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Abstract
One fundamental problem in deep learning is un-
derstanding the outstanding performance of deep
Neural Networks (NNs) in practice. One expla-
nation for the superiority of NNs is that they can
realize a large class of complicated functions, i.e.,
they have powerful expressivity. The expressivity
of a ReLU NN can be quantified by the maxi-
mal number of linear regions it can separate its
input space into. In this paper, we provide sev-
eral mathematical results needed for studying the
linear regions of CNNs, and use them to derive
the maximal and average numbers of linear re-
gions for one-layer ReLU CNNs. Furthermore,
we obtain upper and lower bounds for the num-
ber of linear regions of multi-layer ReLU CNNs.
Our results suggest that deeper CNNs have more
powerful expressivity than their shallow counter-
parts, while CNNs have more expressivity than
fully-connected NNs per parameter.

1. Introduction
Over the past decade, deep Neural Networks (NNs), espe-
cially deep Convolutional Neural Networks (CNNs), have
attracted much attention and achieved state-of-the-art results
in many machine learning tasks, such as speech recognition,
image classification, and video games (Hinton et al., 2012;
Goodfellow et al., 2013; Sainath et al., 2013; Abdel-Hamid
et al., 2014; Silver et al., 2016). Various popular and power-
ful CNNs, such as AlexNet (Krizhevsky et al., 2012), VG-
GNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy
et al., 2015) and ResNet (He et al., 2016), have empirically
shown that applying deeper networks can significantly im-
prove the performance of various network architectures. A
key problem in the study of deep learning is to understand
why neural networks, especially very deep neural networks,
perform well in practice.
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One explanation for the superiority of NNs is their pow-
erful expressivity, i.e., they can represent a large classes
of functions arisen in practice. It has been shown that an
NN with only one hidden layer can adequately approximate
any given continuous function if its width is large enough
(Cybenko, 1989; Funahashi, 1989; Hornik, 1991; Barron,
1994). However, normally the width of such a hidden layer
has to be exponentially large in order to approximate a given
function to arbitrary precision. In contrast, if multiple lay-
ers are involved, (Hanin, 2019; Hanin & Sellke, 2017; Lu
et al., 2017) proved that to approximate any given Lebesgue-
integrable function from Rn to R to arbitrary precision, one
only needs to apply some multi-layer NN with width at
most n + 1, while the depth depends on the given func-
tion and may be very large. Although these approximate
results show that NNs can represent a large class of func-
tions, there are few hints on how to determine the suitable
architectures needed to realise a given function or which
architectures are more efficient. Recently, several theoreti-
cal studies have been conducted to compare the efficiency
of distinct architectures. It was proved in (Telgarsky, 2015;
2016; Arora et al., 2018) that certain functions realized by
some deep architectures will require a shallow network with
exponentially more parameters to represent. For example,
(Telgarsky, 2016) showed that, for any positive integer n,
there exist some networks with depth Θ(n3), width Θ(1),
and Θ(1) parameters, that cannot be approximated by an
O(n)-layer network unless it has a width of Ω(2n). Their
results reveal that deeper networks usually have more power-
ful expressivity of functions, which provides an explanation
for why deeper networks outperform shallow networks with
the same number of parameters in many practical tasks.

A natural measure for characterizing the expressivity of NNs
is the maximal number of distinct linear regions (Pascanu
et al., 2013) in the domain of functions that can be computed
by NNs. Among this direction, people mainly focus on NNs
whose activation functions are Rectified Linear Units (Re-
LUs), which were first introduced in 2000 (Hahnloser et al.,
2000; Hahnloser & Seung, 2001) and have been widely
adopted in various architectures since 2011 (Glorot et al.,
2011). It is known that the composition of piecewise linear1

functions is still piecewise linear; thus, every feed-forward

1Although “piecewise affine” would be more accurate, we use
“piecewise linear” here since it is a conventional concept.
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ReLU NN (neural network with only ReLU activations and
linear hidden layers) with certain parameters can be seen as
a piecewise linear function. This means that the input space
of a ReLU network can be divided into several distinct
pieces (we call them linear regions), such that the func-
tion represented by the network is affine when restricted
to each piece. Then, the expressivity of a ReLU network
can be quantified by the maximal number of linear regions
it can separate its input space into. Pascanu et al. (2013)
first considered a one-layer fully-connected ReLU network
with n0 inputs and n1 hidden neurons, and showed that
its maximal number of linear regions equals

∑n0

i=0

(
n1

i

)
by

translating this problem to a counting problem of regions of
hyperplane arrangements in general position (the definition
of “general position” is given in the Section 1 of the Sup-
plementary Material), then directly applying Zaslavsky’s
Theorem (Zaslavsky, 1975; Stanley, 2004). Furthermore,
using the idea of identifying distinct linear regions, they
derived a lower bound

(∏L−1
l=0

⌊
nl

n0

⌋)∑n0

i=0

(
nL

i

)
for the

maximal number of linear regions of a fully-connected
ReLU network with n0 inputs and L hidden layers of widths
n1, n2, . . . , nL. Based on these results, they concluded that
deep fully-connected ReLU NNs have exponentially more
maximal linear regions than their shallow counterparts with
the same number of parameters. Later, the lower bound

was improved to
(∏L−1

l=0

⌊
nl

n0

⌋n0
)∑n0

i=0

(
nL

i

)
by Montúfar

et al. (2014). Following their work, various results on
the lower and upper bounds for the maximal number of
linear regions of fully-connected ReLU NNs have been
obtained (Bianchini & Scarselli, 2014; Telgarsky, 2015;
Poole et al., 2016; Montúfar, 2017; Raghu et al., 2017;
Serra et al., 2018; Croce et al., 2019; Hu & Zhang, 2018;
Serra & Ramalingam, 2018; Hanin & Rolnick, 2019a;b).
For example, Arora et al. (2018) obtained a lower bound
2
∑n0−1
i=0

(
m−1
i

)
nL−1 for n1 = 2m and n2 = n3 = . . . =

nL = n. Raghu et al. (2017) derived an upper bound
O(nLn0) when n1 = n2 = . . . = nL = n. Montúfar et al.
(2017) proved an upper bound of

∏L
l=1

∑ml

i=0

(
nl

i

)
where

ml = min{n0, n1, n2, . . . , nl−1}. Later, these lower and
upper bounds were improved by (Serra et al., 2018). Re-
cently, Hanin et al. (Hanin & Rolnick, 2019a;b) studied the
average number of linear regions when the weights range
over R#weights and derived an upper bound for the expec-
tation of the number of linear regions of ReLU NNs under
several mild assumptions. Other studies have replaced the
ReLU activation with the maxout activation or piecewise
linear functions, and derived several bounds for the number
of linear regions in these cases (Montufar et al., 2014; Hu &
Zhang, 2018).

Most studies on the number of linear regions of ReLU NNs
assume that the networks are fully-connected. Under this
assumption, the problem is equivalent to counting regions

of hyperplane arrangements in general position. Thus, one
can use a well-established mathematical tool on hyperplane
arrangements, Zaslavsky’s Theorem (Zaslavsky, 1975), to
directly obtain the maximal numbers of linear regions for
one-layer fully-connected ReLU NNs, then derive the upper
and lower bounds for multi-layer NNs by induction. Since
CNNs are very popular in practice, it is natural to study
an analogous problem on the number of linear regions for
ReLU CNNs. However, as far as we know, there are no spe-
cific results for CNNs so far. The difficulty is that, although
the problem for CNNs can also be translated to counting
regions of hyperplane arrangements, usually the correspond-
ing hyperplane arrangements are not in general position for
CNNs, as discussed in Section 3 and the Supplementary
Material. Therefore, mathematical tools like Zaslavsky’s
Theorem cannot be directly applied.

Our Contributions. In this paper, we establish new math-
ematical tools needed to study hyperplane arrangements
(which usually are not in general position) arisen in CNN
case, and use them to derive results on the number of linear
regions for ReLU CNNs. To the best of our knowledge, our
paper is the first work on calculating the number of linear
regions for CNNs. The main contributions of this work are:

• We translate the problem of counting the linear regions
of CNNs to a problem on counting the regions of some
class of hyperplane arrangements which usually are not
in general position, and develop suitable mathematical
tools to solve this problem. Through this we provide
the exact formula for the maximal number of linear
regions of a one-layer ReLU CNN N and show that it
actually equals the expectation of the number of linear
regions when the weights of N range over R#weights.
The asymptotic formula for this number is also derived.

• Furthermore, we derive upper and lower bounds for the
number of linear regions of multi-layer ReLU CNNs
by induction and the idea of identifying distinct linear
regions.

• Based on these bounds, we show that deep ReLU
CNNs have exponentially more linear regions per pa-
rameter than their shallow counterparts under some
mild assumptions on the architectures. This means that
deep CNNs have more powerful expressivity than shal-
low ones and thus provides some hints on why CNNs
normally perform better as they get deeper. We also
show that ReLU CNNs have much more expressivity
than the fully-connected ReLU NNs with asymptoti-
cally the same number of parameters, input dimension
and number of layers.

This paper is organized as follows. We provide a detailed
description of the CNN architectures that will be consid-
ered throughout the paper, and then introduce the definition
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of activation patterns and linear regions in Section 2. In
Section 3, we obtain the maximal and average numbers of
linear regions of one-layer ReLU CNNs in Theorem 2. In
Section 4, we derive results on multi-layer ReLU CNNs.
A comparison on the expressivity of distinct architectures
is given in Section 5. We briefly explain the experimental
settings for verifying our results by sampling methods in
Section 6. In Section 7, we provide the conclusion and
propose future directions. The preliminary knowledge on
hyperplane arrangements and the proofs of Theorems are
given in the Supplementary Material.

2. Preliminary
In this section, we fix some notations and introduce the
CNN architecture which will be considered in this paper.
Let N, N+ and R be the sets of nonnegative integers, pos-
itive integers and real numbers, respectively. For a set S,
let #S denote the number of elements in S. In this paper,
we consider ReLU CNNs N with L hidden convolutional
layers (we exclude pooling layers and fully-connected lay-
ers, and do not use zero-padding for simplicity). Let the
dimension of input neurons ofN be n(1)

0 ×n
(2)
0 ×d0, where

n
(1)
0 , n

(2)
0 , d0 are the height, the width and the depth of the

input space (we also call the input space the 0-th layer),
respectively. Assume that there are n(1)

l × n
(2)
l × dl neu-

rons (i.e., dl feature maps with the dimension n(1)
l × n

(2)
l )

in the l-th hidden layer for 1 ≤ l ≤ L. The Rectified
Linear Unit (ReLU) is adopted as the activation function
for each neuron in the hidden layers. There are dl filters
with dimension f (1)

l × f (2)
l × dl−1 between neurons in the

(l − 1)-th and the l-th hidden layers. Such filters slide from
left to right and from top to bottom across feature maps
as far as possible with a stride sl. We assume that the out-
put layer has only one unit, which is a linear combination
of the outputs in the L-th hidden layer. As explained in
Lemma 2 from (Pascanu et al., 2013), the number of (lin-
ear) output units of a ReLU NN does not affect the number
of linear regions that it can realize since the composition
of affine functions is still affine. By the same argument
this claim is also true for a ReLU CNN. Therefore, in this
paper, we take one unit in the output layer for simplicity
and ignore the output layer in the statements of results. Let
X0 = (X0

a,b,c)n(1)
0 ×n

(2)
0 ×d0

∈ Rn
(1)
0 ×n

(2)
0 ×d0 be the inputs

of N and X l = (X l
a,b,c)n(1)

l ×n
(2)
l ×dl

∈ Rn
(1)
l ×n

(2)
l ×dl be

the outputs of the l-th hidden layer. The weights W =
(W 1,W 2, . . . ,WL) and biases B = (B1, B2, . . . , BL)
are drawn from a fixed distribution µ which has densi-
ties with respect to Lebesgue measure in R#weights+#bias,
where W l = (W l,1,W l,2, . . . ,W l,dl) such that W l,k =

(W l,k
a,b,c)f(1)

l ×f
(2)
l ×dl−1

∈ Rf
(1)
l ×f

(2)
l ×dl−1 is the weight ma-

trix of the k-th filter between neurons in the (l−1)-th and the

l-th hidden layers; and Bl = (Bl,1, Bl,2, . . . , Bl,dl) ∈ Rdl ,
such that Bl,k ∈ R is the bias for the k-th filter be-
tween neurons in the (l − 1)-th and the l-th hidden lay-
ers. Therefore, for any given weights W and biases B,
this CNN can been seen as a piece-wise linear function
FN ,W,B : Rn

(1)
0 ×n

(2)
0 ×d0 → R given by

FN ,W,B(X0) = gL+1 ◦ hL ◦ gL ◦ · · · ◦ h1 ◦ g1(X0),

where gl is an affine function and hl is a ReLU ac-
tivation function. More specifically, let Zl(X0; θ) =

(Zli,j,k(X0; θ))
n
(1)
l ×n

(2)
l ×dl

∈ Rn
(1)
l ×n

(2)
l ×dl be the pre-

activations of the l-th layer, where θ := {W,B} is a fixed
set of parameters (weights and biases) in the CNN N . For
1 ≤ l ≤ L, we have

Zli,j,k(X0; θ) = gl(X
l−1)

=

f
(1)
l∑
a=1

f
(2)
l∑
b=1

dl−1∑
c=1

W l,k
a,b,cX

l−1
a+(i−1)sl,b+(j−1)sl,c

+Bl,k (1)

and

X l
i,j,k = hl(Z

l
i,j,k(X0; θ)) = max(Zli,j,k(X0; θ), 0). (2)

The following relation between the number of neurons in
the (l − 1)-th and the l-th layers are easy to derive.

Lemma 1 ((Dumoulin & Visin, 2016)). For 1 ≤ l ≤ L, we

have n(1)
l = bn

(1)
l−1−f

(1)
l

sl
c+ 1 and n(2)

l = bn
(2)
l−1−f

(2)
l

sl
c+ 1,

where bxc is the greatest integer less than or equal to x.

Remark 1. When the stride sl = 1, we have n(1)
l = n

(1)
l−1−

f
(1)
l + 1 and n(2)

l = n
(2)
l−1 − f

(2)
l + 1. In this case, when a

filter slides, all neurons in the (l − 1)-th hidden layer are
involved in the convolutional calculation.

By analogy with the ReLU NN case (Pascanu et al., 2013;
Montufar et al., 2014; Serra et al., 2018; Brandfonbrener,
2018; Hanin & Rolnick, 2019a;b), we introduce the follow-
ing definition of activation patterns and linear regions for
ReLU CNNs.

Definition 1 (Activation Patterns and Linear Regions). Let
N be a ReLU CNN withL hidden convolutional layers given
above. An activation pattern of N is a function P from the
set of neurons to {1,−1}, i.e., for each neuron z in N , we
have P(z) ∈ {1,−1}. Let θ be a fixed set of parameters
(weights and biases) in N , and P be an activation pattern.
The region corresponding to P and θ is

R(P; θ) := {X0 ∈ Rn
(1)
0 ×n

(2)
0 ×d0 :

z(X0; θ) · P(z) > 0, ∀z a neuron in N},

where z(X0; θ) is the pre-activation of a neuron z. A lin-
ear region of N at θ is a non-empty set R(P, θ) 6= ∅ for
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some activation pattern P . Let RN ,θ denote the number
of linear regions of N at θ, i.e., RN ,θ := #{R(P; θ) :
R(P; θ) 6= ∅ for some activation pattern P}. Moreover,
let RN := maxθ RN ,θ denote the maximal number of lin-
ear regions of N when θ ranges over R#weights+#bias.

Remark 2. By the above definition it is easy to check
that each non-empty R(P; θ) is a convex set. Further-
more,FN ,W,B becomes an affine function when restricted to
each nonempty linear regionR(P; θ) of N . Thus FN ,W,B
can represent a piecewise linear function with RN ,θ linear
pieces. Therefore, the numberRN ,θ of linear regions can be
seen as a measure on the expressivity of a CNN. The more
linear regions a CNN has, the more complicated functions
it can represent. The aim of this paper is to provide a char-
acterization of the number of linear regions for CNNs, and
use it to compare the expressivity of different CNNs.

By Definition 1, each activation pattern of a CNN N is
a function P from the set of its neurons to {1,−1}. It is
obvious that there are at most 2#neurons such functions.
Therefore, the number of activation patterns is also at most
2#neurons. Then, we derive the following trivial upper
bound for the number of linear regions of a ReLU CNN.
Actually, a similar result for a fully-connected ReLU NN is
given in Proposition 3 from (Montufar et al., 2014).

Lemma 2. Let N be a ReLU CNN with n hidden neurons.
Then, the number RN of linear regions of N is at most 2n.

3. The Number of Linear Regions for
One-Layer CNNs

In this section, we obtain the exact formula for the maximal
number and the average number of linear regions of one-
layer CNNs, and derive their asymptotic formulas when the
number of filters tends to infinity.

3.1. Exact Formulas.

First, we recall the following result on the maximal number
of linear regions of one-layer fully-connected ReLU NNs.

Theorem 1 (Proposition 2 from (Pascanu et al., 2013)). Let
N be a one-layer ReLU NN with n0 input neurons and n1

hidden neurons. Then, the maximal number of linear regions
of N is equal to

∑n0

i=0

(
n1

i

)
.

Theorem 1 was derived by translating this problem to a
study on the number of regions of hyperplane arrangements
in general position, then directly applying a pure mathemat-
ical result, Zaslavsky’s Theorem (Zaslavsky, 1975; Stanley,
2004), which states that, when an arrangement with n1 hy-
perplanes is in general position, Rn0 can be divided into∑n0

i=0

(
n1

i

)
distinct regions. Basic background on hyper-

plane arrangements and general position is given in Section
1 of the Supplementary Material.

Since the set of ReLU CNNs can be seen as a subset of
ReLU NNs, Theorem 1 also gives an upper bound for RN
where N is a one-layer ReLU CNN. However, for the CNN
case, usually this upper bound is not equal to the exact num-
ber since the corresponding hyperplane arrangement are
not in general position normally. In this paper, we develop
new tools to study the number of regions of corresponding
hyperplane arrangements (which are not in general position
usually) for ReLU CNNs. More precisely, we translate the
problem for ReLU CNNs to a tractable integer program-
ming problem by techniques and results from combinatorics
and linear algebra. (see Eqs. (3), (4) and Section 2 of the
Supplementary Material). Our first main result is stated as
follows, which shows that the exact number of RN is much
smaller than the upper bound given by Theorem 1 for a
one-layer ReLU CNN N .

Theorem 2. Assume thatN is a one-layer ReLU CNN with
input dimension n(1)

0 × n
(2)
0 × d0 and hidden layer dimen-

sion n(1)
1 × n(2)

1 × d1. The d1 filters have the dimension
f

(1)
1 × f (2)

1 × d0 and the stride s1. Suppose that the pa-
rameters θ = {W,B} are drawn from a fixed distribution
µ which has densities with respect to Lebesgue measure
in R#weights+#bias. Define IN = {(i, j) : 1 ≤ i ≤
n

(1)
1 , 1 ≤ j ≤ n(2)

1 } and SN = (Si,j)n(1)
1 ×n

(2)
1

where

Si,j = {(a+ (i− 1)s1, b+ (j − 1)s1, c) : 1 ≤ a ≤ f (1)
1 ,

1 ≤ b ≤ f (2)
1 , 1 ≤ c ≤ d0}

for each (i, j) ∈ IN . Therefore, Si,j is the set of indexes
of input neurons involved in the calculation of the pre-
activation Z1

i,j,k(X0; θ). Furthermore, ∪(i,j)∈INSi,j is the
set of indexes of input neurons involved in the convolutional
calculation of FN ,W,B . Let

KN := {(ti,j)(i,j)∈IN : ti,j ∈ N,∑
(i,j)∈J

ti,j ≤ # ∪(i,j)∈J Si,j ∀J ⊆ IN }. (3)

Then, we obtain the following two results.

(i) The maximal number RN of linear regions of N equals

RN =
∑

(ti,j)(i,j)∈IN ∈KN

∏
(i,j)∈IN

(
d1

ti,j

)
. (4)

(ii) Moreover, Eq. (4) also equals the expectation of the
number RN ,θ of linear regions of N :

Eθ∼µ[RN ,θ] =
∑

(ti,j)(i,j)∈IN ∈KN

∏
(i,j)∈IN

(
d1

ti,j

)
. (5)

The detailed proof of Theorem 2 is given in the Supplemen-
tary Material. We briefly explain the idea below.
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Outline of the Proof of Theorem 2. First, by Definition 1,
we translate the problem to the calculation of the number
of regions of some specific hyperplane arrangements which
are not in general position usually. Next, in Proposition 2 of
the Supplementary Material, we derive a generalization of
Zaslavsky’s Theorem, which can be used to handle a large
class of hyperplane arrangements that are not in general
position. More specifically, we obtain an upper bound for
the number of regions of such hyperplane arrangements and
show that if a hyperplane arrangement satisfies the two con-
ditions (i) and (ii) in Proposition 2, then this upper bound
equals the exact number of its regions. The rest of Section 2
(Lemmas 3 – 7) in the Supplementary Material is devoted
to showing that, actually, the specific hyperplane arrange-
ments corresponding to a one-layer ReLU CNN N satisfy
the conditions for hyperplane arrangements in Proposition 2.
Thus, finally we can apply Proposition 2 of the Supplemen-
tary Material to derive the maximal and average numbers of
linear regions for N .

Next, we provide several examples to explain Theorem 2.

Example 1. Let n(1)
0 = d0 = f

(1)
1 = s1 = 1, n(2)

0 = 3

and f
(2)
1 = 2 in Theorem 2. Then by Lemma 1 we

have n
(1)
1 = 1 and n

(2)
1 = 2. Furthermore, we ob-

tain IN = {(1, 1), (1, 2)}, S1,1 = {(1, 1, 1), (1, 2, 1)},
S2,1 = {(1, 2, 1), (1, 3, 1)} and KN = {(t1,1, t1,2) ∈
N2 : t1,1 ≤ 2, t1,2 ≤ 2, t1,1 + t1,2 ≤ 3} =
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1)}.
Finally, by Eq. (4) we derive

RN =
∑

(t1,1,t1,2)∈KN

(
d1

t1,1

)(
d1

t1,2

)
= d3

1 + d2
1 + d1 + 1,

which is also verified by our experiments for 1 ≤ d1 ≤ 8
(the experimental settings are given in Section 6). On the
other hand, by Lemma 2, we have RN ≤ 22d1 ; by Theorem
1, we obtain RN ≤

∑3
i=0

(
2d1
i

)
(since the CNN in Example

1 can be seen as a one-layer NN with 3 input neurons and
2d1 hidden neurons). When 1 ≤ d1 ≤ 8, the above bounds
for RN are given in Table 1 (more examples are given in
Section 5 of the Supplementary Material). As can be seen,
the exact number ofRN we obtained in Theorem 2 is smaller
than the upper bounds obtained by previous methods.

Example 2. Let s1 = 1, f (1)
1 = n

(1)
0 and f (2)

1 = n
(2)
0 .

Then n(1)
1 = n

(2)
1 = 1. Therefore, the CNN becomes a

one-layer fully-connected ReLU NN with d input neurons
and d1 hidden neurons where d = n

(1)
0 × n

(2)
0 × d0. Under

these assumptions, by Theorem 2 we have IN = {(1, 1)},
KN = {k ∈ Z : 0 ≤ k ≤ d}. Thus, by (4) the maximal
number of linear regions of a one-layer fully-connected
ReLU NN N with input dimension d and output dimension
d1 equals RN =

∑d
k=0

(
d1
k

)
, which implies the well-known

result in Theorem 1 (see (Pascanu et al., 2013; Montufar
et al., 2014; Serra et al., 2018; Hanin & Rolnick, 2019a;b)).
This means that Theorem 2 is a more general result than
Theorem 1.

Example 3. Let s1 = f
(1)
1 = f

(2)
1 = 1, which means

that each filter has the dimension 1 × 1 × d0. Then,
Si,j = {(i, j, c) : 1 ≤ c ≤ d0)} is a d0-element set
and thus # ∪(i,j)∈J Si,j = d0 × #J for each J ⊆ IN .
Therefore, KN = {(ti,j)n(1)

1 ×n
(2)
1

: 0 ≤ ti,j ≤ d0} =

{0, 1, 2, . . . , d0}n
(1)
1 ×n

(2)
1 and

RN =
∑

(ti,j)
n
(1)
1 ×n

(2)
1

∈{0,1,2,...,d0}n
(1)
1 ×n

(2)
1

∏
(i,j)∈IN

(
d1

ti,j

)
.

When d1 tends to infinity, we obtain

RN =

(
d1
d0

d0!

)n(1)
1 ×n

(2)
1

+ O(d
n
(1)
0 ×n

(2)
0 ×d0−1

1 ). (6)

We can see thatRN = Θ(d
n
(1)
0 ×n

(2)
0 ×d0

1 ) in this example. In
the following subsection, we will show that this also holds
for general cases.

3.2. Asymptotic Analysis.

In this subsection, we study the asymptotic behavior of RN .

For two functions f(n) and g(n), we write f(n) = O(g(n))
if there exists some positive constant c > 0 such that f(n) ≤
cg(n) for all n larger than some constant; f(n) = Ω(g(n))
if there exists some positive constant c such that f(n) ≥
cg(n) for all n large enough; and f(n) = Θ(g(n)) if there
exists some positive constants c1, c2 such that c1g(n) ≤
f(n) ≤ c2g(n) for all n large enough.

We need the following lemma in the asymptotic analysis.

Lemma 3. Let N , IN ,KN , Si,j be the same as defined in
Theorem 2. Then, there always exists some (ti,j)(i,j)∈IN ∈
KN such that ∑

(i,j)∈IN

ti,j = # ∪(i,j)∈IN Si,j .

We derive the following asymptotic formula for RN .

Theorem 3 (Asymptotic Analysis). Let N be the one-
layer ReLU CNN defined in Theorem 2. Suppose that
n

(1)
0 , n

(2)
0 , d0, f

(1)
1 , f

(2)
1 , s1 are some fixed integers. When

d1 tends to infinity, the asymptotic formula for the max-
imal number of linear regions of N behaves as RN =

Θ(d
#∪(i,j)∈IN Si,j

1 ) asymptotically. Furthermore, if all input
neurons have been involved in the convolutional calculation,
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Table 1. The results for the maximal number of linear regions for a one-layer ReLU CNN N with input dimension 1× 3× 1, hidden
layer dimension 1× 2× d1, d1 filters with dimension 1× 2× 1, and stride s1 = 1. More precisely, we have RN = d31 + d21 + d1 + 1.

d1 = 1 d1 = 2 d1 = 3 d1 = 4 d1 = 5 d1 = 6 d1 = 7 d1 = 8
RN by Theorem 2 4 15 40 85 156 259 400 585

Upper bounds by Theorem 1 4 15 42 93 176 299 470 697
Upper bounds by Lemma 2 4 16 64 256 1024 4096 16384 65536

i.e., ∪(i,j)∈INSi,j = {(a, b, c) : 1 ≤ a ≤ n
(1)
0 , 1 ≤ b ≤

n
(2)
0 , 1 ≤ c ≤ d0}, we have

RN = Θ(d
n
(1)
0 ×n

(2)
0 ×d0

1 ). (7)

Remark 3. Note that, by Theorem 2, RN grows at most
as a polynomial of the number of neurons in the hidden
layers, instead of growing exponentially fast, as suggested
by Lemma 2. This implies that the upper bound in Lemma 2
is too loose and may not be achieved in practice.

4. Bounds for the Number of Linear Regions
for Multi-layer CNNs

In this section, we consider multi-layer CNNs and derive the
lower and upper bounds for their maximal numbers of linear
regions. First, we prove a lemma on the composition of
two consecutive convolutional layers without an activation
function layer between them. It is easy to see that such a
composition is equivalent to a single convolutional layer.
However, we could not find a precise description in the
literature of this phenomenon concerning the relation of
filter sizes and strides between these three convolutional
layers. Therefore, we precisely describe this phenomenon
and prove it in the following theorem.

Theorem 4. Let N be a two-layer CNN without activation
layers. For l = 1, 2, there are dl filters with dimension
f

(1)
l × f (2)

l × dl−1 and stride sl between neurons in the
(l−1)-th and the l-th hidden layers. ThenN can be realized
as a CNN with only one hidden convolutional layer such
that its d2 filters have size f (1) × f (2) × d0 = (f

(1)
1 +

(f
(1)
2 − 1)s1)× (f

(2)
1 + (f

(2)
2 − 1)s1)× d0 and stride s =

s1s2. In particular, if f (1)
1 = f

(2)
1 = s1 = 1, we have

f (1)×f (2)×d0 = f
(1)
2 ×f

(2)
2 ×d0 and stride s = s2. That

is, if the first convolutional layer has filter size 1× 1× d0

and stride 1, then the composition of the two convolutional
layers has the same filter size and stride as the second
convolutional layer.

Now we are ready to derive the lower and upper bounds for
the maximal numbers of linear regions of multi-layer CNNs
using induction and the idea of identifying distinct linear
regions motivated by (Pascanu et al., 2013; Montufar et al.,
2014).

Theorem 5. Suppose thatN is a ReLU CNN with L hidden
convolutional layers. The input dimension is n(1)

0 × n
(2)
0 ×

d0; the l-th hidden layer has dimension n(1)
l × n

(2)
l × dl

for 1 ≤ l ≤ L; and there are dl filters with dimension
f

(1)
l × f (2)

l × dl−1 and stride sl in the l-th layer. Assume
that dl ≥ d0 for each 1 ≤ l ≤ L. Then, we have

(i) The maximal number RN of linear regions of N is at
least (lower bound)

RN ≥ RN ′
L−1∏
l=1

⌊
dl
d0

⌋n(1)
l ×n

(2)
l ×d0

, (8)

where N ′ is a one-layer ReLU CNN which has input di-
mension n(1)

L−1 × n
(2)
L−1 × d0 (the third dimension is d0, not

dL−1), hidden layer dimension n(1)
L × n

(2)
L × dL, and dL

filters with dimension f (1)
L × f (2)

L × d0 and stride sL. Note
that the exact formula of RN ′ can be calculated by Eq. (4).

(ii) The maximal number RN of linear regions of N is at
most (upper bound)

RN ≤ RN ′′
L∏
l=2

n
(1)
0 n

(2)
0 d0∑

i=0

(
n

(1)
l n

(2)
l dl
i

)
, (9)

whereN ′′ is a one-layer ReLU CNN which has input dimen-
sion n(1)

0 ×n
(2)
0 ×d0, hidden layer dimension n(1)

1 ×n
(2)
1 ×d1,

and d1 filters with dimension f (1)
1 × f (2)

1 × d0 and stride s1.

Example 4. Let N be a two-layer CNN such that the input
dimension is 1 × 4 × 1, there are 2 filters with dimension
1×2×1 and stride 1 in the first hidden layer; and d2 filters
with dimension 1× 2× 2 and stride 1 in the second hidden
layer. The dimensions of neurons in the first and second
hidden layer are 1 × 3 × 2 and 1 × 2 × d2 respectively.
Theorem 5 yields the upper and lower bounds for RN as
shown in Table 2, which is compatible with the estimation
of RN by sampling methods in our experiment.

Example 5 (Reduce to fully-connected ReLU NN case).
Let n(1)

0 = n
(2)
0 = 1 and sl = f

(1)
l = f

(2)
l = n

(1)
l =

n
(2)
l = 1 for each 1 ≤ l ≤ L. Then the CNN becomes a

fully-connected ReLU NN. Under these assumptions, by Eq.
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Table 2. The upper and lower bounds for RN in Example 4.
d2 = 1 d2 = 2 d2 = 3 d2 = 4 d2 = 5 d2 = 6 d2 = 7 d2 = 8

Upper bounds by Theorem 5 220 880 3520 13585 46640 138050 356180 819115
Estimation of RN by sampling methods 170 261 685 1186 1796 2725 3398 4822

Lower bounds by Theorem 5 32 120 320 680 1248 2072 3200 4680

(4) and Theorem 5 we have

d0∑
k=0

(
dL
k

)
×
L−1∏
l=1

⌊
dl
d0

⌋d0
≤ RN ≤

L∏
l=1

d0∑
i=0

(
dl
i

)
, (10)

which is a well-known result for fully-connected ReLU NNs
(see Theorem 4 from (Montufar et al., 2014) for the first
inequality; see Proposition 3 from (Montúfar, 2017), The-
orem 1 from (Raghu et al., 2017) and Theorem 1 from
(Serra et al., 2018) for the second inequality). Note that
(10) implies that RN = Θ(dLd0) when d0 is fixed and
d1 = d2 = . . . = dL = d→ +∞.

5. Expressivity Comparison of Different
Network Architectures

In this section, we compare the expressivity of different net-
work architectures in terms of the maximal number of linear
regions based on the explicit formulas and bounds derived
in Sections 3 and 4. The first conclusion is that deep CNNs
usually have more expressivity than their shallow counter-
parts with the same number of parameters. Furthermore, we
compare ReLU CNNs with the fully-connected ReLU NNs
with asymptotically the same number of parameters, input
dimension and number of layers. We show that CNNs have
more expressivity than fully-connected NNs in this setting.

5.1. Deep CNNs v.s. Shallow CNNs

First, we calculate the number of parameters for CNNs.

Lemma 4. Let N be an L-layer ReLU CNN in
Theorem 5 (ignoring the output layer for simplic-
ity). Then, the number of parameters in N is∑L
l=1

(
f

(1)
l × f (2)

l × dl−1 × dl + dl

)
.

Now we can derive the number of linear regions per param-
eter for deep and shallow CNNs. The next result follows
directly from Theorem 3, Theorem 5 and Lemma 4.

Theorem 6. LetN1 be an L-layer ReLU CNN in Theorem 5
where f (1)

l , f (2)
l = O(1) for 1 ≤ l ≤ L, and d0 = O(1).

When d1 = d2 = · · · = dL = d tends to infinity, we obtain
that N1 has Θ(Ld2) parameters, and the ratio of RN1 to
the number of parameters of N1 is

RN1

# parameters of N1
= Ω

( 1

L
·
⌊
d

d0

⌋d0 ∑L−1
l=1 n

(1)
l n

(2)
l −2)

.

For a one-layer ReLU CNNN2 with input dimension n(1)
0 ×

n
(2)
0 × d0 and hidden layer dimension n(1)

1 × n(2)
1 × Ld2,

when Ld2 tends to infinity,N2 has Θ(Ld2) parameters, and
the ratio for N2 is

RN2

# parameters of N2
= O

((
Ld2

)d0n(1)
0 n

(2)
0 −1

)
.

By Theorem 6 we will show that, with asymptotically the
same number Θ(Ld2) of parameters and the same number of
input dimensions n2d0, deep CNNs can represent functions
that have more number of linear regions than shallow CNNs.
For simplicity, we set the stride sl = 1 for each layer,
n

(1)
0 = n

(2)
0 = n and f (1)

l = f
(2)
l = 1 in Theorem 6 (in

practice, filters with small sizes such as 3×3, 5×5 and 7×7
are often adopted; for such cases, the conclusion is similar
to the case f (1)

l = f
(2)
l = 1) in Theorem 6. Therefore, by

Lemma 1 we have n(1)
l = n

(2)
l = n for each 1 ≤ l ≤ L.

Then, the first ratio in Theorem 6 is

RN1

# parameters of N1
= Ω

(
1

L
·
⌊
d

d0

⌋d0(L−1)n2−2
)
,

which grows at least exponentially fast with the number L
of hidden layers and polynomially fast with the depth d of
each hidden layer.

In contrast, the second ratio in Theorem 6 grows at most
polynomially fast with L and d:

RN2

# parameters of N2
= O

(
(Ld2)d0n

2−1
)
.

Therefore, we obtain that RN1 is far larger than RN2 when
L and d are large enough. By this we conclude that ReLU
deep CNNs have much more expressivity than their shal-
low counterparts with asymptotically the same number of
parameters and the same number of input dimensions.

5.2. CNNs v.s. Fully-connected NNs

In this subsection, we compare the expressivity of ReLU
CNNs and fully-connected ReLU NNs with asymptotically
the same number of parameters, input dimension and num-
ber of hidden layers. The settings for the L-layer ReLU
CNN N1 is the same as in Subsection 5.1. For an L-layer
fully-connected ReLU NN N3, we assume that the input
dimension equals n2d0, and the number of neurons in each
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of the L hidden layers equals d0. Then N1 and N3 have
asymptotically the same number of parameters O(Ld2), in-
put dimension n2d0 and number L of layers. However, the
maximal number of linear regions for N1 is

RN1 = Ω

(⌊
d

d0

⌋Ld0n2)

by (6) and Theorem 5. On the other hand, for N3 we obtain

RN3
= O

((
d

n2d0

)L)
= O

(
dLd0n

2

(n2d0)!L

)

= O

(
dLd0n

2

(
√

2πn2d0)L(n2d0/e)Ld0n
2

)
(11)

by (10) and the Stirling’s formula (Flajolet & Sedgewick,
2009). Therefore,

RN1

RN3

≥ Ω
(

(
√

2πn2d0)L(n2/e)Ld0n
2
)
.

When n tends to infinity, the ratio RN1

RN3
also tends to infinity.

Thus RN1
is much larger than RN3

, and we conclude that
ReLU CNNs have much more expressivity than the fully-
connected ReLU NNs with asymptotically the same number
of parameters, input dimension and number of layers.

6. Experimental Settings
We empirically validate our results by randomly sampling
data points from the input space and determining which lin-
ear regions they belong to by Definition 1. For a given CNN
architecture, we initialize the parameters (weights and bi-
ases) based on the He initialization (He et al., 2015). Given
the sampled weight, each data point in the input space is
sampled from a normal distribution with mean 0 and stan-
dard deviation v. We use v ranging from {3, 5, 7, 9, 11, 13}
and report the maximal number of linear regions from such
v. We sample 2× 109 data points in total, and for each data
point, we determine which region it belongs to based on
Definition 1 (for a new data point X0, we simply calculate
the sign of z(X0, θ) for each neuron z and use it to deter-
mine whether X0 belongs to a new region). This sampling
method may skip some regions. Thus, the number of lin-
ear regions obtained by sampling is usually smaller than
the exact number. However, when the number of sampling
points is large enough, we can usually find almost all the
linear regions. For example, we use this sampling method to
find all RN linear regions for one-layer CNNs N in Table
1, and find the number of regions between the lower and
upper bounds for two-layer CNNs in Table 2. By these, we
validate the correctness of our results. We provide the codes
for the experiments in the Supplementary Material.

7. Conclusion and Future Work
In this paper, we obtained exact formulas for the maximal
and average number of linear regions of one-layer ReLU
CNNs, and derived lower and upper bounds for multi-layer
CNNs. By these results, we concluded that deep ReLU
CNNs have more expressivity than their shallow counter-
parts, while ReLU CNNs have more expressivity than fully-
connected ReLU NNs per parameter.

To the best of our knowledge, our paper is the first work
investigating the number of linear regions for CNNs. We
plan to explore more aspects in the future based on this
work. Possible future directions are summarized below.

(1) In this paper, we only consider ReLU CNNs without
pooling layers, fully-connected layers, and zero-padding
for simplicity. After adding pooling layers, the functions
represented by ReLU CNNs are still piecewise linear, thus
the definition of linear regions still applies. It would be
interesting to study the number of linear regions for ReLU
CNNs with pooling layers, fully-connected layers, and zero-
padding in the future.

(2) In Theorem 2 we showed that the expectation of RN ,θ
is equal to the maximal number RN for a one-layer ReLU
CNN N . This result is consistent with the one-layer fully-
connected NN case in (Hanin & Rolnick, 2019b) (see the
last two sentences of Section 2 and the first sentence in
Remark 1 of (Hanin & Rolnick, 2019b)). When the number
of layers of the fully-connected NN is at least two, it is
proved in (Hanin & Rolnick, 2019b) that the expectation
of the number of linear regions is much smaller than the
maximal number. It would be interesting to explore similar
formulas for the expectation of RN ,θ for multi-layer ReLU
CNNs. We believe this will be a more challenging topic than
the fully-connected NN case due to the correlated weights
and bias for CNNs.

(3) In Theorem 5 we derive lower and upper bounds for
multi-layer CNNs. By Table 2 we can see that these bounds
are not very close to each other. We would like to derive
tighter bounds, or further exact formulas in the future.

(4) We would like to extend our method to study the chang-
ing number of linear regions for CNNs when the parameters
are updated (for example, by backpropagation) with a small
perturbation. When the parameters θ are replaced by some
θ + ∆θ, what is the relation between RN ,θ and RN ,θ+∆θ?
For which parameters θ1 and θ2, the numbers RN ,θ1 and
RN ,θ2 are equal to each other? During the training pro-
cess, the parameters θ changes to some θ + ∆θ. Thus,
the answer to the above question may help us have a bet-
ter understanding of the training process and optimization
for CNNs. In fact, recently, Hanin and Rolnick (Hanin
& Rolnick, 2019a;b) have already done some research on
the changing number of linear regions during the training
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process for fully-connected NNs.

(5) In (Hu & Zhang, 2018), the ReLU activation was gener-
alized to piecewise linear (PWL) functions. The results on
exact formulas and bounds for the number of linear regions
for fully-connected PWL NNs were presented. In the future,
we plan to replace the ReLU activation with PWL functions
for CNNs and study their numbers of linear regions.
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