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Abstract
The variational autoencoder (VAE) can learn the
manifold of natural images on certain datasets, as
evidenced by meaningful interpolation or extrap-
olation in the continuous latent space. However,
on discrete data such as text, it is unclear if un-
supervised learning can discover a similar latent
space that allows controllable manipulation. In
this work, we find that sequence VAEs trained on
text fail to properly decode when the latent codes
are manipulated, because the modified codes of-
ten land in holes or vacant regions in the aggre-
gated posterior latent space, where the decoding
network fails to generalize. Both as a validation
of the explanation and as a fix to the problem,
we propose to constrain the posterior mean to a
learned probability simplex, and perform manipu-
lation within this simplex. Our proposed method
mitigates the latent vacancy problem and achieves
the first success in unsupervised learning of con-
trollable representations for text. Empirically, our
method outperforms unsupervised baselines and
strong supervised approaches on text style trans-
fer, and is capable of performing more flexible
fine-grained control over text generation than ex-
isting methods.

1. Introduction
High-dimensional data, such as images and text, are often
generated through the interaction of many complex factors,
such as lighting and pose in images or style and content in
texts. Recently, VAEs and other unsupervised generative
models have found successes in modelling the manifold of
natural images (Higgins et al., 2017; Kumar et al., 2017;
Chen et al., 2016). These models often discover controllable
latent factors that allow manipulation of the images through
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conditional generation from interpolated or extrapolated la-
tent codes, often with impressive quality. On the other hand,
while various attributes of text such as sentiment and topic
can be discovered in an unsupervised way, manipulating the
text by changing these learned factors has not been possi-
ble with unsupervised generative models, to the best of our
knowledge. Cı́fka et al. (2018); Zhao et al. (2018) observed
that text manipulation is generally more challenging com-
pared to images, and the successes of these models cannot
be directly transferred to texts.

Controllable text generation aims at generating realistic text
with control over various attributes including sentiment,
topic and other high-level properties. The possibility of
unsupervised controllable text generation could help in a
wide range of applications such as dialogues systems (Wen
et al., 2016). Existing approaches (Shen et al., 2017; Fu
et al., 2018; Li et al., 2018; Sudhakar et al., 2019) all rely
on supervised learning from annotated attributes to generate
the text in a controllable fashion. The high cost of labelling
large training corpora with attributes of interest limits the
usage of these models, as pre-existing annotations often do
not align with desired downstream goals. Even if cheap
labels are available, for example, review scores as a proxy
for sentiment, the control is limited to the variation defined
by the attributes.

In this work, we examine the obstacles that prevent sequence
VAEs (Bowman et al., 2015) from performing well in un-
supervised controllable text generation. We empirically
discover that manipulating the latent factors for typical se-
mantic variations often leads to latent codes that reside in
some low-density region of the aggregated posterior dis-
tribution. In other words, there are vacant regions in the
latent code space (Makhzani et al., 2015; Rezende & Viola,
2018) not being considered by the decoding network, at
least not at convergence. As a result, the decoding network
is unable to process such manipulated latent codes, yielding
unpredictable generation results of low quality. Although
this issue has been raised in prior works, we provide direct
evidence using topological data analysis to show that this
vacancy problem is more severe for VAEs trained on text
than image.

In order to mitigate the latent vacancy problem on text, we
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propose to constrain the posterior mean to a learned prob-
ability simplex and only perform manipulation within the
probability simplex, which is referred as CP-VAE (Con-
strained Posterior VAE). Two regularizers are added to the
original objective of VAE. The first enforces an orthogonal
structure of the learned probability simplex; the other en-
courages this simplex to be filled without holes. Besides
confirming that latent vacancy is indeed a cause of fail-
ure in previous sequence VAEs’, CP-VAE is also the first
successful attempt towards unsupervised learning of control-
lable representations for text to the best of our knowledge.
Experimental results on text style transfer show that our
method outperforms unsupervised baselines and strong su-
pervised approaches, whose decoding network are trained
from scratch. Without supervision and the help of pre-
training for generation, our method achieves comparable
results with state-of-the-art supervised approaches lever-
aging large-scale pre-trained models for generation, with
respect to the automatic evaluation metrics used in text style
transfer. Our proposed framework also enables finer-grained
and more flexible control over text generation. In particular,
we can switch the topic in the middle of sentence generation,
and the model will often still find a way to complete the
sentence in a natural way, which has never been attempted
by previous methods.1

2. Background: Variational Autoencoders
The variational autoencoder (VAE) (Kingma & Welling,
2013) is a generative model defined by a prior p(zzz) and
a conditional distribution pθθθ(xxx|zzz). The VAE is trained to
optimize a tractable variational lower bound of log pθθθ(xxx):

LVAE(xxx;θθθ,φφφ) =Ezzz∼qφφφ(zzz|xxx)[log pθθθ(xxx|zzz)]
−DKL(qφφφ(zzz|xxx)||p(zzz)),

(1)

where qφφφ(zzz|xxx) is a variational distribution parameterized
by an encoding network with parameters φφφ, and pθθθ(xxx|zzz)
denotes the decoding network with parameters θθθ. This ob-
jective tries to minimize the reconstruction error to generate
the data, and at the same time regularizes qφφφ(zzz|xxx) towards
the prior p(zzz). For text modelling, the input xxx is some ob-
served text. Both the encoding and decoding network are
usually recurrent neural networks, and the model is called a
sequence VAE.

Note that during learning, the decoding network pθθθ(xxx|zzz)
only learns to decode zzz that are sampled from qφφφ(zzz|xxx). In
other words, the decoding network is never trained to de-
code the entire latent space. Instead, it only learns to pro-
cess zzz sampled from the aggregated posterior distribution
qφφφ(zzz) = Exxx∼pd(xxx)qφφφ(zzz|xxx), where pd(xxx) is the training data
distribution. If qφφφ(zzz) has regions of low density, there is

1The code to reproduce our results can be found in https:
//github.com/BorealisAI/CP-VAE

no guarantee that pθθθ would generalize well to such places.
This is an important intuition that will become central to our
analysis in Sec. 3.

3. Latent Vacancy Hypothesis
We hypothesize that when trained on text data, the aggre-
gated posterior of sequence-VAEs tend to have vacant re-
gions of low density, where the decoder may fail to general-
ize to. The decoder could generalize to the vacant regions
without ever seeing training examples, but there is no guar-
antee it can perform well in this case especially if the such
vacancy is large. Fig. 1 is an illustration of the intuition.

In this section, we conduct exploratory study on unsuper-
vised sentiment manipulation and provide evidence from
two different aspects to verify the above-mentioned hypoth-
esis. First, we measure how the negative log-likelihood of
latent codes under the aggregated posterior changes before
and after manipulation. Second, since topology is the tech-
nical language to describe the notion of vacant regions or
holes, we employ topological data analysis to confirm the
exacerbation of latent vacancy problem on text as compared
to images. In addition, we give a preview of our proposed
method (later formally introduced in Section 4) and demon-
strate that it avoids the latent vacancy problem using the
same analyses.

Figure 1. Illustration of why latent vacancy prevents effective ma-
nipulation in VAEs. The aggregated posterior shown has multiple
disconnected areas and direct manipulations of the relevant factor
may fall into vacant regions of low density.

3.1. Unsupervised Sentiment Manipulation

Here we describe the setup used to discover a sentiment
latent dimension and subsequent exploration of manipulat-
ing the sentiment attribute. Note that discovering sentiment

https://github.com/BorealisAI/CP-VAE
https://github.com/BorealisAI/CP-VAE
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Example Transfer Strength Content Preservation NLL Discrepancy
Source sentence the pizza is offered without toppings

and it ’s lacking in flavor .
- - -

β-VAE w. aggr training
(±σ)

the pizza is offered in toppings and
it ’s lacking in pittsburgh sauce .

Weak Good Small

β-VAE w. aggr training
(±2 ∗ σ)

the pizza is more than fresh and your
food is lacking in flavor

Medium Medium Medium

β-VAE w. aggr training
(extremum)

the service is a great cut and the food
is top notch in charlotte .

Strong Bad Large

CP-VAE (this work) the pizza is full of spicy and it ’s
delicious .

Strong Good Small

Table 1. Summary of the behaviours of β-VAE with aggressive training and our proposed CP-VAE. Detailed quantitative evaluations for
transfer strength and content preservation are presented in Tab. 2.

feature in an unsupervised way is known to be possible, e.g.,
in large-scale language models (Radford et al., 2017). How-
ever, limited success has been achieved for sequence VAE
and its variants to change text attributes while preserving
the relevant content, without annotated labels.

To perform unsupervised sentiment manipulation, we use
the Yelp restaurant reviews dataset and the same data split
following Li et al. (2018). We train a β-VAE (Higgins et al.,
2017) with aggressive training of the encoder as proposed by
He et al. (2019), which is the state of the art, and a significant
improvement over vanilla sequence VAEs. The model under
study here has a latent space of 80 dimensions with a LSTM
encoder and decoder, with a β of 0.35. By inspecting the
accuracy on the validation set, we find that there exists
one dimension of latent code, zzz[s], achieving around 75%
sentiment classification accuracy by its value alone, while
other latent codes get accuracy around 50%. This means
that this latent dimension is an effective sentiment indicator.
Further details can be found in Appendix B.1-B.2.

However, when we try to perform sentiment manipulation
by modifying this latent dimension, the decoding network
fails to generate desirable outputs most of the time. To en-
sure that the magnitude of manipulation suffices to change
the sentiment of generated text, we try multiple magnitudes
by moving zzz[s] (1) by σ; (2) by 2 ∗ σ; (3) to min(zzz[s])
or max(zzz[s]), where σ, min, max are the the standard de-
viation, the minimum and the maximum estimated on all
the training samples. How we conduct the manipulation
is illustrated in Fig. 1. We inspect the generated sentences
with the manipulated codes to check whether they are trans-
ferred to the desired style successfully (transfer strength)
and whether they are still relevant to the source sentence
(content preservation). We summarize the behaviours of
β-VAE with aggressive training in Tab. 1, along with one
randomly selected example for the purpose of illustration.
Although the sentiment can be flipped as we increase the
magnitude of the manipulations, the transformed texts be-
come irrelevant to the original text, meaning the content
information in the latent code is ignored by the decoder.

On the other hand, when the manipulation on zzz[s] is small
as in Fig. 2 (A), β-VAE is unable to flip the sentiment of
the transformed text, like the example in Tab. 1. Detailed
quantitative evaluations are presented in Sec. 5.1.

3.2. NLL of the Codes under the Aggregated Posterior

To verify our hypothesis of vacant regions, we first compare
the negative log-likelihood (NLL) of test samples’ origi-
nal latent codes as well as the manipulated ones, under the
aggregated posterior. An increase of the NLL after manip-
ulation would indicate that the new codes land in regions
of lower density. The aggregated posterior of our trained
VAE is estimated with a large mixture of Gaussians where
each component is the Gaussian posterior at one training
data point. Each test point’s code (taken posterior mean)
has an NLL under this mixture density. Fig. 2 shows the his-
tograms of NLLs of all 1000 test samples’ codes before and
after manipulation. We can see that the discrepancy in NLL
between the original and the manipulated codes becomes
larger as we increase the magnitude of the manipulation,
indicating that the manipulated codes may fall into the low
density area.

3.3. Highest Density Region and Topological Analysis

The notion of vacant regions or holes is a topological con-
cept, so it is natural to use tools from topological data analy-
sis (TDA) to measure and visualize this phenomenon. Given
the aggregated posterior qφφφ(zzz), the highest density region
(HDR) at level (1 − ε) (Hyndman, 1996) is defined to be:
Dε = {zzz|qφφφ(zzz) ≥ cε}, where cε is the largest constant such
that Pr(z ∈ Dε) ≥ 1 − ε. Intuitively HDR captures the
notion of “significant support”, where we cut the density
at cε to form a subset Dε of the latent space that contains
at least 1 − ε of the probability mass. What we mean by
the vacancy in the aggregated posterior qφφφ(zzz) is that the
(1 − ε)-HDR has holes or disconnected components. We
want to emphasize that ε is conceptual and used to formalize
the definition; it is not a hyperparameter of any model. In
practice, whenever we draw a finite sample set, the points
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Figure 2. Histograms of all the test samples’ negative log-
likelihood (NLL) under the aggregated posterior, considering their
original latent codes and manipulated ones. (A) (B) (C): three
manipulation strategies for β-VAE with aggressive training; (D)
CP-VAE.

are in the HDR Dε with probability 1− ε, for some strictly
positive ε.

We use the mapper algorithm (Singh et al., 2007) here to
visualize the connectedness of Dε’s2 for β-VAE trained on
images and text respectively. Further details can be found in
Appendix B. The input to the mapper algorithm is a point
cloud. For us, it is the posterior samples at training points
under each model. The output of the mapper is a graph, like
the ones in Figure 3. Each node in the graph corresponds to
a set of nearby points in the original point cloud. The con-
nectivity of the graph reflects some topological properties
of the sampling space of the point cloud. Such properties
include connectedness and the presence of holes.

The main take-away, as shown in Fig. 3, is that the HDR
of β-VAE on images is one connected component (up to
topological noise on the finest scale); whereas, for text,
there are many disconnected components across all scales of
visualization. This observation suggests that the underlying
Dε for β-VAE on text is disconnected, providing empirical
evidence that the latent vacancy problem is more severe
on text than on images. Further explanations about the
relationship of connectedness of Dε and that of the mapper
graphs can be found in Appendix B.4.

3.4. Constraining the posterior

In order to resolve the latent vacancy problem, we propose
CP-VAE in this work, where we constrain the posterior in
such a way that the manipulation only happens in a learned

2In practice, we use the Kepler Mapper library by van Veen
et al. (2019)

Figure 3. Topological analysis of the highest density region (HDR)
of aggregated posterior using the mapper algorithm. The con-
nectedness of the graph holds the key topological information;
the shape on the 2D plane is irrelevant. Different n’s control the
coarseness of visualization. If a structure persists at multiple reso-
lutions, it is stable. If it appears and disappears for selected value
or a small range of n, then it is likely to be “topological noise”.

simplex, so that most space in this constrained subspace can
be covered during training. In this constrained subspace, the
phenomenon of low density holes of aggregated posterior
is significantly reduced, as Fig. 2 (D) empirically show that
there is little change in NLL of original versus manipulated
codes. Furthermore, Fig. 3 shows that the HDR of CP-CAE
is one connected component3. At the same time, CP-VAE
can maintain its transfer strength to effectively transfer the
source sentence to the desired style, as exemplified in Tab. 1.
The details of our method are presented in the next section.

4. Method
4.1. Overview

The experiments conducted in Sec. 3 validate the existence
of vacancy in the aggregated posterior latent space. One
potential way to resolve the problem is to better match the
aggregated posterior with the prior (Makhzani et al., 2015;
Tomczak & Welling, 2017; Zhao et al., 2018). However, in
terms of unsupervised learning of controllable representa-
tion for text, these previous methods have not shown suc-
cess; Zhao et al. (2018) only attempted supervised text style
transfer, and also reported negative results from the AAE

3The HDR visualized here is for zzz(1) introduced in Sec. 4
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(Makhzani et al., 2015). Another way to resolve the vacancy
issue is to directly enforce that the aggregated posterior it-
self has no vacant region anywhere where we would like
to perform latent code manipulation. We propose to map
the posterior Gaussian mean to a constrained space, more
specifically a learned probability simplex, where we can
encourage the constrained latent space to be filled without
vacancy, and perform manipulation to be within this sim-
plex. We add a mapping function as part of the encoding
network which maps the mean of the Gaussian posterior to a
constrained space. Two regularization terms are introduced
to ensure the learned simplex is not degenerate and that this
subspace is well filled.

In addition, we model the relevant factors that we wish to
control separated from the irrelevant factors by splitting zzz
into two parts, zzz(1) and zzz(2), following prior work (Bao
et al., 2019). The first part captures the relevant factors that
are dominant in the data without an inductive bias from
external signals, while the second part learns to encode the
remaining local information that is useful for reconstructing
the source sentences. As a result, qφφφ(zzz|xxx) is decomposed
into qφφφ1

(zzz(1)|xxx)qφφφ2
(zzz(2)|xxx) where φφφ = φφφ1 ∪ φφφ2. With di-

agonal covariances, the KL divergence term in Eq. 1 splits
into two separate KL terms. In practice, we use a MLP
encoding network to parametrize zzz(1) with some sentence
representation as the input (e.g., averaging GloVe embed-
dings (Pennington et al., 2014) over the input tokens) and
a LSTM encoding network to parametrize zzz(2). We only
constrain the posterior of zzz(1), and zzz(2) is optimized the
same way as the traditional VAE.

4.2. Constraining the Posterior

We now describe how to map the mean µµµ of the Gaussian
posterior for zzz(1) ∈ RN to a constrained latent space. We
would like to constrain the mean µµµ to have a structure as
follows:

µµµ =
K∑
i=1

pieeei,

K∑
i=1

pi = 1, 〈eeei, eeej〉 = 0, i 6= j,K ≤ N (2)

where eeei are vectors representing the relevant factors, pi
is the proportion of ith relevant factor encoded in zzz(1) and
K is a hyperparameter indicating the number of relevant
factors to discover. In other words, the mean of the Gaussian
posterior of zzz(1) is constrained to be inside a K-dimension
probability simplex in RN whose vertices are represented
by the orthogonal basis vectors eeei, i = 1, . . . ,K. Given the
outputs of the MLP encoder hhh and logσσσ2, we learn an addi-
tional mapping function π which maps hhh to the constrained
posterior space, which can be treated as part of the encoding
network:

µµµ = π(hhh) = EEE · softmax(WWWhhh+ bbb), (3)

where EEE = [eee1, . . . , eeeK ] is a learnable embedding matrix
representing the bases, WWW is the learnable weight matrix,
and bbb is the learnable bias vector. As a result, the constrained
posterior is parametrized by µµµ and logσσσ2 as a Gaussian
distribution N (µµµ, diag(σσσ2)).

With the mapping function alone, the proposed VAE suf-
fers from posterior collapse (Bowman et al., 2015), a well-
known problem where the model ignores the latent code
zzz during the training. Further complicating matters is the
fact that there is an abundance of signals for predicting the
next token in the text, but the signals indicating high-level
semantics are quite sparse. It is thus unlikely that the VAEs
can capture useful relevant factors from raw text without
collapse. For these reasons, we enforce orthogonality in the
learnt basis vectors as defined in Eq. 2, which introduces a
natural recipe to prevent posterior collapse for zzz(1). Note
that the KL divergence between qφφφ1

(zzz(1)|xxx) and p(zzz(1)) is

DKL(qφφφ1
(zzz(1)|xxx)‖p(zzz(1))) =

1

2
µµµ>µµµ+

1

2

(
σσσ>σσσ − logσσσ>σσσ − 1

)
.

(4)

With orthogonality in the basis vectors, the first term in the
above equation can be factorized into

µµµ>µµµ = (
∑
i

pieeei)
>(
∑
i

pieeei) =
∑
i

p2ieee
>
i eeei. (5)

To encourage orthogonality in the basis vectors, a regular-
ization term is added to the objective function:

LREG(xxx;φφφ1) = ‖EEE>EEE − αIII‖, (6)

where III is the identity matrix and α is a hyperparamter.
When LREG = 0, eee>i eeei = α. In this case, µµµ>µµµ = α

∑
i p

2
i

reaches its minimum α
K when ppp is a uniform distribution.

The proof can be found in Appendix D. In practice, LREG
will quickly decrease to around 0, ensuring that the KL term
will never fully collapse with the structural constraint. When
it comes to controlled generation, one can choose a vertex
or any desired point in the probability simplex.

4.3. Filling the Constrained Space

Constraining the posterior inside a certain space does not
guarantee that this space will be filled after training. We
also need to encourage the probability distribution over the
relevant factors ppp to cover as much of the constrained latent
space as possible. We introduce a reconstruction error of
the structured latent code in order to push ppp away from a
uniform distribution. For each input sentence, we randomly
sample m sentences from the training data as negative sam-
ples. By applying the same encoding process, we get the
structured latent code µµµ(−)

i for each negative sample. Our
goal is to make the raw latent code hhh similar to the restruc-
tured latent code µµµ while different from latent codes µµµ(−)

i
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of the negative samples, so that ppp is generally different for
each input sample. The structured reconstruction loss is
formulated as a margin loss as follows:

LS-REC(xxx;φφφ1) =

Ezzz(1)∼qφφφ1 (zzz(1)|xxx)

[
1

m

m∑
i=1

max(0, 1− hhh ·µµµ+ hhh ·µµµ(−)
i )

]
.

(7)

Our final objective function is defined as follows:

L(xxx;θθθ,φφφ) = LVAE + LREG + LS-REC. (8)

5. Experiments
To demonstrate the effectiveness of CP-VAE, we compare it
to unsupervised baselines with β-VAE and state-of-the-art
optimizing techniques, considering the performance on un-
supervised sentiment manipulation. Following evaluation
protocols in text style transfer, we also compare our method
to strong supervised approaches. Furthermore, we showcase
the ability of finer-grained style discovery and transition
possessed by our system, which has not been attempted
in the literature. Detailed configurations including the hy-
perparameters, model architecture, training regimes, and
decoding strategy are found in Appendix C.

5.1. Comparisons with Unsupervised Baselines

Table 2. Comparisons with unsupervised baselines on Yelp dataset.
Model Accuracy (AC) ↑ BLEU (BL) ↑
β-VAE (±σ) 50.98± 2.89 4.02± 0.77
β-VAE (±2 ∗ σ) 78.44± 4.84 1.49± 0.29
β-VAE (extremum) 98.18± 1.56 0.56± 0.40
β-VAE w. aggr training (±σ) 26.76± 6.44 27.91± 4.39
β-VAE w. aggr training (±2 ∗ σ) 57.46± 14.47 11.73± 6.74
β-VAE w. aggr training (extremum) 88.08± 14.95 4.57± 4.63
CP-VAE w. GloVe 60.22± 4.57 33.69± 1.47

without LREG 10.82± 0.91 33.27± 2.84
without LS-REC 12.28± 3.69 49.34± 2.65

Figure 4. Visualization of all training samples in the probability
simplex: (A) With LS-REC ;(B) Without LS-REC.

Experimental setup: We use the same experimental set-
ting and dataset as mentioned in Sec. 3. The 80D latent

code is split into 16 and 64 dimensions for zzz(1) and zzz(2)

respectively. The sentence representations for zzz(1) is the
averaged GloVe embeddings over the input tokens and K
is chosen as 3. To decide which basis vector corresponds
to which sentiment, we sample 10 positive and 10 negative
sentences in the development set, pass them to the encoder,
and choose the basis vector with the highest average pi in
ppp = softmax(WWWhhh+bbb), yielding vp as the positive basis and
vn as the negative basis. If vp and vn are chosen to be the
same vector, we choose the index with the second highest
pi for vp. To perform sentiment manipulation, we fix zzz(1)

to be the chosen basis vector; that is, vp or vn.

Comparsions with metrics on text style transfer: For
quantitative evaluation, we adopt two general automatic
evaluation metrics used in text style transfer (Fu et al., 2018;
Li et al., 2018; Sudhakar et al., 2019): classification accu-
racy (AC) of a pre-trained classifier to measure the transfer
strength; BLEU score (BL) of the transferred sentences
against the source sentences to measure the content preser-
vation. As shown in Tab. 2, β-VAE alone performs poorly
in terms of content preservation no matter the modification
magnitude, while aggressively training the encoder can no-
tably help improve content preservation. However, no matter
we use aggressive training or not, the content preservation
deteriorates drastically as we increase the modification mag-
nitude, in order to achieve reasonable transfer strength. With
large enough modification magnitude, the classification ac-
curacy can be pushed to almost perfect, while the BLEU
score decreases towards zero, meaning that the transferred
sentences become totally irrelevant to the source sentences.
The results match our observations from the experiments
on density under the aggregated posterior distribution, con-
firming that latent vacancy prevents effective manipulation
of the latent codes. To the contrary, CP-VAE can achieve
much better content preservation while maintain its transfer
strength, indicating its effectiveness to mitigate the latent
vacancy problem.

Ablation study: We also conduct an ablation study by
removing LREG and LS-REC from the objective. The results
demonstrate that both terms are crucial to the success of
CP-VAE. Without LREG, CP-VAE experiences posterior col-
lapse for zzz(1). As a result, vp and vn collide with each other,
leading to failure in disentangled representation learning.
Since we choose K as 3, it is convenient to visualize the
samples during training with ppp in the learnt probability sim-
plex, as shown in Fig. 4. We can see that the whole simplex
is mostly covered with samples with the help of LS-REC.
Without LS-REC, the decoding network fails to recognize
the basis vectors due to the poor coverage of the probabil-
ity simplex, causing the model to lose most of its transfer
strength.
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Table 3. Comparisons with supervised approaches on Yelp and Amazon dataset.
Yelp Amazon

Model Supervised GPT-2 AC ↑ BL ↑ GL ↑ PL ↓ AC ↑ BL ↑ GL ↑ PL ↓
Source - - 1.8 100.0 8.4 26.6 16.3 100.0 22.8 34.5
Human - - 70.1 25.3 100.0 63.7 41.2 45.7 100.0 68.6
CA X 74.0 20.7 6.0 103.6 75.5 0.0 0.0 39.3
SE X 8.2 67.4 6.9 65.4 40.2 0.4 0.0 125.0
MD X 49.5 40.1 6.6 164.1 70.1 0.3 0.0 138.8
D&R X 88.1 36.7 7.9 85.5 49.2 0.6 0.0 46.3
CP-G 66.7 35.5 7.5 67.8 60.1 35.4 11.5 109.1
CP-B 55.4 48.4 9.6 47.6 40.0 39.7 12.7 97.3
B-GST X X 85.6 45.2 12.7 49.6 55.2 52.3 18.1 48.2

Table 4. Samples of generated sentences. SRC is the input sentence.
Yelp Positive to Negative Negative to Positive
SRC this place is super yummy ! but it probably sucks too !
B-GST this place is super bad ! but it tastes great too !
CP-G this place is super slow and watered down . but it ’s truly fun and insanely delicious .
CP-B this place is super greasy and gross ! but it ’s probably wonderful when you !
Amazon Positive to Negative Negative to Positive
SRC because it s made of cast iron , scorching is

minimized .
they are cheerios, afterall, and we love the
original kind .

B-GST because it s cheaply made of cast iron , is
useless .

they are sturdy, afterall, sturdy and we love
the original .

CP-G because it s made of cast iron , vomitting . they are ripe, tastier , and we love them .
CP-B because it s made of cast iron , limp . they are divine, fluffier , and we love them .

At the same time, we do not claim that there are no other
necessary conditions for the success of CP-VAE. First, if
zzz(1) uses raw text as inputs with a LSTM encoder, the VAEs
will ignore zzz(1) by making all the samples collapse to one
vertex on the simplex. On the other hand, if zzz(2) uses pre-
trained embeddings with pooling like zzz(1) as inputs, the
VAEs would be unable to reconstruct the source sentence
effectively, because the representations would lose most
local information necessary for the reconstruction. However,
this necessity is beside the point of our paper and does not
contradict the evidence we presented for the latent vacancy
hypothesis.

5.2. Comparisons to Supervised Approaches on Text
Style Transfer

Experimental setup: We choose two datasets, Yelp and
Amazon, used in works (Li et al., 2018; Sudhakar et al.,
2019) on text style transfer which provide human gold-
standard references for the test set. The same train-dev-test
splits are used in our experiments. Two different sentence
representations are used in this experiment, averaged GloVe
and BERT (Devlin et al., 2018), denoted as CP-G(loVe)
and CP-B(ert) respectively. The remaining settings are as
described in the above section.

Compared supervised approaches: On the two datasets,
we compare to three adversarially trained models: StyleEm-

bedding (SE) (Fu et al., 2018), MultiDecoder (MD) (Fu
et al., 2018), CrossAligned (CA) (Shen et al., 2017) and
two state-of-the-art models based on a “delete, transform,
and generate” framework: DeleteAndRetrieve (D&R) (Li
et al., 2018) and Blind-GenerativeStyleTransformer (B-
GST) (Sudhakar et al., 2019). To be noted, the decoding
network of B-GST is based on GPT-2 (Radford et al., 2019),
while all the other models including ours train the decoding
network from scratch.

Evaluation protocols: Four different automatic evalua-
tion metrics are used to measure the different perspectives
of the transferring quality, following Sudhakar et al. (2019).
To measure transfer strength, we use pre-trained CNN based
classifiers achieving 98% and 84% accuracies on the test
sets of Yelp and Amazon respectively. To measure content
preservation, we use the BLEU (Papineni et al., 2002) score
of the transferred sentences against the source sentences. To
measure fluency, we finetune OpenAI GPT-2 (Radford et al.,
2019) with 345 million parameters on the same training-
dev-test split to obtain the perplexity of generated sentences.
The fine-tuned language models achieve perplexities of 26.6
and 34.5 on the test sets of Yelp and Amazon respectively.
In addition, Sudhakar et al. (2019) argued that the General-
ized Language Evaluation Understanding Metric (GLEU)
has a better correlation with the human judgement. Here,
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Table 5. Two pairs of samples generated without and with topic transition. The first sentence in the pair is generated with a topic fixed
throughout the generation; while the second sentence is generated with topic transition, the generated outputs after switching are marked
as bold.

World throughout A federal judge on Friday ordered a federal appeals court to overturn a federal
appeals court ruling that the Visa and MasterCard credit card associations violated
federal antitrust law by barring the names of the state .

World to Sci/Tech A federal judge on Friday ordered a federal appeals court to overturn a decision
by the Supreme Court to overturn a decision by the Federal Communications
Commission to block the company’s antitrust case against Microsoft Corp .

Sports throughout NEW YORK (Reuters) - Roger Federer, the world’s No. 1 player, will miss the
rest of the season because of a sore quadriceps .

Sports to Business NEW YORK (Reuters) - Roger Federer, the world’s No. 1 player, will miss the
rest of the year because of a bid-rigging scandal .

we use the implementation of GLEU4 provided by Napoles
et al. (2015) to calculate the GLEU score.

Result Analysis: As observed by Li et al. (2018) and Sud-
hakar et al. (2019), accuracy, BLEU score and perplexity do
not correlate well with human evaluations. Therefore, it is
important to not consider them in isolation. Tab. 3 shows
that our proposed approaches get similar scores on these
metrics with human reference sentences on the second row,
indicating that the generated sentences of our proposed ap-
proaches is reasonable considering the combination of these
metrics. As seen by Sudhakar et al. (2019) and verified in
Sec. 5.1, GLEU strike a balance between target style match
and content retention and correlate well with the human
evaluations. From Tab. 3, CP-VAE consistently outperforms
the three adversarially trained models and D&R on GLEU
by a noticeable margin. As compared to B-GST, the current
state-of-the-art, which leverages GPT-2 for generation, the
results are still competitive, despite the fact that CP-VAE
is trained unsupervisedly and from scratch. By checking
the samples generated from the models as shown in Tab. 4,
B-GST is more consistent to the source sentence, which can
be expected, since it only makes necessary edits to flip the
sentiment. CP-VAE tends to generate more diverse contents
which may not be relevant sometimes, but the overall quality
is reasonable. More samples can be found in Appendix F.

5.3. Finer-grained Style Discovery and Transition

To further explore the potential of CP-VAE, we conduct the
following exploratory experiments. We use the AG news
dataset constructed by (Zhang et al., 2015), which contains
four topic categories which are World, Sports, Business and
Sci/Tech, with the title and description fields. Here, we drop
the title and just use the description field to train CP-VAE
and set K = 10. All four topics are automatically discov-
ered by CP-VAE and identified as described in Sec. 5.1. We
also compare the results of our identified topics to standard
baselines for unsupervised topic modelling, the details can

4https://github.com/cnap/gec-ranking

be found in Appendix E. We choose a basis vector discov-
ered by our model and generate a few tokens. Then, we
switch the basis vector and continue the generation until the
end-of-seq token is generated. Generated samples are shown
in Table 5. We see that our model learns to transition from
one topic to another in a natural and fluent way within the
same sentence. Several observations can be made based on
these samples: (1) it is good at detecting name entities and
replacing them with the name entities related to the chosen
topic; (2) there is no hard restriction on when to switch the
topic; the model will determine an appropriate way to do
the transition by itself. Such observations confirm that CP-
VAE possesses a filled constrained latent space which make
the latent code robust to manipulation across different time
steps, which can be effectively reflected in the generation
process. Due to space limitations, we put more samples in
Appendix G.

6. Related Work
6.1. Unsupervised Learning of Disentangled

Representations

Learning disentangled representations is an important step
towards better representation learning (Bengio et al., 2013)
which can be useful for (semi-)supervised learning of down-
stream tasks, transfer and few-shot learning (Peters et al.,
2017). VAEs have achieved promising results for unsu-
pervised learning of disentangled representations. Several
variations of VAEs have been proposed for better disentan-
glement (Higgins et al., 2017; Kumar et al., 2017; Chen
et al., 2016; Razavi et al., 2019). However, progress in this
direction has been restricted to the image domain, and does
not demonstrate successful controlled generation on text.

6.2. Controlled Text Generation

In order to perform controllable text generation, previous
methods either assume annotated attributes or multiple text
datasets with different known styles (Hu et al., 2017; Shen
et al., 2017; Zhao et al., 2018; Fu et al., 2018; Li et al., 2018;
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Sudhakar et al., 2019; Logeswaran et al., 2018; Lample et al.,
2018). The requirement of labelled data largely restricts the
capabilities and the applications of these models. Instead,
all our proposed framework needs is raw text without any
annotated attribute.

7. Conclusion
In this work, we investigate latent vacancy as an important
problem in unsupervised learning of controllable representa-
tions when modelling text with VAEs. To mitigate this, we
propose to constrain the posterior within a learned probabil-
ity simplex and encourage this space to be filled, achieving
the first success towards controlled text generation without
supervision. However, the constrained posterior also means
that the aggregated posterior can never match the isotropic
Gaussian prior which points to a potential future direction
to resolve this mismatch by selecting or learning a better
prior as in (Tomczak & Welling, 2017).
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