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Abstract

We address imbalanced classification, the prob-
lem in which a label may have low marginal
probability relative to other labels, by weighting
losses according to the correct class. First, we
examine the convergence rates of the expected
excess weighted risk of plug-in classifiers where
the weighting for the plug-in classifier and the
risk may be different. This leads to irreducible
errors that do not converge to the weighted Bayes
risk, which motivates our consideration of robust
risks. We define a robust risk that minimizes risk
over a set of weightings, show excess risk bounds
for this problem, and demonstrate that particular
choices of the weighting set leads to a special in-
stance of conditional value at risk (CVaR) from
stochastic programming, which we call label con-
ditional value at risk (LCVaR). Additionally, we
generalize this weighting to derive a new robust
risk problem that we call label heterogeneous con-
ditional value at risk (LHCVaR). Finally, we em-
pirically demonstrate the efficacy of LCVaR and
LHCVaR on improving class conditional risks.

1. Introduction

Classification is a fundamental problem in statistics and
machine learning, including scientific problems such as
cancer diagnosis and satellite image processing as well as
engineering applications such as credit card fraud detection,
handwritten digit recognition, and text processing (

s ; s ), but modern applications have
brought new challenges. In online retailing, websites such as
Amazon have hundreds of thousands or millions of products
to taxonomize ( s ). In text data, the distribu-
tion of words in documents has been observed to follow a
power law in that there are many labels with few instances
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( R ; s ). Similarly, image data also a
long tail of many classes with few examples (

s ; s ). In such settings, the classes
with smaller probabilities are generally classified incorrectly
more often, and this is undesirable when the smaller classes
are important, such as rare forms of cancer, fraudulent credit
card transactions, and expensive online purchases. Thus, we
need modern classification methods that work well when
there are a large number of classes and when the class-wise
probabilities are imbalanced.

When faced with such class imbalance a popular approach
in practice is to choose a metric other than zero-one accu-
racy, such as precision, recall, Fz-measure ( s
, ), which explicitly take class conditional risks
into account, and train classifiers to optimize this metric.
A difficulty with this approach however is that the right
metric for imbalanced classification is often not clear. A re-
lated class of approaches keep the zero-one accuracy metric
but modifies the samples instead. The popular algorithm
SMOTE ( , ) performs a type of data aug-
mentation for a minority class, i.e., a class with lower prob-
ability, and sub-samples the large classes. This has led to
variants with different forms of data augmentation (
s ; s ), but from a theoretical
perspective, these methods remain poorly understood.

A much simpler approach, which is also related to the ap-
proaches above, is class-weighting, in which different costs
are incurred for mis-classifying samples of different labels.
Practically, this is a natural approach because it is often
possible to assign different costs to different classes. For
example, the average fraudulent credit card transaction may
cost hundreds of dollars, or in online retailing, failing to
show a customer the correct item causes the company to lose
out on the profit of selling that item. Thus, a good classifier
should be fairly sensitive to possibly fraudulent transactions,
and online retailers should prioritize displaying high-profit
products. As a result, class-weighting has been studied in
a variety of settings, including modifying black-box clas-
sifiers, SVMs, and neural networks ( s ;

, R ; s ). Addltlonally,
class- welghtlng has been observed to be useful for estimat-
ing class probabilities, since class- welghtlng amounts to
adjusting decision thresholds ( ,
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A crucial caveat with cost-weighting however is the right
choice of costs is often not clear, and with any one choice
of costs, the performance of the corresponding classifier
might suffer for some other, perhaps more suitable, choices
of costs.

In this paper, we use cost-weighting for imbalanced classi-
fication in three ways. We start by examining a weighted
sum of class-conditional risks, i.e., the risks conditional on
the class Y taking some specific value ¢. This allows us to
upweight a minority class to achieve better performance on
the minority examples. We then provide an illuminating
analysis of the fundamental tradeoffs that occur with any
single choice of costs.

Since we may not understand precisely which weighting
q to pick, we examine a robust risk that is a supremum of
the weighted risks over an uncertainty set () of possible
weights. This objective can be interpreted as a class-wise
distributionally robust optimization problem where we ask
for robustness over the marginal distribution of Y. This
leads to a minimax problem, for which we provide gener-
alization guarantees. We also note that a standard gradient
descent-ascent algorithm may solve the optimization prob-
lem when the risk is convex in the classifier parameters.

Finally, we show that for a natural class of uncertainty sets,
the robust risk reduces to what call label conditional value
at risk (LCVaR). We highlight a connection to conditional
value at risk (CVaR), which is a well-studied quantity in port-
folio optimization and stochastic programming parametrized
by an ain (0, 1) ( , ; ,

). Further, we propose a generalization that we call
label heterogeneous conditional value at risk (LHCVaR) that
allows for different parameters «; for each class ¢. To the
best of our knowledge, this has not been examined previ-
ously, and it could possibly be used more broadly. To give
an example in portfolio optimization, we may wish to treat
risks arising from different types of assets, e.g., large-cap
stocks versus small-cap stocks or domestic debt versus in-
ternational debt, differently. Next, we show that the dual
form for LHCVaR is similar to that for LCVaR as long as
the heterogeneity is finite-dimensional, and this leads to an
unconstrained optimization problem. Finally, we examine
the efficacy of LCVaR, and LHCVaR on real and synthetic
data.

The rest of the paper is outlined as follows. In Section 2,
we discuss our problem setup. In Section 3, we examine
weighting in plug-in classification. In particular, we eluci-
date the fundamental trade-off in weighted classification and
its methodological implications. In Section 4, we examine
a robust version of the weighted risk problem, including
generalization guarantees and connections to stochastic pro-
gramming. In Section 5, we provide numerical results, and
we conclude with a discussion in Section 6. Additional

proofs and results in related settings are deferred to the
appendices.

1.1. Further Related Work

We briefly review other research related to imbalanced clas-
sification, but for a far more exhaustive treatment, see a
survey of the area ( s ; )

). First, two other methods may be employed to solve
imbalanced classification problems. The first is class-based
margin adjustment ( s ; , ; s

), in which the margin parameter for the margin loss
function may vary by class. Broadly, margin adjustment
and weighting may both be considered loss modification
procedures. The second method is Neyman-Pearson classi-
fication, in which one attempts to minimize the error on one
class given a constraint on the worst perm1s51ble error on
the other class ( , ; s ;

, )-

An important topic related to our paper but that has not
been well-connected to imbalanced classification is robust
optimization. Robust optimization is a well-studied topic
( ; ; ; ) )

). A variant that has gained traction more recently is
distributionally robust optimization ( , ;

, ; , ). Un-
surprisingly, CVaR, as a coherent risk measure, has been
previously connected to distributionally robust optimization
( , ). Distributionally robust optimization
generally and CVaR specifically have also previously been
used in machine learning to deal with imbalance (

, ; , ), but in these works,
the imbalance was considered to exist in the covariates,
whether known to the algorithm or not. These are motivated
by the recent push toward fairness in machine learning, in
particular so that ethnic minorities do not suffer discrimi-
nation in high-stakes situations such as loan applications,
medical diagnoses, or parole decisions, due to biases in the
data.

2. Preliminaries
2.1. Classification with Imbalanced Classes

In this section, we briefly go over the problem setup. First,
we draw samples from the space Z = X x ). For our pur-
poses, we are interested in ) = {0,1} or Y = {1,...,k}.
Note there are two slightly different mechanisms for the
data-generating process that are considered in imbalanced
classification and Neyman-Pearson classification. In the
first, we are given n i.i.d. samples (X1,Y7),..., (X, Ys)
from a distribution Px y. Here, we let p; = P (Y =) be
the probability of class ¢. Additionally, we sometimes re-
fer to the vector of class probabilities as p. This is our
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framework of interest, since it corresponds to standard
assumptions in nonparametric statistics and learning the-
ory. In the alternative framework, we are given n; sam-
ples (X1,1),...,(Xy,,) from each marginal distribution
Px|y—;. The probability of class 7 in this case is then
known: p; = p; = n;/n. For the most part, these two
mechanisms yield similar results, but the analyses differ
slightly. To streamline the presentation, we only consider
the first case in the main paper, although we give a result
for the alternative framework in the appendix that illustrates
the difference.

2.2. Class Conditioned Risk

We are interested in finding a good classifier f : X' —
D O Y in some function space F, such as linear classifiers
or neural networks. In this section, we establish our risk
measures of interest. In general, we want to minimize the
expectation of some loss function ¢ : F x Z — [0, 1], which
we call risk and denote R(f) = E[{(f, Z)]. Analogously,
we define the class-conditioned risk for class ¢ to be

Rei(f) =E[(f, 2)]Y =1].

At this point, we make some observations for plug-in clas-
sification and empirical risk minimization. In the plug-
in classification results, we consider the zero-one loss
lo1(f,2z) = 1{f(z) # y}, and for our results on empir-
ical risk minimization, we are primarily interested in convex
surrogate losses. For simplicity, when / is clear from con-
text, or a statement is made for a generic ¢, we will denote
this as R;.

Now, we can work toward defining weighted risks. We
defined Observe that we can relate the risk to the class-
conditioned risk by R(f) = E[Ry (f)] = >_;cy piRi(f)-
An important part of our paper is an examination of class-
weighted risk.

Definition 1. Let ¢ = (q1,. .., q|y|) be a vector such that
¢ > 0 forall i and Elgy| = _;cy @ipi = 1. Then, the
q-weighted risk is

Ry(f) =Elgy Ry (/)] = Y _ aipiRi(f).

i€y

Note that the usual risk is recovered by setting ¢ =
(1,...,1).

2.3. Plug-in Classification

In this section, we discuss weighted plug-in classification.
For plug-in, we restrict our attention to the binary classifica-
tion case of Y = {0, 1}, and the primary quantity of interest
is usually the one-zero risk Ro1(f) i.e the risk under £ ;.
In general, the risk for the best classifier is nonzero because

for a given x in X, there is some probability it may take the
value O or 1.

As a result, we need a way to discuss the convergence of
our estimator to the best possible estimator. We define the
regression function 7 by n(z) = P(Y = 1|X = z) . Now,
the Bayes optimal classifier is the classifier that minimizes
the risk, and it is defined by f*(z) = 1 {n(xz) > 1/2} . The
minimum possible risk is called the Bayes risk and denoted
by R* = R(f*), and generally we focus on minimizing the
excess risk £(f) = R(f) — R*.

Following the form of the Bayes classifier, a plug-in esti-
mator fattempts to estimate the regression function 7 by
some 7) and then “plugs in” the result to a threshold function.
Thus, f has the form f(m) = 1{n(x) > 1/2}, which is
analogous to the form of the Bayes classifier. For additional
background on plug-in estimation, see, e.g., ( s

).

At this point, we wish to define the weighted versions of
Bayes classifier, Bayes risk, plug-in classifier, and excess
risk. For brevity, define the threshold ¢, = ¢o/(q0 + ¢1).
First, we consider the Bayes classifier.

Lemma 1. Let ¢ = (qo,q1) be a weighting. The
Bayes optimal classifier for q-weighted risk is fy(z) =
1{n(x) >t4}.

The proof, along with proofs of other subsequent results
on plug-in classification, appears in the appendix. In this
case, we denote the Bayes risk by R} = R,(f;). Lemma 1
reveals that the Bayes classifier is a plug-in rule, and analo-
gously, we see that a plug-in estimator in the weighted case
takes the form fq(x) = 1{n(z) > t,} . Consequently, we
define excess g-risk for an empirical classifier j? The excess
g-risk for an empirical classifier is Eq(f) = Rq(f) - Ry,
and note that we are interested in bounding the expected
excess g-risk for plug-in estimators.

2.4. Empirical Risk Minimization

In this section, we define empirical quantities that
we need for empirical risk minimization, particularly
the weighted and robust risks. We consider ) =
{1,...,k}. We define the empirical class-conditioned risk
by Ri = (1/Ni) 3251 4(f,2)1{y; =i} where N; =
Z?=1 1{y; =i}. Let p; = N;/n denote the empirical
proportion of observations of class ¢, and let ¢ be a weight
vector. The empirical g-weighted risk is

The empirical ()-weighted risk is defined analogously by
Rq = sup,cq Rq(f). This problem is convex in f when
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the loss £ is convex and concave in g due to linearity; so one
may solve the resulting saddle-point problem with standard
techniques such as gradient descent-ascent, which we give
in the appendix.

Often in empirical risk minimization, generalization bounds
are provided, i.e., a bound on the true risk of a classifier
f in F in terms of its empirical risk and a variance term.
To bring our results closer to those of plug-in estimation,
we also consider a form of excess risk. To distinguish the
two, define the excess (F, Q)-weighted risk to be Eq (F) =

Rg (f) —Rq(f5) where here f is the QQ-weighted empirical
risk minimizer in F and f¢) is the population Q-weighted
risk minimizer in . Beyond the robust formulation, the
key difference between excess g-weighted risk and excess
(F, Q)-weighted risk is that in the former we compete with
the true regression function, and in the latter we compete
with the best classifier in F.

One additional tool we need for empirical risk minimization
is a measure of function class complexity, and a typical mea-
sure of the expressiveness of a function class is Rademacher
complexity. The empirical Rademacher complexity given a
sample (X1,Y7),...,(X,,Y,) is

R, (F) =Eysup ¥ 0, f(X,),
( ) feFZ: ( )

where the expectation is taken with respect to the o;, which
are Rademacher random variables. The Rademacher com-
plexity is R,,(F) = ER,,(F), where the expectation is with
respect to the X; random variables.

Finally, we make one note about the loss for our empir-
ical risk minimization results. For binary classification,
one can obtain bounds for any bounded loss function that
is Lipschitz continuous in f(z). Since we present mul-
ticlass results, we use the multiclass margin loss, which
is a bounded version of the multiclass hinge loss (

s ). Here, it is assumed that for each ¢ in )/, the
function f outputs a score f;(x), and the chosen class
is argmax;.y, fi(x). The multiclass margin loss is de-
fined as lma(f, 2) = @ (fy(x) — maxy», f,(x)) where
®(a) =1{a <0}+(1—a)1{0 < a < 1}. For simplicity,
we ignore the margin parameter, usually denoted by p, and
treat it as 1 in our results. Finally, we define the projection
set II1(F) ={z — fy(z):y eV, feF}.

3. Tradeoffs with Class Weighted Risk

In this section, we examine weighted plug-in classification,
and we have two main results. First, we show that weighted
plug-in classification enjoys essentially the same rate of
convergence as unweighted plug-in classification, although
there is dependence on the chosen weights. Second, there
is a fundamental trade-off in that optimizing for one set of

Figure 1: The irreducible error (IE) and estimation error
(EE). The irreducible error is the measure of the set of x
where 7)(z) is between thresholds of ¢’ and ¢, which does
not depend on 7). The estimation error is the measure of
the = for which 7(x) and n(x) lead to different plug-in
estimates.

weights ¢ may lead to suboptimal performance for another
set of weights ¢’.

3.1. Excess Risk Bounds

We start with the excess risk bound for plug-in estimators
when the weighting is well-specified.

Proposition 1. Suppose the regression function n is (-
Holder. Then, the q-weighted excess risk of f, satisfies

E&,(f,) <O ((qO + Q1)n’2‘ﬁ%) .

Here, we see that the upper bound depends linearly on gq
and ¢;. This implies that when we increase the weight for a
class with few examples, then our bound on the excess risk
increases. While previous cost weighting setups have nor-
malized the sum of weights ( s ), our normalization
scheme is computed with respect to prior probabilities on
each class as well, and consequently we explicitly include
qo, q1 in our bound. Our choice of domain for weights is
defined in Section 4.

Now, we turn to our second task: examining the weighted
excess risk of the f, under a different weighting ¢’. Observe
that we can decompose the excess risk as

ERy (fy) — Ry (1) + Ry (f5) — Ry (£5)

estimation error

~

EEq (fy)

irreducible error

: (EE) + (IE). (1

Unsurprisingly, we see that an error term that is constant,
or "irreducible” appears in equation (1). Then, we see the
irreducible error is given by the measure of the subset of
X where 7(z) lies between t, and t,. Given that we know
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the Bayes optimal classifier for any weighting, we observe
that the irreducible error can be upper bounded by a term
proportional to the the product of the measure of Px in
the region between ¢, and ¢,/, and the difference between
the thresholds themselves. We state this formally in the
following proposition.

Proposition 2. Let t, ., = min{t,ty} and t, 4 =
max{ty,ty }. The irreducible error satisfies the bound

(IBE) < (qo + ¢1) |ty — tg | P (iq,q' <n(X) <tgq)

A visualization is given in Figure 1. Now, we turn to analyze
the estimation error. The result is in many ways similar to
Proposition 1, but an additional term appears due to the
decision threshold ¢, for 7 differing from that of the risk
measurement .

Proposition 3. For any density estimator 1), the estimation
error satisfies

(EE) <(g) + aD)E [0 — Al 1y )| +

(@b +ai) Ity — o E [P (Jol@) # £ (@) ]

Corollary 1. When n is 3-Holder, using local polynomial
estimator ( , ) for 7] gives

(BE) <(¢4 + ¢,)0 (n_%%) +

(b +ai) It — o E [P (Fol@) # £ (@) ]

Consequently, we can upper bound the expected excess ¢'-
risk. The probability in the bound of the estimation error
has been considered in the context of nearest neighbors
( s ), but in general, additional
assumptions are required to provide an explicit rate. We
consider one such assumption in the appendix.

4. Robust Class Weighted Risk

Based the results in the previous section, we know that the
performance degradation need not be graceful when we
don’t know how to choose the weights. This motivates us to
study a more robust version of class weighted risk.

Definition 2. Let Q C R be a compact convex set such
that q; > 0 for each i and Elgy| = 1 for each q in Q. Then,
the Q-weighted risk is

Rq(f) = supE [y Ry (f)] = sup Y _ qipiRi(f)-
q€Q 9€Q iy

Additionally, we refer to the set (Q as the uncertainty set.

In this section, we have two goals: (1) to provide excess J-
risk bounds and generalization bounds for robust weighted
risk via uniform convergence and (2) to make connections
to stochastic optimization via special choices of uncertainty
set. We start with generalization; the proofs are given in the
appendix.

Theorem 1. Let ¢ = {,,, be the multiclass margin loss.
Recall that N; = 377, 1{y; = i}. With probability at
least 1 — §, we have the generalization bound

k
Rg(f) < sup {f?q(f) +Y aips
=1

q€Q
« | akE | Mgy, (m () | + log §
pin 2pin
for every f in F and the excess risk bound
k
EQ(F) <2sup Y qipi
1€Q =
s | Vg (m (7] 1[50
X ,
pin 2pin

A few remarks are in order. First, note that we only use
the multiclass margin loss because it leads to simple mul-
ticlass bounds. In a binary classification setting, standard
results would imply generalization for other Lipschitz losses.
Second, in many cases, we can simplify the Rademacher
complexity term. The following result applies to commonly-
used function classes such as linear functions and neural
networks ( s ; , ;

; )-

Corollary 2. Let { = o be the multiclass margin loss. Let
F be afunction class satisfying R, (I (F)) < C(F)n~1/?
for some constant C(F) that does not depend on n. Then
with probability at least 1 — §, we have the generalization
bound

k
Rq(f) < sup {ﬁq(f) +) " aipi
=1

q€Q
log &
+14/ gf
2pin
log &
+4/ g25
2pin

4kC(F)
NZD

and the excess (F, q)-risk bound

8kC(F)
N

k
EQ(F) <2sup > aips

€Q =
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4.1. Connections to Stochastic Programming

In this section, we make concrete connections to stochastic
programming ( , ). First, we introduce
label conditional value at risk, and then we describe the
generalization, label heterogeneous conditional value at risk.

4.1.1. LABEL CVAR

‘We start with the definition.

Definition 3. Ler v in (0, 1) be given. Define the set Qo =
{q :Elgy] =1,¢; € [O,a‘l] foriel,.. .,k;}. The la-
bel conditional value at risk (LCVaR) is LCVaR,(f) =
Rq.(f):

Now, we describe the connection to CVaR. Letting Z be a
random variable, the CVaR of Z at level v is CVaR,,(Z) =
supgeq+ Eq[Z] = supgeq- E[(dQ/dP)Z], where Q7 is
the set of all probability measures that are absolutely con-
tinuous with respect to the underlying measure P such that
dQ/dP < a~!'.If Z takes values on a finite discrete proba-
bility space with probability mass function p, then the CVaR
may be written as CVaR,(Z) = sup,cq, Zle qipiZ.
Thus, LCVaR is a specialization of CVaR to the variables
Ry (f), which take values on the finite discrete space ).
Notably, this is in contrast to other uses of CVaR in machine
learning where, as noted previously, CVaR is used with re-
spect to samples directly, in order to provide robustness or
fairness. As with CVaR, LCVaR is a straightforward way
to provide robustness. Intuitively, it moves weight to the
worst losses, where all weightings are bounded by the same
constant o~ !. Now, we consider the dual form.

Proposition 4 (LCVaR dual form). LCVaR permits the dual
formulation

1
= inf { — — .
VR, (f) = juf { ZBI(Ry (1) = )41+ A}
Moreover; if F is compact in the supremum norm on X and
{ is continuous, then the dual form holds for all f in F.

The proof is mostly standard and therefore deferred to the
appendix. The only trick compared with CVaR is showing
that we may restrict the domain of A to a compact set; which
essentially requires showing that the process { Ry (f) : f €
F} is sufficiently well-behaved. It would also suffice to
assume that ¢ is bounded, as with most theoretical results in
learing theory. Note that to minimize LCVaR, we can solve
this convex program in A and f.

4.1.2. LABEL HETEROGENEOUS CVAR

While the LCVaR approach of the previous section is useful
for providing some robustness in a computationally tractable
manner, it may not be best suited for imbalanced classifica-
tion because it treats all classes identically in that each g;

must lie in the interval [0, «~!]. Since imbalanced classi-
fication is inherently a problem of heterogeneity, we may
wish to allow g; to be in some interval [0, o; '] instead. We
can formalize this problem as follows.

Definition 4. Define the uncertainty set Qp. =
{q:Elgy] =1,q; € [0,; ! fori = 1....,k}. We call
the resulting optimization problem label heterogeneous con-
ditional value at risk (LHCVaR), and we write

LHCVaR,(f) = sup E[gyRy(f)].

qE€EQH, o

Similar to LCVaR, this has a dual form.
Proposition 5. A dual form for LHCVaR is given by

LHCVaR,(f) = }\IelaE [oy" (Ry (f) = A) ] + A

Moreover, if F is compact in the supremum norm on X and
¢ is continuous, then the dual form holds for all f in F.

Again, we note that an alternative sufficient condition for the
dual to hold for all f in F is that ¢ be bounded. Importantly,
the label heterogeneous CVaR dual form is convex in f and
A. As a result, we can still optimize efficiently, in principle.

We also note that the finite dimension k is crucial for label
heterogeneous CVaR. This is due to our use of the minimax
theorem, which requires compactness in various places; so
in general this result cannot be extended to the infinite-
dimensional case.

5. Numerical Results

Code for reproducing the results in this section can
be found at https://www.github.com/neilzxu/
robust_weighted_classification.

5.1. Methods

We examine the empirical performance of LCVaR and LHC-
VaR risks, and compare them against the standard risk and
a balanced risk as baselines. Let p; be the empirical propor-
tion of the sth label and R; be the empirical class conditional
risk.

Balanced risk Here, we consider the specific weighting
where each class is equally weighted:

=

k
Ry (f) = Z Ri(f)
i=1

ie., wefix ¢; = 1/(kD;).
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Figure 2: Plots of class 0, class 1, and worst class risk on the test dataset under different choices of 1 — p in the synthetic
experiment. The worst test class risk is the maximum of the risks of the two classes for each choice of the probability of
class 0. LCVaR and LHCVaR performs better in worst class risk than both standard and balanced risks as class imbalance

increases.

LCVaR The empirical formulation optimizes the dual for-
mulation, in which « is a hyperparameter:

k.
{;Z@@(f) —A>++A}.

2

LCVaR,(f) = min

LHCVaR We similarly optimize a dual form in the em-

pirical LHCVaR risk. To reduce the number of hyperparam-

eters to only ¢ € (0,1] and x € (0, 00), we calculate «; as
Z/)\‘ 1/k

follows:
(k,c) 4
o =c| 7= K) .
(Zj—l bj /

+ behaves as a temperature parameter (similar to

; ) and causes « to become a smoother
distribution of weights when x > 1 and converge to uniform
weights as k — co. Conversely, when £ < 1, the alpha
distribution becomes sharper and heavily weights the classes
with lowest p; as k — 0. We simply choose a  of 1 unless
otherwise stated. c consequently characterizes the total
magnitude of the weights. Ultimately, we formulate the
empirical risk as:

3)

k

>

i=1 &

pi
(r.0)
i

LHCVaR,.o(f) = inf

(Ri(f) = N+ +A}

We train a logistic regression model with gradient descent
on a cross entropy loss, which acts as a convex surrogate
loss for zero-one risk.

5.2. Datasets

We evaluate our methods on both synthetic and real datasets.

Synthetic Datasets The data in our synthetic experiment
is constructed for X = [0,1] and Y = {0, 1}. For a given
p = P(Y = 0), we generated a dataset by uniformly ran-
domly sampling an X in [0, 1] and sampling a Y with the
following distribution:

In these synthetic datasets, we note that the Bayes optimal
classifier and class risks are:

When p is high, Ro(f*) < R1(f*), which leads to a classi-
fier that has vastly worse performance on class 1 compared
to class 0. This discrepancy in class risk is a common issue
in classification problems where there is a significant class
imbalance.

We randomly generated 10,000 data points for both train
and test sets. We generated datasets for each value of p from
0.80 to 0.98, inclusive, in steps of 0.02.

Real World Datasets We also experiment on the Cover-
type dataset taken from the UCI dataset repository (

R ). This dataset is 53-dimensional with 7 classes
and has 2%-98% (11340-565892 examples) train-test split.
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5.3. Results

Synthetic In Fig. 2, we can observe that the the worst case
class risk of LCVaR and LHCVaR across multiple values
of p is better than both the standard and balanced classifier.
The classwise risks of LCVaR and LHCVaR are relatively
close across different values of p, while there is a large dis-
crepancy between classwise risks of the classifier trained
under the standard or balanced risks. Note that the more
significant the imbalance, i.e., the smaller the p, the better
LCVaR and LHCVaR perform compared to balanced risk
on class 0, while paying a progressively smaller price on the
class 1 risk. The same is also true between both LCVaR and
LHCVaR and the standard risk, although with the classes
swapped. We note that while the worst class risk of LCVaR
and LHCVaR seem to decrease with greater imbalance, this
may not be a general property of these methods. Rather,
this is more likely an artifact of the synthetic setup having
more probability mass further from the decision boundary
as the imbalance increases. The main observation is simply
that LCVaR and LHCVaR have lower worst class risk in
comparison to the baseline methods. Thus, this empirically
demonstrates that both LCVaR and LHCVaR can signifi-
cantly improve the highest class risks while losing little in
performance on classes with lower risks.

In addition to comparing against baselines, we also examine
the effect of different choices of « and x on LCVaR and
LHCVaR, respectively. The results of this comparison are in
Fig. 3. In both methods, varying the hyperparameters does
not have a dramatic impact on the behavior of the worst
class risk for both these methods across different values of
class imbalance.

Table 1: Standard risk and risk of the worst class for each
method on the Covertype dataset. LCVaR and LHCVaR
improve on the worst class risk.

Method | Standard Risk ‘ Worst Class Risk
LHCVaR 0.3979 0.4907
LCVaR 0.3384 0.5037
Standard 0.3275 0.5111
Balanced 0.3765 0.5333
Real In Table 1, we observe that LCVaR and LHCVaR

have better worst class risks than the standard and class
weighted baselines. However, improving worst class risk
comes at a cost to to the standard risk in the case of both
LCVaR and LHCVaR. This tradeoff is reflected in the his-
tograms of class risk shown in Fig. 4, where the class risks
under the standard and balanced classifiers are more spread
out and have classes with much lower risks. On the other
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Table 2: Performance of LCVaR across different o values,
and LHCVaR across different « values. The performance
each method is relatively agnostic to choices of o and &,
although the smallest choices of a and « for each method
have the largest changes in worst class risk, respectively.
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