.9) into (6.6), we have it holds that

‖θt+1 − θ∗‖22
≤ ‖θt − θ∗‖22 + η2tC

2
4 (2 + γ)2m log(T/δ)

+ 2ηtC2(2 + γ)m−1/6
√

logm log(T/δ)

+ 2ηtC3(m log(T/δ) +m2ω2)τ∗ηmax{0,t−τ∗}

− 2ηtβE
[(
f̂(θt)− f̂(θ∗)

)2∣∣θ0], (6.10)

with probability at least 1 − 2δ − 3L2 exp(−C1mω
2/3L)

over the randomness of the initial point θ0, where we used
the fact that ‖gt‖F ≤ C4(2+γ)

√
m log(T/δ) from Lemma

6.1. Rearranging the above inequality yields

E
[(
f̂(θt)− f̂(θ∗)

)2∣∣θ0]
≤ ‖θt − θ∗‖22 − ‖θt+1 − θ∗‖22

2βηt

+
C2(2 + γ)m−1/6

√
logm log(T/δ)

β

+
C4(2 + γ)2m log(T/δ)ηt

β

+
C3m(log(T/δ) +mω2)τ∗ηmax{0,t−τ∗}

β
,

with probability at least 1 − 2δ − 3L2 exp(−C1mω
2/3L)

over the randomness of the initial point θ0. Recall the
choices of the step sizes η0 = . . . = ηT = 1/(2βm

√
T )

and the radius ω = C0m
−1/2L−9/4. Dividing the above

inequality by T and telescoping it from t = 0 to T yields

1

T

T−1∑
t=0

E
[(
f̂(θt)− f̂(θ∗)

)2∣∣θ0]
≤ m‖θ0 − θ∗‖22√

T
+
C2(2 + γ)m−1/6

√
logm log(T/δ)

β

+
C4(2 + γ)2 log(T/δ) log T

β2
√
T

+
C3(log(T/δ) + 1)τ∗ log T

β
√
T

.

For θ0,θ∗ ∈ Θ, again by ω = Cm−1/2L−9/4, we have
‖θ0 − θ∗‖22 ≤ 1/m. Since f̂(·) ∈ FΘ,m, by Lemma 6.1, it
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holds with probability at least 1−2δ−3L2 exp(−C0m
2/3L)

over the randomness of the initial point θ0 that

1

T

T−1∑
t=0

E
[(
f̂(θt)− f̂(θ∗)

)2∣∣θ0]
≤ 1√

T
+
C1τ

∗ log(T/δ) log T

β2
√
T

+
C2

√
logm log(T/δ)

βm1/6
,

where we used the fact that γ < 1. This completes the
proof.

6.2. Proof of Theorem 5.6

Before we prove the global convergence of Algorithm 1,
we present the following lemma that shows that near the
initialization point θ0, the neural network function f(θ; x)
is almost linear in θ for all unit input vectors.

Lemma 6.4 (Theorems 5.3 and 5.4 in Cao & Gu (2019a)).
Let θ0 = (W

(1)>
0 , . . . ,W

(L)>
0 )> be the initial point and

θ = (W(1)>, . . . ,W(L)>)> ∈ B(θ0, ω) be a point in the
neighborhood of θ0. If

m ≥ C1 max{dL2 log(m/δ), ω−4/3L−8/3 log(m/(ωδ))},
ω ≤ C2L

−5(logm)−3/2,

then for all x ∈ Sd−1, with probability at least 1−δ it holds
that

|f(θ; x)− f̂(θ; x)|

≤ ω1/3L8/3
√
m logm

L∑
l=1

∥∥W(l) −W
(l)
0

∥∥
2

+ C3L
3
√
m

L∑
l=1

∥∥W(l) −W
(l)
0

∥∥2
2
.

Under the same conditions on m and ω, if θt ∈ B(θ0, ω)
for all t = 1, . . . , T , then with probability at least 1− δ, we
have |f(θt;φ(st, at))| ≤ C4

√
log(T/δ) for all t ∈ [T ].

Proof of Theorem 5.6. To simplify the notation, we abbre-
viate E[·

∣∣θ0] as E[·] in the rest of this proof. Therefore, we
have

E
[
(Q(s, a;θT )−Q∗(s, a))2

]
≤ 3E

[(
f(θT ; s, a)− f̂(θT ; s, a)

)2]
+ 3E

[(
f̂(θT ; s, a)− f̂(θ∗; s, a)

)2]
+ 3E

[(
f̂(θ∗; s, a)−Q∗(s, a)

)2]
. (6.11)

By Lemma 6.4 and the parameter choice that ω =
C1/(

√
mL9/4), we have

E[(f(θT ; s, a)− f̂(θT ; s, a))2] ≤ C2(ω4/3L4
√
m logm)2

≤ C4/3
1 C2m

−1/3 logm
(6.12)

with probability at least 1− δ. Recall that f̂(θ∗; ·, ·) is the
fixed point of ΠFT and Q∗(·, ·) is the fixed point of T .
Then we have∣∣f̂(θ∗; s, a)−Q∗(s, a)

∣∣
=
∣∣f̂(θ∗; s, a)−ΠFΘ,m

Q∗(s, a)

+ ΠFΘ,m
Q∗(s, a)−Q∗(s, a)

∣∣
=
∣∣ΠFΘ,m

T f̂(θ∗; s, a)−ΠFΘ,m
T Q∗(s, a)

+ ΠFΘ,m
Q∗(s, a)−Q∗(s, a)

∣∣
≤
∣∣ΠFΘ,m

T f̂(θ∗; s, a)−ΠFΘ,m
T Q∗(s, a)

∣∣
+
∣∣ΠFΘ,m

Q∗(s, a)−Q∗(s, a)
∣∣

≤ γ|f̂(θ∗; s, a)−Q∗(s, a)|+
∣∣ΠFΘ,m

Q∗(s, a)−Q∗(s, a)
∣∣,

where the first inequality follows the triangle inequality and
in the second inequality we used the fact that ΠFΘ,m

T is
γ-contractive. This further leads to

(1− γ)|f̂(θ∗; s, a)−Q∗(s, a)|
≤ |ΠFΘ,m

Q∗(s, a)−Q∗(s, a)|. (6.13)

Combining (6.12), (6.13) and the result from Theorem 5.4
and substituting them back into (6.11), we have

E
[
(Q(s, a;θT )−Q∗(s, a))2

]
≤

3E
[(

ΠFΘ,m
Q∗(s, a)−Q∗(s, a)

)2]
(1− γ)2

+
1√
T

+
C2τ

∗ log(T/δ) log T

β2
√
T

+
C3

√
log(T/δ) logm

βm1/6
,

with probability at least 1 − 3δ − L2 exp(−C6m
2/3L),

which completes the proof.

7. Conclusions
In this paper, we provide the first finite-time analysis of Q-
learning with neural network function approximation (i.e.,
neural Q-learning), where the data are generated from a
Markov decision process and the action-value function is
approximated by a deep ReLU neural network. We prove
that neural Q-learning converge to the optimal action-value
function up to the approximation error with O(1/

√
T ) rate,

where T is the number of iterations. Our proof technique is
of independent interest and can be extended to analyze other
deep reinforcement learning algorithms. One interesting
future direction would be to remove the projection step in
our algorithm by applying the ODE based analysis in Srikant
& Ying (2019); Chen et al. (2019).
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