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1. Preliminary on Hyperplane Arrangements
In this section, we recall some basic knowledge on hyperplane arrangements (Zaslavsky, 1975; Stanley, 2004), which will
be used in the proofs of theorems in this paper. An affine hyperplane in a Euclidean space V ' Rn is a subspace with the
following form: H = {X ∈ V : α ·X = b}, where “ · ” denotes the inner product, 0 6= α ∈ V is called the norm vector
of H , and b ∈ R. For example, when V = Rn, an affine hyperplane has the following form: {(x1, x2, . . . , xn) ∈ Rn :∑n
i=1 aixi = b} where ai, b ∈ R and there exists some i with ai 6= 0. A finite hyperplane arrangement A of a Euclidean

space V is a finite set of affine hyperplanes in V . A region of an arrangement A = {Hi ⊂ V : 1 ≤ i ≤ m} is defined as a
connected component of V \ (∪mi=1Hi), which is a connected component of the complement of the union of the hyperplanes
in A. Let r(A) denote the number of regions for an arrangement A. It is natural to ask: What is the maximal number of
regions for an arrangement with m hyperplanes in Rn? The following Zaslavsky’s theorem answers this question.
Proposition 1 (Zaslavsky’s Theorem (Zaslavsky, 1975; Stanley, 2004)). Let A = {Hi ⊂ V : 1 ≤ i ≤ m} be an
arrangement in Rn. Then, the number of regions for the arrangement A satisfies

r(A) ≤
n∑
i=0

(
m

i

)
. (1)

Furthermore, the above equality holds iff A is in general position, i.e., (i) dim(
⋂k
j=1Hij ) = n − k for any k ≤ n and

1 ≤ i1 < i2 < · · · < ij ≤ m; (ii)
⋂k
j=1Hij = ∅ for any k > n and 1 ≤ i1 < i2 < · · · < ij ≤ m.

For example, if n = 2 then a set of lines is in general position if no two are parallel and no three meet at a point. In this case,
the number of regions of an arrangement A with m lines in general position is equal to

r(A) =

(
m

2

)
+m+ 1. (2)

For an arrangement A and some H0 ∈ A, we define

AH0 := {H ∩H0 : H ∈ A, H 6= H0, H ∩H0 6= ∅}

to be the set of nonempty intersections of H0 and other hyperplanes in A. The following lemma gives a recursive method to
compute r(A).
Lemma 1 (Lemma 2.1 from (Stanley, 2004)). Let A be an arrangement and H0 ∈ A. Then we have

r(A) = r(A \ {H0}) + r(AH0).

Lemma 1 means that we can calculate the number of regions of an arrangement by induction.

Let #A be the number of hyperplanes in A and rank(A) be the dimension of the space spanned by the normal vectors of
the hyperplanes in A. An arrangement A is called central if

⋂
H∈AH 6= ∅.
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Lemma 2 (Theorems 2.4 and 2.5 from (Stanley, 2004)). Let A be an arrangement in an n-dimensional vector space. Then
we have

r(A) =
∑
B⊆A
B central

(−1)#B−rank(B).

2. Proofs of Results for One-Layer CNNs
Let [n,m] := {n, n+ 1, n+ 2 . . . ,m} be the set of integers from n to m and [m] := [1,m] = {1, 2, . . . ,m}. We establish
the following generalization of Zaslavsky’s theorem, which is crucial in the proof of Theorem 2.

Proposition 2. Let V = Rn, V1, V2, . . . , Vm bem nonempty subspaces of V , and n1, n2, . . . , nm ∈ N be some nonnegative
integers. Let A = {Hk,j : 1 ≤ k ≤ m, 1 ≤ j ≤ nk} be an arrangement in Rn with Hk,j = {X ∈ V : αk,j ·X = bk,j}
where 0 6= αk,j ∈ Vk, bk,j ∈ R. Then, the number of regions for the arrangement A satisfies

r(A) ≤
∑

(i1,i2,...,im)∈KV ;V1,V2,...,Vm

m∏
k=1

(
nk
ik

)
, (3)

where

KV ;V1,V2,...,Vm =

{
(i1, i2, . . . , im) : ik ∈ N,

∑
k∈J

ik ≤ dim

(∑
k∈J

Vk

)
∀J ⊆ [m]

}
.

Furthermore, assume that the following two conditions hold for the arrangement A:

(i) For each (i1, i2, . . . , im) ∈ KV ;V1,V2,...,Vm
, any

∑m
k=1 ik vectors with ik distinct vectors chosen from the set {αk,j : 1 ≤

j ≤ nk} are linear independent;

(ii) For each (i1, i2, . . . , im) ∈ Nm \KV ;V1,V2,...,Vm
, the intersection of any

∑m
k=1 ik hyperplanes with ik distinct hyper-

planes chosen from the set {Hk,j : 1 ≤ j ≤ nk} are empty.

Then, the equality in (3) holds:

r(A) =
∑

(i1,i2,...,im)∈KV ;V1,V2,...,Vm

m∏
k=1

(
nk
ik

)
. (4)

Proof. First, we will prove (3) by induction on
∑m
k=1 nk. When

∑m
k=1 nk = 0, both sides of (3) equals 1 since

(
0
0

)
= 1.

When
∑m
k=1 nk = 1, both sides equals 2 since

(
1
0

)
+
(

1
1

)
= 2. Suppose that the result is true for

∑m
k=1 nk ≤ N for some

N ≥ 1. Now consider the case
∑m
k=1 nk = N + 1. Without loss of generality, assume n1 ≥ 1. Then H1,1 ∈ A. Notice

that the translation Y → Y + Y0 for some Y0 ∈ Rn (i.e., translate all points in R by a vector Y0) doesn’t change the number
of regions in A. Thus we can assume b1,1 = 0. Then H1,1 becomes an (n− 1)-dimensional subspace of V . Replace H0 in
Lemma 1 with H1,1, we obtain

r(A) = r(A \ {H1,1}) + r(AH1,1). (5)

By induction hypothesis, we have

r(A \ {H1,1}) ≤
∑

(i1,i2,...,im)∈KV ;V1,V2,...,Vm

(
n1 − 1

i1

) m∏
k=2

(
nk
ik

)
(6)

and

r(AH1,1) ≤
∑

(i1,i2,...,im)∈KV∩H1,1;V1∩H1,1,V2∩H1,1,...,Vm∩H1,1

(
n1 − 1

i1

) m∏
k=2

(
nk
ik

)
. (7)

Let’s consider (7) first. Since H1,1 is the orthogonal complement of the linear subspace generated by α1,1, and 0 6= α1,1 ⊂
V1, we have

H1,1 + V1 = V.
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Let V ′k = H1,1 ∩ Vk for 1 ≤ k ≤ m. Therefore, for each J ⊆ [2,m], we have

dim

(
H1,1 ∩

(
V1 +

∑
k∈J

Vk

))
= dim(H1,1) + dim

(
V1 +

∑
k∈J

Vk

)
− dim(V ) = dim

(
V1 +

∑
k∈J

Vk

)
− 1 (8)

and thus

dim

(
V ′1 +

∑
k∈J

V ′k

)
= dim

(
V1 +

∑
k∈J

Vk

)
− 1. (9)

On the other hand, it is trivial that

dim

(∑
k∈J

V ′k

)
≤ dim

(∑
k∈J

Vk

)
(10)

for any J ⊆ [2,m]. Therefore, by (7) we derive

r(AH1,1) ≤
∑

(i1,i2,...,im)∈KH1,1;V ′1 ,V ′2 ,...,V ′m

(
n1 − 1

i1

) m∏
k=2

(
nk
ik

)

≤
∑

i1−1+
∑

k∈J ik≤dim(V ′1+
∑

k∈J V
′
k) ∀J⊆[2,m]∑

k∈J ik≤dim(
∑

k∈J V
′
k) ∀J⊆[2,m]

(
n1 − 1

i1 − 1

) m∏
k=2

(
nk
ik

)

≤
∑

i1+
∑

k∈J ik≤dim(V1+
∑

k∈J Vk) ∀J⊆[2,m]∑
k∈J ik≤dim(

∑
k∈J Vk) ∀J⊆[2,m]

(
n1 − 1

i1 − 1

) m∏
k=2

(
nk
ik

)

=
∑

(i1,i2,...,im)∈KV ;V1,V2,...,Vm

(
n1 − 1

i1 − 1

) m∏
k=2

(
nk
ik

)
. (11)

Put (5), (6) and (11) together, we obtain

r(A) ≤
∑

(i1,i2,...,im)∈KV ;V1,V2,...,Vm

((
n1 − 1

i1

) m∏
k=2

(
nk
ik

)
+

(
n1 − 1

i1 − 1

) m∏
k=2

(
nk
ik

))

=
∑

(i1,i2,...,im)∈KV ;V1,V2,...,Vm

m∏
k=1

(
nk
ik

)
, (12)

which competes the proof of (3).

Furthermore, assume that the arrangement A satisfies the condition (i) and (ii). Then, the central sub-arrangements of A
are exactly the sub-arrangements B consisting of

∑m
k=1 ik hyperplanes with ik distinct hyperplanes chosen from the set

{Hk,j : 1 ≤ j ≤ nk}, where (i1, i2, . . . , im) ∈ KV ;V1,V2,...,Vm
. In this case, #B = rank(B) =

∑m
k=1 ik. Also, for any

given (i1, i2, . . . , im) ∈ KV ;V1,V2,...,Vm , we have
(
nk

ik

)
choices to pick ik hyperplanes from each {αk,i : 1 ≤ i ≤ nk}.

Therefore, by Lemma 2 we obtain

r(A) =
∑
B⊆A
B central

(−1)#B−rank(B) =
∑
B⊆A
B central

1 =
∑

(i1,i2,...,im)∈KV ;V1,V2,...,Vm

m∏
k=1

(
nk
ik

)
.
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To prove Theorem 2, we need the following lemmas on picking distinct elements from the union of certain sets.
Lemma 3. Let S1, S2, . . . Sm be m finite sets, and a1, a2, . . . am be some nonnegative integers such that for any I ⊆ [m],∑

i∈I
ai ≤ #

⋃
i∈I

Si. (13)

Then, we can take ai elements from each Si such that these
∑m
i=1 ai elements are distinct.

Proof. We will prove this lemma by induction on m. When m = 1, the claim is trivial. Now assume that the lemma holds
for any 1 ≤ m < n and consider the case m = n. Without loss of generality, we assume that there exists some ∅ 6= I ⊆ [n]
such that (otherwise we can always increase some ai to make the following equality holds for some I)∑

i∈I
ai = #

⋃
i∈I

Si. (14)

The proof is divided into two cases.

Case (1): There exists some I satisfying (14) with ∅ 6= I 6= [n]. In this case, we can assume that I = [r] for some
1 ≤ r ≤ n− 1 by symmetry, i.e.,

r∑
i=1

ai = #

r⋃
i=1

Si. (15)

Let

S′j = Sj+r \
r⋃
i=1

Si, 1 ≤ j ≤ n− r.

Then
(⋃

j∈J S
′
j

)
∩
(⋃r

i=1 Si

)
= ∅. Therefore, for any J ⊆ [n− r], we have

#
⋃
j∈J

S′j = #

⋃
j∈J

S′j ∪
r⋃
i=1

Si

−#

r⋃
i=1

Si = #

⋃
j∈J

Sj+r ∪
r⋃
i=1

Si

−#

r⋃
i=1

Si. (16)

By (13) and (15) the above equality becomes

#
⋃
j∈J

S′j ≥

∑
j∈J

aj+r +

r∑
i=1

ai

− r∑
i=1

ai =
∑
j∈J

ar+j . (17)

Since 1 ≤ #I ≤ n− 1, by induction we can pick ai elements from each Si for 1 ≤ i ≤ r, and ar+j elements from each
Sj+r for 1 ≤ j ≤ n− r such that these

∑n
i=1 ai elements are distinct. Thus the claim holds.

Case (2): The only I satisfying (14) is I = [n]. Then #S1 > a1 and thus S1 ∩
⋃n
i=2 Si 6= ∅ (otherwise

∑n
i=1 ai =

#
⋃n
i=1 Si = #S1 + #

⋃n
i=2 Si >

∑n
i=1 ai, a contradiction). Let x ∈ S1 ∩

⋃n
i=2 Si and

S′j =

{
Sj , 2 ≤ j ≤ n;

Sj \ {x}, j = 1.

Then {S′j : 1 ≤ j ≤ n} still satisfies (13). But
∑n
i=1 #S′i <

∑n
i=1 #Si. Then {S′j : 1 ≤ j ≤ n} either satisfies Case (1),

which leads to a solution; or still in Case (2), which we can continue the process until Case (i) satisfies. This completes the
proof.

Lemma 4. Let S1, S2, . . . Sm be m finite sets. Then, there exist some a1, a2, . . . am ∈ N such that
m∑
i=1

ai = #

m⋃
i=1

Si, (18)

and for any I ⊆ [m], ∑
i∈I

ai ≤ #
⋃
i∈I

Si. (19)



Supplementary Material

Proof. We will prove it by Induction on m. The claim is trivial when m = 1. Now assume that m ≥ 2 and the result is true
for m− 1. Therefore, we can pick some a1, a2, . . . am−1 ∈ N such that

m−1∑
i=1

ai = #

m−1⋃
i=1

Si, (20)

and for any I ⊆ [m− 1], ∑
i∈I

ai ≤ #
⋃
i∈I

Si. (21)

Furthermore, let am = #
(
Sm \

⋃m−1
i=1 Si

)
. Then, for any I ⊆ [m− 1], we have

am +
∑
i∈I

ai ≤ #
⋃
i∈I

Si + #

(
Sm \

m−1⋃
i=1

Si

)
≤ #

⋃
i∈I∪{m}

Si. (22)

Also,

m∑
i=1

ai = #

m−1⋃
i=1

Si + #

(
Sm \

m−1⋃
i=1

Si

)
= #

m⋃
i=1

Si. (23)

Then the claim is also true for m.

We also need the following lemmas on measure zero subsets of Euclidean spaces with respect to Lebesgue measure.

Lemma 5. Let V ∼= Rn be a vector space. Then S = {(v1, v2, . . . , vn) ∈ V n : v1, v2, . . . , vn are linear dependent} is a
measure zero subset of V n, with respect to Lebesgue measure.

Proof. Without loss of generality, assume V = Rn. Let the i-th vector be vi = (xi,1, xi,2, . . . , xi,n). Then v1, v2, . . . , vn
are linear dependent iff

det((xi,j)n×n) = 0,

whose left hand side is a non-zero polynomial of all xi,j . It is easy to see that the solution of this polynomial has co-dimension
1 in Rn×n, thus S is a measure zero set.

Lemma 6. Let m > n be two given positive integers, A = (aij)m×n ∈ Rm×n and C = (c1, c2, . . . , cm) ∈ Rm. Let S be
the set of (A,C) ∈ Rm(n+1) such that

a11x1 + a12x2 + · · ·+ a1nxn = c1

a21x1 + a22x2 + · · ·+ a2nxn = c2
...

am1x1 + am2x2 + · · ·+ amnxn = cm

has solutions for (x1, x2, . . . , xn) ∈ Rn. Then S is a measure zero subset of Rm(n+1), with respect to Lebesgue measure.

Proof. By Lemma 5, the augmented matrix (A,C) has the rank (n+ 1) except for a measure zero subset of Rm(n+1). On
the other hand, the rank of the matrix A is at most n. Therefore, the rank of the augmented matrix (A,C) is larger than the
rank of A except for a measure zero subset of Rm(n+1), thus by Rouché-Capelli Theorem (Shafarevich & Remizov, 2012)
we obtain that (6) has no solutions except for a measure zero set of Rm(n+1).

Lemma 3 implies the following results when we choose a basis of a linear space properly.
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Lemma 7. Let V ∼= Rn be a vector space and Vi (1 ≤ i ≤ m) be m subspaces of V . Suppose that some non-negative
integers ai (1 ≤ i ≤ m) satisfy ∑

i∈I
ai ≤ dim(

∑
i∈I

Vi)

for each I ⊆ [m]. Then we obtain the following result.

(i) We can pick ai vectors from Vi for 1 ≤ i ≤ m such that these
∑

1≤i≤m ai vectors are linear independent.

(ii)
∑

1≤i≤m ai vectors with ai vectors from Vi for 1 ≤ i ≤ m such that they are linear dependent, forms a measure zero set
in
∏m
i=1 V

ai
i , with respect to Lebesgue measure.

Proof. (i) By linear algebra, we can construct a basis v1, v2, . . . , vn of V such that each Vi has a basis which is a subset of
v1, v2, . . . , vn. Then, by Lemma 3 this claim holds.

(ii) Let n′ =
∑

1≤i≤m ai. By (i) there exist n′ linear independent vectors v1, v2, . . . , vn′ with ai vectors from Vi for
1 ≤ i ≤ m. Let V ′i be the vector spaces generated by such ai vectors in Vi. For any n′ linear dependent vectors
v′1, v

′
2, . . . , v

′
n′ with ai vectors from Vi for 1 ≤ i ≤ m, their projections v′′1 , v

′′
2 , . . . , v

′′
n′ onto

∏m
i=1 V

′
i are also linear

dependent. Suppose that v′′k =
∑n′

j=1 yk,jvj for 1 ≤ k ≤ n′. If v′k are chosen from Vi1 , such that vj /∈ Vi1 , we set yk,j = 0.
Otherwise, we set yk,j = y′k,j . Therefore, #{y′k,j} equals the dimension of the projection of

∏m
i=1 V

ai
i onto

∏m
i=1 V

′
i .

Also, v′′1 , v
′′
2 , . . . , v

′′
n′ are linear dependent iff

det ((yk,j)n′×n′) = 0.

Since v1, v2, . . . , vn′ are linear independent, the left hand side det ((yk,j)n′×n′) must be a non-zero polynomial of some
y′k,j . Therefore, the solution of this polynomial forms a measure zero set in R#{y′k,j} due to the zero measurability of the
solutions of non-zero polynomial in Euclidean spaces (see (Lojasiewicz, 1964)). Thus such

∑
1≤i≤m ai vectors forms a

measure zero set in
∏m
i=1 V

ai
i , with respect to Lebesgue measure.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. By Definition 1, the number of linear regions of N at θ is equal to the number of regions of the
hyperplane arrangement

AN ,θ := {Hi,j,k(X0; θ) : 1 ≤ i ≤ n(1)
1 , 1 ≤ j ≤ n(2)

1 , 1 ≤ k ≤ d1},

where Hi,j,k(X0; θ) is the hyperplane determined by Z1
i,j,k(X0; θ) = 0 (the expression of Z1

i,j,k(X0; θ) is given in (2)).
Recall that X0 = (X0

a,b,c)n(1)
0 ×n

(2)
0 ×d0

. Then Hi,j,k(X0; θ) can be written as

〈αi,j,k, X0〉F +B1,k = 0,

where 〈·, ·〉F is the Frobenius inner product, αi,j,k is an n(1)
0 × n(2)

0 × d0 dimensional tensor, whose (a + (i − 1)s1, b +

(j − 1)s1, c)-th element is W 1,k
a,b,c for all 1 ≤ a ≤ f (1)

1 , 1 ≤ b ≤ f (2)
1 , 1 ≤ c ≤ d0; and 0 otherwise. Let

Vi,j = {β ∈ Rn
(1)
0 ×n

(2)
0 ×d0 : βa′,b′,c′ = 0 ∀(a′, b′, c′) 6= (a+ (i− 1)s1, b+ (j − 1)s1, c)}

be the subspace of Rn
(1)
0 ×n

(2)
0 ×d0 generated by n(1)

0 ×n
(2)
0 ×d0 dimensional tensors whose (a+(i−1)s1, b+(j−1)s1, c)-th

element ranges over R for all 1 ≤ a ≤ f (1)
1 , 1 ≤ b ≤ f (2)

1 , 1 ≤ c ≤ d0; and 0 otherwise. Then αi,j,k ∈ Vi,j for 1 ≤ k ≤ d1.
By Proposition 2, we obtain

RN ,θ = r(AN ,θ) ≤
∑

(ti,j)(i,j)∈IN ∈KV ;(Vi,j)(i,j)∈IN

m∏
k=1

(
d1

ti,j

)
, (24)
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where

KV ;(Vi,j)(i,j)∈IN
= {(ti,j)(i,j)∈IN :

∑
(i,j)∈J

ti,j ≤ dim

 ∑
(i,j)∈J

Vi,j

 ∀J ⊆ IN }
= {(ti,j)(i,j)∈IN : ti,j ∈ N,

∑
(i,j)∈J

ti,j ≤ # ∪(i,j)∈J Si,j ∀J ⊆ IN },

which gives an upper bound for RN ,θ and RN . Next we will show that this upper bound can be reached except for
a measure zero set in R#weights+#bias with respect to Lebesgue measure. By Lemmas 6 and 7, when θ ranges over
R#weights+#bias, the set of θ such that AN ,θ satisfies the conditions (i) and (ii) of Proposition 2 (replace {ik : 1 ≤ k ≤ m}
by {ti,j : (i, j) ∈ IN }, and {Vk : 1 ≤ k ≤ m} by {Vi,j : (i, j) ∈ IN }), forms a complement of a measure zero set in
R#weights+#bias, with respect to Lebesgue measure. Then, for such parameters θ, by Proposition 2 we derive the equality
holds for (24), which implies that the maximal number RN of linear regions of N is equal to

RN =
∑

(ti,j)(i,j)∈IN ∈KN

∏
(i,j)∈I

(
d1

ti,j

)
,

and the right hand side of the above equality also equals the expectation of the number RN ,θ of linear regions of N with
respect to the distribution µ of weights and biases.

The following result gives a simple example for Theorem 2.

Corollary 1. Let N be a one-layer ReLU CNN with input dimension 1× n× 1. Assume there are d1 filters with dimension
1× 2× 1 and stride s = 1. Thus the hidden layer dimension is 1× (n− 1)× d1. When n is fixed, we have

RN =
(n− 1)

2
dn1 +O(dn−1

1 ). (25)

Proof. By Theorem 2, we obtain

RN =
∑

(ti,j)(i,j)∈I∈KN

∏
(i,j)∈I

(
d1

ti,j

)
. (26)

Furthermore, when n is fixed, RN is a polynomial of d1 with degree n by Lemma 3 in the main paper. To calculate the
coefficient of the leading term dn1 of this polynomial, we need to determine all (ti,j)(i,j)∈IN ∈ KN with

∑
(i,j)∈IN ti,j = n.

First, since n(1)
1 = 1 and n(2)

1 = n−1, it is easy to see that IN = {(1, j) : 1 ≤ j ≤ n−1} and S1,j = {(1, j, 1), (1, j+1, 1)}
for each 1 ≤ j ≤ n− 1. Therefore,

KN = {(t1,j)1≤j≤n−1 : t1,j ∈ N,
∑
j∈J

t1,j ≤ # ∪(1,j)∈J S1,j ∀J ⊆ [n− 1]}. (27)

Then, there are n − 1 vectors (t1,j)1≤j≤n−1 ∈ KN satisfying
∑n−1
j=1 t1,j = n: (2, 1, 1, . . . , 1), (1, 2, 1, . . . , 1),

(1, 1, 2, 1, . . . , 1), . . . , (1, 1, 1, . . . , 1, 2). Therefore, the leading term in RN equals

(n− 1)

(
d1

2

)
dn−2

1 =
(n− 1)

2
dn1 −

(n− 1)

2
dn−1

1

and thus

RN =
(n− 1)

2
dn1 +O(dn−1

1 ). (28)

This completes the proof.

Next, we prove Lemma 3 and Theorem 3 in the main paper.
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Proof of Lemma 3 in the main paper. Directly replace {ai : 1 ≤ i ≤ m} by {ti,j : (i, j) ∈ IN }, and {Si : 1 ≤ i ≤ m} by
{Si,j : (i, j) ∈ IN } in Lemma 4, we derive the result.

Proof of Theorem 3. It is easy to see that
(
d1
ti,j

)
= Θ(d

ti,j
1 ) when d1 tends to infinity. Then, by Eq. (4) and Lemma 3 in the

main paper, we have

RN = Θ(d
#∪(i,j)∈IN Si,j

1 ). (29)

Furthermore, if all input neurons have been involved in the convolutional calculation, we have

∪(i,j)∈INSi,j = {(a, b, c) : 1 ≤ a ≤ n(1)
0 , 1 ≤ b ≤ n(2)

0 , 1 ≤ c ≤ d0} (30)

and thus

RN = Θ(d
n
(1)
0 ×n

(2)
0 ×d0

1 ).

3. Proofs of Results for Multi-Layer CNNs
In this section, we prove Theorem 5 on multi-layer ReLU CNNs.

Proof of Theorem 4. Assume that the parameters W and B for such two convolutional layers are the same as defined in
Section 2. Let l = 1, 2 in (2) in the main paper and X l

i,j,k = Zli,j,k(X0; θ), we obtain

X1
i,j,k =

f
(1)
1∑
a=1

f
(2)
1∑
b=1

d0∑
c=1

W 1,k
a,b,cX

0
a+(i−1)s1,b+(j−1)s1,c

+B1,k (31)

and

X2
i,j,k =

f
(1)
2∑
a=1

f
(2)
2∑
b=1

d1∑
c=1

W 2,k
a,b,cX

1
a+(i−1)s2,b+(j−1)s2,c

+B2,k. (32)

Substitute (31) into (32), we derive

X2
i,j,k =

f
(1)
2∑

a′=1

f
(2)
2∑
b′=1

d1∑
c′=1

f
(1)
1∑
a=1

f
(2)
1∑
b=1

d0∑
c=1

W 2,k
a′,b′,c′W

1,c′

a,b,cX
0
a+(a′+(i−1)s2−1)s1,b+(b′+(j−1)s2−1)s1,c

+ const (33)

=

f
(1)
2∑

a′=1

f
(2)
2∑
b′=1

d1∑
c′=1

f
(1)
1∑
a=1

f
(2)
1∑
b=1

d0∑
c=1

W 2,k
a′,b′,c′W

1,c′

a,b,cX
0
a+(a′−1)s1+(i−1)s1s2,b+(b′−1)s1+(j−1)s1s2,c

+ const. (34)

Note that 1 ≤ a+ (a′ − 1)s1 ≤ f (1)
1 + (f

(1)
2 − 1)s1 and 1 ≤ b+ (b′ − 1)s1 ≤ f (2)

1 + (f
(2)
2 − 1)s1. Then (33) becomes

X2
i,j,k =

f
(1)
1 +(f

(1)
2 −1)s1∑
a=1

f
(2)
1 +(f

(2)
2 −1)s1∑
b=1

d0∑
c=1

W ′
k
a,b,cX

0
a+(i−1)s2,b+(j−1)s2,c

+ const (35)

where W ′ka,b,c are some constants. Therefore, N is realized as a ReLU CNN with one hidden convolutional layer such that

its d2 filters has size (f
(1)
1 + (f

(1)
2 − 1)s1)× (f

(2)
1 + (f

(2)
2 − 1)s1)× d0 and stride s1s2, which completes the proof.

Proof of Theorem 5. (i) The basic idea is to map many regions of the input space of each layer to the same set, thus identify
many regions of space.
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The L = 1 case is guaranteed by Theorem 2. Next, we consider the case L ≥ 2. Let p = bd1/d0c. We set

W 1,k
a,b,c =


1, if a = b = 1, k = (c− 1)p+ 1, 1 ≤ c ≤ d0;

2, if a = b = 1, (c− 1)p+ 2 ≤ k ≤ cp, 1 ≤ c ≤ d0;

0, otherwise
(36)

and

B1,k =

{
−(k − (c− 1)p− 1), if (c− 1)p+ 1 ≤ k ≤ cp for some 1 ≤ c ≤ d0;

0, otherwise.
(37)

Therefore, by (2) in the main paper we obtain

Z1
i,j,k(X0; θ) =


X0

1+(i−1)s1,1+(j−1)s1,c
, if k = (c− 1)p+ 1 for some 1 ≤ c ≤ d0;

2X0
1+(i−1)s1,1+(j−1)s1,c

− (k − (c− 1)p− 1), if (c− 1)p+ 2 ≤ k ≤ cp for some 1 ≤ c ≤ d0;

0, otherwise.
(38)

When W 1,k
a,b,c and B1,k are given as in (36) and (37), the map

X1
i,j,k = max{0, Z1

i,j,k(X0; θ)} (39)

determines a function

X1 = Φ1(X0) (40)

from Rn
(1)
0 ×n

(2)
0 ×d0 to Rn

(1)
1 ×n

(2)
1 ×d1 .

For each i, j ∈ N+, let

ψi(x) =

{
max{0, x}, if i = 1;

max{0, 2x− (i− 1)}, if i ≥ 2
(41)

and

φj(x) =

j∑
i=1

(−1)i+1ψi(jx). (42)

Then it is easy to check that

φj(x) =


0, if x ≤ 0;

jx− i, if i
j ≤ x ≤

2i+1
2j ≤

1
2 where i ∈ N;

i− jx, if 2i−1
2j ≤ x ≤

i
j ≤

1
2 where i ∈ N+,

(43)

which means that φj is an affine function when restricted to each interval [0, 1
2j ], [ 1

2j ,
2
2j ], . . . , [ j−1

2j ,
1
2 ] and fur-

thermore φj([0,
1
2j ]) = φj([

1
2j ,

2
2j ]) = · · · = φj([

j−1
2j ,

j
2j ]) = [0, 1

2 ] (i.e., φj(x) sends j distinct intervals
[0, 1

2j ], [ 1
2j ,

2
2j ], . . . , [ j−1

2j ,
1
2 ] to the same interval [0, 1

2 ]).

Next, we define an intermediate convolutional layer (without activation functions) from

X1 = (X1
a,b,c)n(1)

1 ×n
(2)
1 ×d1



Supplementary Material

to

Y 1 = (Y 1
a,b,c)n(1)

1 ×n
(2)
1 ×d0

between the first and second hidden convolutional layers. We set the d0 filters with size 1× 1× d1, the stride 1, and define
the weights W ′ and biases B′ in this intermediate convolutional layer as

W ′
1,c
1,1,k =

{
p · (−1)i+1, if k = (c− 1)p+ i, 1 ≤ c ≤ d0;

0, otherwise
(44)

and

B′
1,k

= 0 ∀ 1 ≤ k ≤ d0. (45)

Then by (2) in the main paper,

Y 1
a,b,c = p

p∑
i=1

(−1)i+1X1
a,b,(c−1)p+i (46)

for 1 ≤ a ≤ n(1)
1 , 1 ≤ b ≤ n(2)

1 , 1 ≤ c ≤ d0. Therefore, (46) determines an affine function

Y 1 = Φ′1(X1) (47)

from Rn
(1)
1 ×n

(2)
1 ×d1 to Rn

(1)
1 ×n

(2)
1 ×d0 . Therefore, we obtain

Y 1
a,b,c = p

p∑
i=1

(−1)i+1X1
a,b,(c−1)p+i

= p

p∑
i=1

(−1)i+1 max{0, Z1
a,b,(c−1)p+i}

=

p∑
i=1

(−1)i+1ψi(pX
0
1+(a−1)s1,1+(b−1)s1,c

)

= φp(X
0
1+(a−1)s1,1+(b−1)s1,c

). (48)

The third equality holds due to Eqs. (38) and (41). By the previous discussion on properties of the function φj(x), the
following map Ψ1 = Φ′1 ◦ Φ1 determined by Eq. (48)

Ψ1 : Rn
(1)
0 ×n

(2)
0 ×d0 Φ1−→ Rn

(1)
1 ×n

(2)
1 ×d1

Φ′1−→ Rn
(1)
1 ×n

(2)
1 ×d0

X0 7→ X1 7→ Y 1

sends bd1d0 c
n
(1)
1 ×n

(2)
1 ×d0 = pn

(1)
1 ×n

(2)
1 ×d0 distinct hypercubes

{
[0,

1

2p
], [

1

2p
,

2

2p
], · · · , [p− 1

2p
,
p

2p
]

}n(1)
0 ×n

(2)
0 ×d0

in [0, 1
2 ]n

(1)
0 ×n

(2)
0 ×d0 onto the same hypercube [0, 1

2 ]n
(1)
1 ×n

(2)
1 ×d0 of the intermediate layer Y 1 ∈ Rn

(1)
1 ×n

(2)
1 ×d0 (this map is

affine and bijective when restricted to each of the
⌊
d1
d0

⌋n(1)
1 ×n

(2)
1 ×d0

distinct hypercubes). Similarly (keep d0 unchanged,

and replace n(1)
0 , n

(2)
0 , n

(1)
1 , n

(2)
1 , d1 in Ψ1 by n(1)

l−1, n
(2)
l−1, n

(1)
l , n

(2)
l , dl), we can define Φl,Φ

′
l,Ψl and Y l for 2 ≤ l ≤ L− 1

such that the map

Ψl : Rn
(1)
l−1×n

(2)
l−1×d0 Φl−→ Rn

(1)
l ×n

(2)
l ×dl

Φ′l−→ Rn
(1)
l ×n

(2)
l ×d0

Y l−1 7→ X l−1 7→ Y l
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sends b dld0 c
n
(1)
l ×n

(2)
l ×d0 distinct hypercubes

{
[0,

1

2p
], [

1

2p
,

2

2p
], · · · , [p− 1

2p
,
p

2p
]

}n(1)
l−1×n

(2)
l−1×d0

in [0, 1
2 ]n

(1)
l−1×n

(2)
l−1×d0 onto the hypercube [0, 1

2 ]n
(1)
l ×n

(2)
l ×d0 of the intermediate layer Y l ∈ Rn

(1)
l ×n

(2)
l ×d0 . Therefore,

ΨL−1 ◦ΨL−2 ◦ · · · ◦Ψ2 ◦Ψ1 : Rn
(1)
0 ×n

(2)
0 ×d0 → Rn

(1)
L−1×n

(2)
L−1×d0

X0 7→ Y L−1

sends
∏L−1
l=1

⌊
dl
d0

⌋n(1)
l ×n

(2)
l ×d0

distinct hypercubes in [0, 1
2 ]n

(1)
0 ×n

(2)
0 ×d0 onto the same hypercube [0, 1

2 ]n
(1)
L−1×n

(2)
L−1×d0 of

the intermediate layer. Note that Φl ◦ Φ′l−1 is the convolutional layer between X l−1 and X l which has dl filter with size

f
(1)
l × f (2)

l × dl−1 and stride sl due to Theorem 4. Finally, by Theorem 2, a one-layer ReLU CNN with input dimension

n
(1)
L−1 × n

(2)
L−1 × d0 and output dimension n(1)

L × n
(2)
L × dL can divide the hypercube [0, 1

2 ]n
(1)
L−1×n

(2)
L−1×d0 into RN ′ regions.

Put the network from X0 to Y L−1 and Y L−1 to XL together, we prove the lower bound claim.

(ii) We will prove this claim by induction on L. When L = 1, by Theorem 2 the claim is true. Now suppose that L ≥ 2 and
the claim is true for L− 1. Let N ∗ be the CNN obtained from N by deleting the L-th hidden layer (i.e., N ∗ consists of the
first to the L− 1-th layer of N ). Then by induction hypothesis, we have

RN∗ ≤ RN ′′
L−1∏
l=2

n
(1)
0 n

(2)
0 d0∑

i=0

(
n

(1)
l n

(2)
l dl
i

)
.

Now we consider the L-th layer. Suppose that the CNN N ∗ with parameters θ partitions the input space into m distinct
linear regionsRi (1 ≤ i ≤ m). Since each linear regionRi corresponds to a certain activation pattern, the function FN ′,θ
becomes an affine function when restricted toRi. Therefore, after adding the L-th layer to N ∗, when restricted toRi, the
function FN ,θ |Ri can be realised as a one-layer NN with n(1)

0 n
(2)
0 d0 input neurons and n(1)

l n
(2)
l dl hidden neurons. By

Proposition 1, N partitionsRi into
∑n

(1)
0 n

(2)
0 d0

i=0

(
n
(1)
L n

(2)
L dL
i

)
distinct linear regions. Finally, we obtain

RN ≤ RN∗
n
(1)
0 n

(2)
0 d0∑

i=0

(
n

(1)
L n

(2)
L dL
i

)
≤ RN ′′

L∏
l=2

n
(1)
0 n

(2)
0 d0∑

i=0

(
n

(1)
l n

(2)
l dl
i

)
,

which completes the proof.

4. Calculation of the Number of Parameters for CNNs
Proof of Lemma 4 in the main paper. For the l-th layer, the k-th weight matrixW l,k has f (1)

l ×f
(2)
l ×dl−1 entries and there

are dl such weight matrices. The bias vector has length dl. Thus there are f (1)
l × f

(2)
l × dl−1× dl + dl parameters in the l-th

hidden layer. Let l range from 1 to L, the total number of parameters equals
∑L
l=1

(
f

(1)
l × f (2)

l × dl−1 × dl + dl

)
.

5. More Examples on the Maximal Number of Linear Regions for One-Layer ReLU CNNs
In this section, we list more examples on maximal number of linear regions for one-layer ReLU CNNs from Tables 1 to 5,
which is calculated according to Theorem 2 in the main paper.



Supplementary Material

Table 1. The results for the maximal number of linear regions for a one-layer ReLU CNN with input dimension 2× 2× 1, d1 filters with
dimension 1× 2× 1, stride s = 1, and hidden layer dimension 2× 1× d1.

d1 = 1 d1 = 2 d1 = 3 d1 = 4 d1 = 5 d1 = 6 d1 = 7 d1 = 8
RN by Theorem 2 4 16 49 121 256 484 841 1369

Upper bounds by Theorem 1 4 16 57 163 386 794 1471 2517
Naive upper bounds 4 16 64 256 1024 4096 16384 65536

Table 2. The results for the maximal number of linear regions for a one-layer ReLU CNN with input dimension 1× 4× 1, d1 filters with
dimension 1× 2× 1, stride s = 1, and hidden layer dimension 1× 3× d1.

d1 = 1 d1 = 2 d1 = 3 d1 = 4 d1 = 5 d1 = 6 d1 = 7 d1 = 8
RN by Theorem 2 8 55 217 611 1396 2773 4985 8317

Upper bounds by Theorem 1 8 57 256 794 1941 4048 7547 12951
Naive upper bounds 8 64 512 4096 32768 262144 2097152 16777216

Table 3. The results for the maximal number of linear regions for a one-layer ReLU CNN with input dimension 2× 3× 1, d1 filters with
dimension 2× 2× 1, stride s = 1, and hidden layer dimension 2× 1× d1.

d1 = 1 d1 = 2 d1 = 3 d1 = 4 d1 = 5 d1 = 6 d1 = 7 d1 = 8
RN by Theorem 2 4 16 64 247 836 2424 6126 13829

Upper bounds by Theorem 1 4 16 64 247 848 2510 6476 14893
Naive upper bounds 4 16 64 256 1024 4096 16384 65536

Table 4. The results for the maximal number of linear regions for a one-layer ReLU CNN with input dimension 6× 6× 1, d1 filters with
dimension 1× 3× 1, stride s = 2, and hidden layer dimension 3× 2× d1.

d1 = 1 d1 = 2 d1 = 3 d1 = 4 d1 = 5 d1 = 6 d1 = 7 d1 = 8
RN by Theorem 2 64 4096 250047 9129329 191102976 2537716544 23664622311 167557540697

Upper bounds by Theorem 1 64 4096 262144 16777216 1073741824 68719476736 4398045536122 281443698512817
Naive upper bounds 64 4096 262144 16777216 1073741824 68719476736 4398046511104 281474976710656

Table 5. The results for the maximal number of linear regions for a one-layer ReLU CNN with input dimension 3× 3× 2, d1 filters with
dimension 2× 2× 2, stride s = 1, and hidden layer dimension 2× 2× d1.

d1 = 1 d1 = 2 d1 = 3 d1 = 4 d1 = 5 d1 = 6 d1 = 7 d1 = 8
RN by Theorem 2 16 256 4096 65536 1048555 16721253 256376253 3459170397

Upper bounds by Theorem 1 16 256 4096 65536 1048555 16721761 256737233 3485182163
Naive upper bounds 16 256 4096 65536 1048576 16777216 268435456 4294967296
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