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Abstract
This paper studies the lower bound complexity for
minimax optimization problem whose objective
function is the average of n individual smooth
convex-concave functions. We consider the al-
gorithm which has access to gradient and prox-
imal oracle for each individual component. For
the strongly-convex-strongly-concave case, we
prove such an algorithm can not reach an ε-saddle
point in fewer than Ω ((n+ κ) log(1/ε)) itera-
tions, where κ is the condition number of the
objective function. This lower bound matches the
upper bound of the existing proximal incremen-
tal first-order oracle algorithm in some specific
case. We develop a novel construction to show
the above result, which partitions the tridiagonal
matrix of classical examples into n groups. This
construction is friendly to the analysis of incre-
mental gradient and proximal oracle and we also
extend the analysis to general convex-concave
cases.

1. Introduction
We consider the following minimax optimization problem

min
x∈X

max
y∈Y

f(x,y) ,
1

n

n∑
i=1

fi(x,y), (1)

where each individual component fi(x,y) is L-smooth,
convex in x and concave in y; the feasible sets X and Y
are close and convex such that X ⊆ Rdx and Y ⊆ Rdy .
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This formulation contains several popular machine learning
applications such as matrix games (Carmon et al., 2019;
Ibrahim et al., 2019), regularized empirical risk minimiza-
tion (Zhang & Xiao, 2017; Tan et al., 2018), AUC maxi-
mization (Joachims, 2005; Ying et al., 2016; Shen et al.,
2018), robust optimization (Ben-Tal et al., 2009; Yan et al.,
2019) and reinforcement learning (Du et al., 2017).

A popular approach for solving minimax problems is the
first order algorithm which iterates with gradient and proxi-
mal point operation (Korpelevich, 1977; Chen & Rockafel-
lar, 1997; Chambolle & Pock, 2011; 2016; Mokhtari et al.,
2019a;b; Thekumparampil et al., 2019). Zhang et al. (2019);
Ibrahim et al. (2019) presented tight lower bounds for solv-
ing strongly-convex-strongly-concave minimax problems
by first order algorithms. Ouyang & Xu (2018) studied a
more general case that the objective function is possibly
not strongly-convex or strongly-concave. However, these
analyses (Ouyang & Xu, 2018; Zhang et al., 2019; Ibrahim
et al., 2019) do not consider the specific finite-sum structure
as in Problem (1). They only consider the deterministic first
order algorithms which are based on the full gradient and
exact proximal point iteration.

In big data regime, the number of components n in Prob-
lem (1) could be very large and we would like to devise
stochastic optimization algorithms that avoid accessing the
full gradient frequently. For example, Palaniappan & Bach
(2016) used stochastic variance reduced gradient algorithms
to solve (1). Similar to convex optimization, one can accel-
erate it by catalyst (Lin et al., 2018; Palaniappan & Bach,
2016) and proximal point (Defazio, 2016; Luo et al., 2019)
techniques. Although stochastic optimization algorithms
are widely used for solving minimax problems, the study of
their lower bounds complexity is still open. All of existing
lower bound analysis for stochastic optimization are focused
on convex or nonconvex minimization problems (Agarwal
& Bottou, 2015; Woodworth & Srebro, 2016; Carmon et al.,
2017; Lan & Zhou, 2017; Fang et al., 2018; Arjevani et al.,
2019).

This paper focuses on stochastic first order methods for solv-
ing Problem (1), which access to the Proximal Incremental
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First-order Oracle (PIFO), that is,

hfi(x,y, γ)

,
[
fi(x,y),∇fi(x,y),proxγfi(x,y),PX (x),PY(y)

]
,

(2)

where i ∈ {1, . . . , n}, γ > 0, the proximal operator is
defined as

proxγfi(x,y) ,

arg min max
u∈Rdx ,v∈Rdy

{
fi(u,v) +

1

2γ
‖x− u‖22 −

1

2γ
‖y − v‖22

}
,

and the projection operator is defined as

PX (x) = arg min
u∈X

‖u− x‖2 ,PY(y) = arg min
v∈Y

‖v − y‖2 .

We also define the Incremental First-order Oracle (IFO)

gfi(x,y, γ) , [fi(x,y),∇fi(x,y),PX (x),PY(y)] .

PIFO provides more information than IFO and it would be
potentially more powerful than IFO in first order optimiza-
tion algorithms. Our goal is to find an ε-saddle point whose
Euclidean squared distance to the exact solution of Problem
(1) is not larger than ε or ε-suboptimal solution such that
the primal dual gap is not larger than ε.

In this paper we show that the PIFO algorithm requires at
least Ω((n+L/µ) log(1/ε)) complexity to find an ε-saddle
point of Problem (1) when each fi is L-smooth and convex-
concave; f is µ-strongly-convex-µ-strongly-concave. This
result matches the upper bound of the existing PIFO al-
gorithm (Zhang & Xiao, 2017; Lan & Zhou, 2017) for
some specific bilinear problems. We also consider more
general cases. When f is µ-strongly-concave but possibly
non-strongly-concave, we establish a PIFO lower bound
complexity Ω(n + L/

√
µε). If there is neither strongly-

convexity nor strongly-concavity assumption, we prove that
the PIFO lower bound will be Ω(n+ L/ε).

The above results are mainly due to a novel lower bound
analysis framework proposed in this paper, which is quite
different from previous work. Our construction decom-
poses Nesterov’s classical tridiagonal matrix into n groups
and it facilitates the analysis for both the IFO and PIFO
algorithms. In contrast, previous work is based on an ag-
gregation method (Lan & Zhou, 2017; Zhou & Gu, 2019)
or a very complicated adversarial construction (Woodworth
& Srebro, 2016). Their results do not cover the minimax
problems.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present preliminaries. In Section 3, we introduce
the basic idea of our analysis framework. In Section 4, we
provide the specific construction for the lower bound anal-
ysis. We compare our method to related work in Section 5
and conclude this work in Section 6.

2. Preliminaries
We first introduce the preliminaries used in this paper.

Definition 1. For a differentiable function ϕ(x,y) from
X × Y to R and L > 0, ϕ is said to be L-smooth if its
gradient is L-Lipschitz continuous; that is, for any x1,x2 ∈
X and y1,y2 ∈ Y , we have

‖∇ϕ(x1,y1)−∇ϕ(x2,y2)‖2 ≤ L
∥∥∥∥ x1 − x2

y1 − y2

∥∥∥∥
2

.

Definition 2. For a differentiable function ϕ(x,y) from
X ×Y to R, ϕ is said to be convex-concave, if ϕ is convex in
x and concave in y; that is, for any x1,x2 ∈ X , y1,y2 ∈ Y
we have

ϕ(x2,y) ≥ ϕ(x1,y) +∇xϕ(x1,y)>(x2 − x1),

ϕ(x,y2) ≤ ϕ(x,y1) +∇yϕ(x,y1)>(y2 − y1).

Definition 3. For constants µx, µy ≥ 0, ϕ is said to be
(µx, µy)-convex-concave, if the function

ϕ̂(x,y) = ϕ(x,y)− µx
2
‖x‖22 +

µy
2
‖y‖22

is convex-concave.

Remark 1. In Definition 3, we allow both µx and µy could
be 0. In other words, we say that ϕ(x,y) is (0, 0)-convex-
concave means the function is general convex-concave and
(0, µ)-convex-concave means it is µ-strongly-concave in y
but possibly non-strongly-convex in x.

Definition 4. We call a minimax optimization problem
minx∈X maxy∈Y ϕ(x,y) satisfying strong duality condi-
tion if

min
x∈X

max
y∈Y

ϕ(x,y) = max
y∈Y

min
x∈X

ϕ(x,y).

The goal of a stochastic optimization algorithm for solving
the minimax problem is finding an ε-suboptimal solution or
ε-saddle point which are defined as follows.

Definition 5. Suppose the strong duality of Problem (1)
holds. We call (x̂, ŷ) ∈ X × Y an ε-suboptimal solution to
Problem (1), if

max
y∈Y

f(x̂,y)−min
x∈X

f(x, ŷ) ≤ ε.

Definition 6. Suppose Problem (1) has an exact optimal
solution (x∗,y∗) ∈ X × Y such that

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗)

for all x ∈ X and y ∈ Y . We call (x̂, ŷ) ∈ X × Y an ε-
saddle point of Problem (1), if ‖x̂− x∗‖22+‖ŷ − y∗‖22 ≤ ε.

We define PIFO algorithms as follows.
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Definition 7. Consider a stochastic optimization algorithm
A to solve Problem (1). Denote (xt,yt) to be the point
obtained by A at time-step t. The algorithm is said to be a
PIFO algorithm if for any t > 0, we have

x̃t ∈ span
{
x0, · · · ,xt−1,u1, · · · ,ut,
∇xfi1(x0,y0), · · · ,∇xfit(xt−1,yt−1)

}
,

ỹt ∈ span
{
y0, · · · ,yt−1,v1, · · · ,vt,
∇yfi1(x0,y0), · · · ,∇yfit(xt−1,yt−1)

}
,

xt = PX (x̃t), and yt = PY(ỹt),

where (ut,vt) = proxγtfit
(xt−1,yt−1) and it is a random

variable supported on [n] by taking P(it = j) = pj for
each t ≥ 1 and 1 ≤ j ≤ n along with

∑n
j=1 pj = 1.

Without loss of generality, we assume that the PIFO algo-
rithm A starts from (x0,y0) = (0dx ,0dy ) and p1 ≤ p2 ≤
· · · ≤ pn to simplify our analysis. Otherwise, we can take
{f̃i(x,y) = fi(x+x0,y+y0)}ni=1 into consideration. On
the other hand, suppose that ps1 ≤ ps2 ≤ · · · ≤ psn where
{si}ni=1 is a permutation of [n]. We can define {f̂i}ni=1 such
that f̂si = fi and consider A to take the component f̂si by
probability psi .

3. A General Analysis Framework
In this section we introduce our construction and show that
it enjoys some elegant properties when we use PIFO algo-
rithms to solve it.

3.1. Construction

We first introduce the following class of matrices:

B(m,ω) ,


−1 1

−1 1
. . . . . .

−1 1
ω

 ∈ Rm×m.

Denote the l-th row of the matrix B(m,ω) by bl(m,ω)>.

Then we define

A(m,ω) ,


ω2 + 1 −1
−1 2 −1

. . . . . .
−1 2 −1

−1 1

 .

It is easy to check the fact that

A(m,ω) = B(m,ω)>B(m,ω). (3)

The matrix A(m,ω) is widely-used in the analysis of lower
bounds for first order optimization algorithms (Nesterov,

2013; Agarwal & Bottou, 2015; Lan & Zhou, 2017; Carmon
et al., 2017; Zhou & Gu, 2019; Ouyang & Xu, 2018; Zhang
et al., 2019).

We partition the rows of B(m,ω) by index sets L1, . . . ,Ln,
whereLi =

{
l : 1 ≤ l ≤ m, l ≡ i−1 ( mod n)

}
. Then we

construct the following class of functions by this partition:

r(x,y;λ,m, ω) ,
1

n

n∑
i=1

ri(x,y;λ,m, ω), (4)

where λ = (λ1, λ2, λ3, λ4) and

ri(x,y;λ,m, ω)

=


λ1
∑
l∈L1

y>elbl(m,ω)>x− λ4〈em,x〉
+λ2 ‖x‖22 − λ3 ‖y‖

2
2 , for i = 1,

λ1
∑
l∈Li y

>elbl(m,ω)>x

+λ2 ‖x‖22 − λ3 ‖y‖
2
2 , for i = 2, 3, · · · , n.

The lower bound analysis of the PIFO algorithm for the
minimax problem in this paper is based on the function
r(x,y;λ,m, ω) and its finite-sum formulation (4).

We show the smoothness, convexity, and concavity of the
component function ri in Lemma 1.

Lemma 1. For any λ2 ≥ 0, λ3 ≥ 0, ω <
√

2, we have that
the ri is 2

√
λ21 + 2 max{λ2, λ3}2-smooth and (2λ2, 2λ3)

convex-concave.

Consider the following minimax optimization problem

min
x∈X

max
y∈Y

r(x,y;λ,m, ω), (5)

where r is defined as Eq. (4) and

X =

{
Rm, if λ2 > 0,

{x ∈ Rm : ‖x‖2 ≤ Rx}, if λ2 = 0,

Y =

{
Rm, if λ3 > 0,

{y ∈ Rm : ‖y‖2 ≤ Ry}, if λ3 = 0,

where Rx > 0 and Ry > 0.

Note that the strong duality of the problem (5) holds.

Lemma 2. For any λ2 ≥ 0, λ3 ≥ 0, Rx > 0, Ry > 0, we
always have

min
x∈X

max
y∈Y

r(x,y;λ,m, ω) = max
y∈Y

min
x∈X

r(x,y;λ,m, ω)

3.2. Properties of the PIFO Algorithm

Now consider using the PIFO algorithm to solve the problem
(5).



Submission for ICML 2020

We define subspaces Ft = span{em, em−1, · · · , em−t+1}
for convex variable x and Gt = span{e1, e2, · · · , et} for
concave variable y, where t ∈ {1, 2, . . . ,m}. Additionally,
we let F0 = G0 = {0}. The following technical lemma
plays a crucial role in our proofs.

Lemma 3. Suppose that n ≥ 2 and each function ri satis-
fies λ1 6= 0, λ2, λ3 ≥ 0. Denote proxγri(x,y) by (ui,vi).
Then we have the following results (we omit the parameters
of ri to simplify the presentation):

1. If x ∈ Fk, then we have PX (x) ∈ Fk; and if y ∈ Gk,
then we have PY(y) ∈ Gk.

2. If x ∈ Fk,y ∈ Gk and 0 ≤ k < m, we have that

∇xri(x,y),ui ∈

{
Fk+1, if k ≡ i− 1 (mod n),

Fk, otherwise,

and∇yri(x,y),vi ∈ Gk.

3. If x ∈ Fk+1,y ∈ Gk and 0 ≤ k < m, we have that
∇xri(x,y),ui ∈ Fk+1 and

∇yri(x,y),vi ∈

{
Gk+1, if k ≡ i (mod n),

Gk, otherwise.

Proof. The results about projection operator are trivial.
Next, we can give the closed form expression of the gradient
and proximal operation of ri as follows

∇xri(x,y) = 2λ2x + λ1
∑
l∈Li

(e>l y)bl + ciem,

∇yri(x,y) = −2λ3y + λ1
∑
l∈Li

(b>l x)el,

ui =
1

1 + 2γλ2

(
x− γλ1

∑
l∈Li

(e>l y)bl − γciem

)
,

vi =
1

1 + 2γλ3

(
y + γλ1

∑
l∈Li

(b>l x)el

)
,

where c1 = −1 and ci = 0 for i = 2, . . . , n.

If x = y = 0, then we have ∇yri(x,y) = vi = 0 and
∇xri(x,y) = ui = 0 for i ≥ 2. Only when i = 1, we have
∇xr1(x,y),u1 ∈ F1.

Observe that b>l x = 0 for x ∈ Fk, l > k and bl ∈ Fl+1

for 1 ≤ l < m. Then, we have
• if y ∈ Gk, k ≥ 1, then ylbl ∈ Fk for l 6= k and
ykbk ∈ Fk+1;

• if x ∈ Fk, k ≥ 1, then (b>l x)el ∈ Gk−1 and
(b>k x)ek ∈ Gk.

Consequently, we can derive the result of the lemma:
• If x ∈ Fk,y ∈ Gk, k ≥ 1, then

– ∇yri(x,y),vi ∈ Gk,
– ∇xri(x,y),ui ∈ Fk for k /∈ Li;
– ∇xri(x,y),ui ∈ Fk+1 for k ∈ Li.

• If x ∈ Fk+1,y ∈ Gk, k ≥ 1, then

– ∇xri(x,y),ui ∈ Fk+1,
– ∇yri(x,y),vi ∈ Gk for k + 1 /∈ Li,
– ∇yri(x,y),vi ∈ Gk+1 for k + 1 ∈ Li.

Suppose the time-step t0 of a PIFO algorithm A satisfies
xt0 ∈ Fk and yt0 ∈ Gk. Then Lemma 3 implies that xt ∈
Fk and yt ∈ Gk (t > t0) will hold until the algorithm A
draws the component fi such that k ∈ Li. After that, xt ∈
Fk+1 and yt ∈ Gk will hold until A draws the component
fj such that k + 1 ∈ Lj .

We can describe the process of using PIFO algorithm A to
solve Problem (5) by the following lemma.

Lemma 4. Let T0 = 0 and

Tk = min{t : t > Tk−1, it ≡ bk/2c+ 1(mod n)} (6)

for any k ≥ 1. Then we have xt ∈ Fk−1 for t < T2k−1
and yt ∈ Gk−1 for t < T2k. Moreover, we can write Tk
as the sum of k independent random variables {Yl}kl=1, i.e.,
Tk =

∑k
l=1 Yl, where Yl follows a geometric distribution

with success probability ql = pl′ such that

l′ ≡ bl/2c+ 1 (mod n) and 1 ≤ l′ ≤ n.

The basic idea of the lower bound analysis is that we
guarantee the PIFO algorithm to extend the spaces of
span{x0, . . . ,xt} and span{y0, . . . ,yt} slowly as t is in-
creasing. Lemma 4 shows span{x0, . . . ,xT2k

} ⊆ Fk and
span{y0, . . . ,xT2k+1

} ⊆ Gk. Then we can regard quan-
tity Tk as the one that reflects how span{x0, . . . ,xt} and
span{y0, . . . ,yt} vary. Because Tk can be written as the
sum of geometrically distributed random variables, we in-
troduce the following lemma for further analysis.

Lemma 5. Let {Yi}1≤i≤N be independent random vari-
ables, and Yi follows a geometric distribution with success
probability pi. Then

P

(
N∑
i=1

Yi >
N2

4(
∑N
i=1 pi)

)
≥ 1− 16

9N
.

Based on Lemmas 4 and 5, we can estimate how many PIFO
calls that A needs to obtain an output which is close to the
solution of Problem (5) sufficiently.

Lemma 6. We consider the minimax Problem (5) and any
criterion H(x,y) of measuring how x,y close to solution
to the problem. Suppose that M ≥ 1, N = nM/2 and M
satisfies minx∈X∩FM miny∈Y∩GM H(x,y) ≥ 9ε, then we
have mint≤N E (H(xt,yt)) ≥ ε.
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Proof. For any t ≤ N , we have

min
t≤N

E (H(xt,yt))

≥ min
t≤N

E (H(xt,yt) | N < T2M+1)P (N < T2M+1)

≥ E
(

min
x∈X∩FM

min
y∈Y∩GM

H(x,y)

)
P (N < T2M+1)

≥ 9εP (T2M+1 > N) ,

where Tk is defined in Eq. (6), and the second inequality
follows from xt ∈ FM and yt ∈ GM for t < T2M+1 by
Lemma 4.

Then, according to Lemma 4, we have T2M+1 =∑2M+1
l=1 Yl. Here {Yl}2M+1

l=1 are independent random vari-
ables where Yl follows a geometric distribution with success
probability ql = pl′ such that l′ ≡ bl/2c + 1(mod n) and
1 ≤ l′ ≤ n.

Suppose M = s1n + s2 and 0 ≤ s2 < n. Recalling that
p1 ≤ p2 ≤ · · · ≤ pn, we have

2M+1∑
l=1

ql =2s1 + 2

s2+1∑
l=1

pl − p1 ≤ 2s1 + 2

s2+1∑
l=1

pl

≤2s1 + 2 · s2 + 1

n
=

2M + 2

n
.

Hence, we can use Lemma 5 to obtain

P

(
2M+1∑
l=1

Yl >
nM

2

)
≥P

(
2M+1∑
l=1

Yl >
(2M + 1)2n

4(2M + 2)

)

≥1− 16

9(M + 1)
≥ 1

9
,

where the first inequality follows from (2M + 1)2 >
4M(M + 1). Therefore, we achieve the desired result

min
t≤N

E (H(xt,yt)) ≥ 9εP (T2M+1 > N) ≥ ε.

4. Main Results
In this section we show the specific construction for the
lower bound analysis of minimax problems in different
kinds of assumptions. We start with strongly-convex-
strongly-concave setting, then consider more general cases.

4.1. Strongly-Convex-Strongly-Concave Case

For the lower bound analysis of the strongly-convex-
strongly-concave minimax problem, we define the following
class of component functions.

Definition 8. For fixed L, µ and n such that L/µ ≥√
2, µ > 0, n ≥ 2, let

α =

√
L2 − 2µ2

n2µ2
+ 1 and λSC =

(√
L2 − 2µ2

4
,
µ

2
,
µ

2
, 1

)
.

Define functions fSC,i : R2m → R for i = 1, . . . , n

fSC,i(x,y) = ri

(
x,y;λSC ,m,

√
2

α+ 1

)
,

and the minimax problem

min
x∈Rm

max
y∈Rm

FSC(x,y) ,
1

n

n∑
i=1

fSC,i(x,y). (7)

The following lemma shows that FSC is (µ, µ)-convex-
concave and we can present the closed form of the optimal
solution for Problem (7).

Lemma 7. Consider minimax problem (7) in Definition 8.
Then we have following properties.

1. Each component function fSC,i is L-smooth and (µ, µ)-
convex-concave.

2. The saddle point of Problem (7) is
x∗ = 2nµ(α+1)

L2−2µ2 (qm, qm−1, · · · , q)>,

y∗ = 2√
L2−2µ2

(
q, q2, · · · , qm−1,

√
α+1
2 qm

)>
,

where q = α−1
α+1 .

Proof. The first statement of this lemma can be directly
obtained by Lemma 1. The remainder of the proof is focus
on the solution of Problem (7).

We can rewrite the function FSC as follows

FSC(x,y) =
µ

2

(
‖x‖22 − ‖y‖

2
2

)
− 1

n
〈em,x〉

+

√
L2 − 2µ2

4n2
〈B (m,ω)x,y〉 ,

where ω =
√

2
α+1 .

Letting the gradient of FSC(x,y) be zero, we obtain
µx +

√
L2 − 2µ2

4n2
B(m,ω)>y − 1

n
em = 0,

−µy +

√
L2 − 2µ2

4n2
B(m,ω)x = 0,

which implies

y =

√
L2 − 2µ2

4n2µ2
B(m,ω)x, (8)
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µI +

L2 − 2µ2

4n2µ
B(m,ω)>B(m,ω)

)
x =

1

n
em. (9)

The equation (9) is equivalent to
ω2 + 1 + β −1
−1 2 + β −1

. . .
. . .
−1 2 + β −1

−1 1 + β

x =


0
0
...
0
β
nµ

 , (10)

where β = 4n2µ2

L2−2µ2 .

Let q = α−1
α+1 which is a root of the equation

z2 −
(

2 +
4n2µ2

L2 − 2µ2

)
z + 1 = 0.

Then, we can check that the solution of (10) equation is

x∗ =
2nµ(α+ 1)

L2 − 2µ2
(qm, qm−1, · · · , q)>.

Substituting above result into (8), we have

y∗ =
2√

L2 − 2µ2
(q, q2, · · · , qm−1,

√
α+ 1

2
qm)>.

We now can prove the lower bound complexity for finding
O(ε)-saddle point of Problem (7) by PIFO algorithms.

Theorem 1. Consider minimax problem (7) and ε > 0 such
that

L

µ
≥
√
n2 + 2, ε ≤ 1

2

(√
2− 1√
2 + 1

)2

, and

m =

⌊
1

2

(√
L2 − 2µ2

n2µ2
+ 1

)
log

(
1

18ε

)⌋
.

In order to find (x̂, ŷ) such that

E
[
‖x̂− x∗‖22 + ‖ŷ − y∗‖22

]
< ε
[
‖x0 − x∗‖22 + ‖y0 − y∗‖22

]
,

the PIFO algorithm A needs at least

Ω

((
n+

L

µ

)
log

(
1

18ε

))
PIFO queries.

Proof. We use the same definition of q as Lemma 7. For

L/µ ≥
√
n2 + 2, we have α =

√
L2−2µ2

n2µ2 + 1 ≥
√

2 and

q = α−1
α+1 ≥

√
2−1√
2+1

. The assumption on ε means ε ≤ 1
2q

2.

Note that the function h(β) = 1

log( β+1
β−1 )

− β
2 is increasing

when β > 1 and limβ→+∞ h(β) = 0. Thus there holds

α

2
+ h(
√

2) ≤ − 1

log q
≤ α

2
.

Let M =
⌊
log(18ε)
2 log q

⌋
, ξ = 2nµ(α+1)

L2−2µ2 and η = 2√
L2−2µ2

,

then we have M ≥ 1 and

m =

⌊
α

2
log

(
1

18ε

)⌋
≥
⌊

log(18ε)

log q

⌋
≥ 2M.

Consequently, we can achieve

minx∈FM ‖x− x∗‖22 + miny∈GM ‖y − y∗‖22
‖x0 − x∗‖22 + ‖y0 − y∗‖22

=
(ξ2 + η2) · q

2(M+1)−q2(m+1)

1−q2 + η2 · α−1
2
q2m

(ξ2 + η2) · q2−q2(m+1)

1−q2 + η2 · α−1
2
q2m

≥ q2M − q2m

1− q2m ≥ q2M

2
≥ 9ε,

where the first inequality is according to a+c
b+c ≥

a
b for b ≥ a

and c ≥ 0, and the second inequality is due to M ≤ m/2.

Hence, following from Lemma 6 along with H(x,y) =
‖x−x∗‖22+‖y−y

∗‖22
‖x0−x∗‖22+‖y0−y∗‖22

, M =
⌊
log(18ε)
2 log q

⌋
and N = nM/2, we

know that

min
t≤N

E

(
‖xt − x∗‖22 + ‖yt − y∗‖22
‖x0 − x∗‖22 + ‖y0 − y∗‖22

)
≥ ε.

Therefore, in order to find (x̂, ŷ) such that

E
[
‖x̂− x∗‖22 + ‖ŷ − y∗‖22

]
< ε
[
‖x0 − x∗‖22 + ‖y0 − y∗‖22

]
,

the PIFO algorithm A needs at least N PIFO queries.

At last, we can estimate N by

− 1

log(q)
=

1

log
(
α+1
α−1

) ≥ α

2
+ h(
√

2)

=
1

2

√
L2 − 2µ2

n2µ2
+ 1 + h(

√
2)

≥
√

2

4

(√
L2 − 2µ2

n2µ2
+ 1

)
+ h(
√

2)

≥
√

2L2/µ2 − 4

4n
+

√
2

4
+ h(
√

2),

and

N = Mn/2 =
n

2

⌊
log(18ε)

2 log q

⌋
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≥ n

8

(
− 1

log(q)

)
log

(
1

18ε

)
≥ n

8

(√
2L2/µ2 − 4

4n
+

√
2

4
+ h(
√

2)

)
log

(
1

18ε

)
= Ω

((
n+

L

µ

)
log

(
1

18ε

))
,

where we use the fact 2 bβc ≥ β for β ≥ 1.

Zhang & Xiao (2017) considered a specific bilinear case of
Problem (1) with X = Rd, Y = Rn and each individual
component function has the form of

fi(x,y) = h(x) + yi〈ai,x〉 − Ji(yi),

where h is µx-strongly-convex and Ji is µy-strongly-convex.
They proposed stochastic primal-dual coordinate (SPDC)
method which can find O(ε)-saddle point with at most

O
((
n+

√
nL2

µxµy

)
log(1/ε)

)
PIFO queries. Note that f is

(µx, µy/n)-convex-concave and if we set µx = µy/n = µ,

the complexity will be O
((
n+ L

µ

)
log(1/ε)

)
, which im-

plies that our lower bound is tight for this problem.

In general strongly-convex-strongly-concave case, the best
known upper bound complexity for IFO/PIFO algorithms
is O

((
n+

√
nL
µ

)
log(1/ε)

)
(Palaniappan & Bach, 2016;

Luo et al., 2019), which still exist a
√
n gap to our lower

bound.

4.2. Convex-Strongly-Concave Case

We now consider the finite-sum minimax problem whose
each individual component is strongly-concave but possibly
non-strongly-convex. Our analysis is based on the following
functions.
Definition 9. For fixed L, µ, n and Rx such that L/µ ≥√

2, µ > 0, Rx > 0, n ≥ 2, let

γ =
Rx(L2 − 2µ2)

4nµ(m+ 1)3/2
and λSCC =

(√
L2 − 2µ2

4
, 0,

µ

2
, γ

)
.

Define functions fSCC,i : R2m → R for i = 1, . . . , n as

fSCC,i(x,y) = ri (x,y;λSCC,m, 1)

and the minimax problem

min
x∈X ′

max
y∈Rm

FSCC(x,y) ,
1

n

n∑
i=1

fSCC,i(x,y), (11)

where X ′ = {x : ‖x‖2 ≤ Rx}.

It is easily checked each component function fSCC,i is L-
smooth and (0, µ)-convex-concave by Lemma 1.

The following lemma helps us to establish the lower bound
with respect to the primal dual gap.

Lemma 8. Let φ(x) , maxy FSCC(x,y) and ψ(y) ,
minx∈X ′ FSCC(x,y). Then, for k =

⌊
m+1
2

⌋
, we have

min
x∈X ′∩Fk

φ(x)− max
y∈Gk

ψ(y) ≥ (L2 − 2µ2)R2
x

16n2µ(k + 1)2
.

Proof. We prove the result as follows

min
x∈X ′∩Fk

φ(x)− max
y∈Gk

ψ(y) ≥ − 2µkγ2

L2 − 2µ2
+

Rxγ

n
√
k + 1

=
(L2 − 2µ2)R2

x

8n2µ

2(m+ 1)3/2 − k
√
k + 1

(m+ 1)3
√
k + 1

≥ (L2 − 2µ2)R2
x

8n2µ

4
√

2− 1

8(k + 1)2
>

(L2 − 2µ2)R2
x

16n2µ(k + 1)2
,

where the equality is due to γ = Rx(L
2−2µ2)

4nµ(m+1)3/2
, the first

inequality is based on Lemma 17 in Appendix D, and the
second inequality is according to m+ 1 < 2

⌊
m+1
2 + 1

⌋
=

2(k+ 1), h(β) =
2β3/2−β3/2

0

β3 is a decreasing function when
β > β0.

Finally, we obtain the PIFO lower bound complexity for
finite-sum (0, µ)-convex-concave minimax problem.

Theorem 2. Suppose that

ε ≤ (L2 − 2µ2)R2
x

576n2µ
, and m =

⌊
Rx
6n

√
L2 − 2µ2

µε

⌋
− 3.

In order to find (x̂, ŷ) such that E (φ(x̂)− ψ(ŷ)) < ε, the

PIFO algorithm A needs at least Ω
(
n+ RxL√

µε

)
queries.

Proof. Note thatM ,
⌊
m+1
2

⌋
=
⌊
Rx
12n

√
L2−2µ2

µε

⌋
−1 ≥ 1.

Following Lemma 8, we have

min
x∈X ′∩FM

φ(x)− max
y∈GM

ψ(y) ≥ (L2 − 2µ2)R2
x

16n2µ(M + 1)2
≥ 9ε,

where the last inequality is due to M + 1 ≤ Rx
12n

√
L2−2µ2

µε .
Hence, following from Lemma 6 with H(x,y) = φ(x)−
ψ(y), for N = nM/2, we know that

min
t≤N

E (φ(x̂)− ψ(ŷ)) ≥ ε.

Therefore, in order to find suboptimal solution (x̂, ŷ) such
that E (φ(x̂)− ψ(ŷ)) < ε, algorithm A needs at least N
PIFO queries, where

N =
n

2

(⌊
Rx
12n

√
L2 − 2µ2

µε

⌋
− 1

)
= Ω

(
n+

RxL√
µε

)
.
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We can also provide the lower bound Ω(n) if ε < LR2
x/4

(see Lemma 21 in Appendix F) and an improved result in
convex-strongly-concave case which is formally presented
in Corollary 1.

Corollary 1. For any PIFO algorithm A and any
L, µ,Rx, n, ε such that L/µ ≥

√
2, Rx > 0, n ≥ 2

and ε ≤ min{LR
2
x

4 ,
(L2−2µ2)R2

x

576n2µ }, there exist a dimen-

sion m = O
(

1 + RxL
n
√
µε

)
and n L-smooth and (0, µ)-

convex-concave functions {fi : Rm × Rm → R}ni=1.
In order to find ε-suboptimal solution to the problem
min‖x‖2≤Rx maxy

1
n

∑n
i=1 fi(x,y), algorithm A needs at

least Ω
(
n+RxL/

√
µε
)

queries to hf .

4.3. General Convex-Concave Case

The analysis for general convex-concave case is similar to
the one of Section 4.2. We consider the following functions.

Definition 10. For fixed L,Rx, Ry and n such that

L,Rx, Ry > 0, n ≥ 2, let λC =
(
L
2 , 0, 0,

LRy
2
√
m

)
. Define

functions fC,i : R2m → R for i = 1, . . . , n as

fC,i(x,y) = ri (x,y;λC,m, 1)

and the minimax problem

min
x∈X ′

max
y∈Y′

FC(x,y) ,
1

n

n∑
i=1

fC,i(x,y), (12)

where X ′ = {x : ‖x‖2 ≤ Rx} and Y ′ = {y : ‖y‖2 ≤
Ry}.

We can prove each component function fC,i is L-smooth
and convex-concave by Lemma 1.

The following lemma helps us to establish the lower bound
with respect to the primal dual gap.

Lemma 9. Let φC(x) , maxy∈Y′ FC(x,y) and ψC ,
minx∈X ′ FC(x,y). Then for 1 ≤ k = b(m− 1)/2c, we
have

min
x∈X ′∩Fk

φC(x)− max
y∈Y′∩Gk

ψC ≥
LRxRy

2
√

2n(k + 1)
.

Proof. By closed-form expression of minx∈X ′∩Fk φC(x)
and maxy∈Y′∩Gk ψC(y) from Lemma 19 in Appendix D,
we know that

min
x∈X ′∩Fk

φC(x)− max
y∈Y′∩Gk

ψC(y)

=
LRxRy

2n
√
m(k + 1)

≥ LRxRy

2
√

2n(k + 1)
.

Then, we obatin a PIFO lower bound complexity for general
finite-sum convex-concave minimax problem.

Theorem 3. Suppose that

ε ≤ LRxRy

36
√

2n
, and m =

⌊
LRxRy

9
√

2nε

⌋
− 1.

In order to find (x̂, ŷ) such that E (φC(x̂)− ψC(ŷ)) < ε,

the PIFO algorithmA needs at least Ω
(
n+ RxL√

µε

)
queries.

Proof. Let M , b(m− 1)/2c =
⌊
LRxRy
18
√
2nε

⌋
− 1 ≥ 1. Fol-

lowing Lemma 9, we have

min
x∈X ′∩FM

φC(x)− max
y∈Y′∩GM

ψC(y)

≥ LRxRy

2
√

2n b(m+ 1)/2c
≥ LRxRy√

2n(m+ 1)
≥ 9ε.

Hence, following from Lemma 6 with H(x,y) = φC(x)−
ψC(y), for N = nM/2, we know that

min
t≤N

E (φC(xt)− ψC(yt)) ≥ ε.

Therefore, in order to find an approximate solution (x̂, ŷ)
such that E (φC(x̂)− ψC(ŷ)) < ε, the algorithm A needs
at least N PIFO queries, where

N =
n

2

(⌊
LRxRy

18
√

2nε

⌋
− 1

)
= Ω

(
n+

LRxRy
ε

)
.

Note that Theorem 3 requires the condition ε ≤ O(L/n) to
obtain the desired lower bound. In fact, this assumption can
be relaxed into ε ≤ O(L) and we show the more general
result formally in Corollary 2.
Corollary 2. For any PIFO algorithm A and any
L,Rx, Ry, n, ε such that L,Rx, Ry > 0, ε ≤ LRxRy/4

and n ≥ 2, there exist a dimension m = O
(

1 +
LRxRy
nε

)
and n L-smooth and convex-concave functions {fi : Rm ×
Rm → R}ni=1. In order to find ε-suboptimal solution to
the problem min‖x‖2≤Rx max‖y‖2≤Ry

1
n

∑n
i=1 fi(x,y),A

needs at least Ω (n+LRxRy/ε) queries to hf .

5. Comparison with Related Work
For deterministic convex optimization, Nesterov (2013) in-
troduced a type of quadratic functions based on matrix
A(m,ω) to analyze the lower bound of gradient based
algorithms. Lan & Zhou (2017) considered the first or-
der stochastic algorithm for finite-sum convex optimization.
They constructed a block diagonal matrix by aggregating
several ones in the form of A(m,ω) to obtain a tight lower
bound. Zhou & Gu (2019) extended the results to more
general cases, including sum-of-nonconvex problem and
nonconvex optimization. Woodworth & Srebro (2016) de-
signed a type of adversary constructions to analyze finite-
sum convex optimization which is also valid for stochastic
proximal point iteration.
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Ouyang & Xu (2018) first studied the lower bound com-
plexity of first order algorithms for the convex-concave
minimax problem. They constructed a class of bilinear
functions based on the formulation (3). Recently, Zhang
et al. (2019) established a lower bound for strongly-convex-
strongly-concave objective functions. However, both of
them (Ouyang & Xu, 2018; Zhang et al., 2019) do not cover
the stochastic optimization algorithms, which are very pop-
ular in machine learning applications.

Our proposed lower bounds analysis framework is the first
one which considers the finite-sum minimax problem for
PIFO algorithms. Our construction is based on the decom-
position of matrix B(m,ω) as formulation (4) in Section
3.1. This strategy is quite different from previous art and it
provides a very concise analysis for the query of proximal
incremental first-order oracle.

6. Conclusion
In this paper, we have studied lower bounds of PIFO algo-
rithms for finite-sum convex-concave minimax optimiza-
tion problems. We have proposed a novel construction
framework, which is very useful to the analysis of stochas-
tic proximal point algorithms. With this framework, we
have demonstrated the lower bounds of PIFO algorithms
in strongly-convex-strongly-concave case, convex-strongly-
concave case and general convex-concave case.

There are still some open problems. Although SPDC
matches our lower bound in a specific minimax problem,
the upper bound in the general strongly-convex-strongly-
concave case remains a

√
n gap. Furthermore, to the best of

our knowledge, there is no stochastic optimization algorithm
that could match our lower bounds for convex-strongly-
concave and general convex-concave cases. It would be
interesting to devise more efficient algorithms for these set-
tings or improve our lower bounds further. It is also possible
to use our framework to address the lower bounds of mini-
max problems without the convex-concave assumption.
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A. The Proof of Lemma 1
Proof. Firstly, it is clearly that ri is strongly (2λ2, 2λ3)-convex-concave.

Next, note that for l1, l2 ∈ Li, we have |l1 − l2| ≥ n ≥ 2, thus b>l1bl2 = 0. With recalling that b>l bl ≤ 2, we have∥∥∥∥∥∑
l∈Li

ble
>
l y

∥∥∥∥∥
2

2

=
∑
l∈Li

y>elb
>
l ble

>
l y ≤ 2

∑
l∈Li

y>ele
>
l y ≤ 2 ‖y‖22 ,∥∥∥∥∥∑

l∈Li

elb
>
l x

∥∥∥∥∥
2

2

=
∑
l∈Li

x>blb
>
l x ≤ 2 ‖x‖22 .

Consequently, we have

‖∇ri(x1,y2)−∇ri(x2,y2)‖22
= ‖∇xri(x1,y1)−∇xri(x2,y2)‖22 + ‖∇yri(x1,y1)−∇yri(x1,y2)‖22

=

∥∥∥∥∥2λ2(x1 − x2) + λ1
∑
l∈Li

ble
>
l (y1 − y2)

∥∥∥∥∥
2

2

+

∥∥∥∥∥2λ3(y1 − y2)− λ1
∑
l∈Li

elb
>
l (x1 − x2)

∥∥∥∥∥
2

2

≤ 8(λ22 ‖x1 − x2‖22 + λ23 ‖y1 − y2‖22) + 2λ21

∥∥∥∥∥∑
l∈Li

ble
>
l (y1 − y2)

∥∥∥∥∥
2

2

+ 2λ21

∥∥∥∥∥∑
l∈Li

elb
>
l (x1 − x2)

∥∥∥∥∥
2

2

≤ (8 max{λ2, λ3}2 + 4λ21)(‖x1 − x2‖22 + ‖y1 − y2‖22),

where the first inequality follows from (a+ b)2 ≤ 2(a2 + b2).

B. The proof of Lemma 2
Proof. At first, for λ2 = 0 or λ3 = 0, either X or Y is compact. Then the strong duality holds following from Sion’s
minimax theorem.

We only need to prove that if a differentiable function f(x,y) is strongly-convex-strongly-concave, then there holds

min
x∈Rdx

max
y∈Rdy

f(x,y) = max
y∈Rdy

min
x∈Rdx

f(x,y).

Now assume that f(x, y) is (µx, µy)-convex-concave. Let φ(x) = maxy f(x,y) and ψ(y) = minx f(x,y).

Define y∗(x) = arg maxy f(x,y). Note that y∗(x) is well-defined according to f is strongly convex-concave.

By Danskin’s theorem, we know that

∇xφ(x) = ∇xf(x,y∗(x)).

Hence for any x1,x2, we have

φ(x1)− φ(x2) = max
y

f(x1,y)− f(x2,y
∗(x2))

≥ f(x1,y
∗(x2))− f(x2,y

∗(x2)) ≥ 〈∇xf(x2,y
∗(x2)),x1 − x2〉+

µx
2
‖x1 − x2‖22
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= 〈∇xφ(x2),x1 − x2〉+
µx
2
‖x1 − x2‖22 ,

which implies φ is µx-strongly convex. Similarly, we also have ψ is µy-strongly concave.

Consequently, by denoting x∗ = arg minx φ(x) and y∗ = arg maxy f(x∗,y), we have minx maxy f(x,y) = f(x∗,y∗)
and

∇yf(x∗,y∗) = 0, ∇xf(x∗,y∗) = ∇xφ(x∗) = 0.

Moreover, by strongly concavity of f(x, ·) and ∇xf(x∗,y∗) = 0, we have x∗ = arg minx f(x,y∗). Moreover, by
Danskin’s theorem, it holds

∇yψ(y∗) = ∇yf(arg min
x

f(x,y∗),y∗) = ∇yf(x∗,y∗) = 0,

and y∗ = arg miny ψ(y). That is maxy minx f(x,y) = f(x∗,y∗), which is our desired result.

C. The Proof of Lemma 5
The proof of Lemma 5 is based on several properties of geometric distribution, which is defined formally as follows.

Definition 11. We call a random variable X following a geometric distribution with success probability p > 0, namely
X ∼ Geo(p), if X satisfies P (X = i) = (1− p)i−1p, for i = 1, 2, 3, · · · .

We can obtain the probability density function for the sum of two independent geometric random variables as the following
lemma is shown.

Lemma 10. Let X1 ∼ Geo(p1) and X2 ∼ Geo(p2) be independent random variables. For any positive integer j, if
p1 6= p2, then

P (X1 +X2 > j) =
p2(1− p1)j − p1(1− p2)j

p2 − p1
, (13)

and if p1 = p2, then

P (X1 +X2 > j) = jp1(1− p1)j−1 + (1− p1)j . (14)

Proof. We can compute the probability by its definition as follows:

P (X1 +X2 > j) =

j∑
l=1

P (X1 = l)P (X2 > j − l) + P (X1 > j)

=

j∑
l=1

(1− p1)l−1p1(1− p2)j−l + (1− p1)j

= p1(1− p2)j−1
j∑
l=1

(
1− p1
1− p2

)l−1
+ (1− p1)j .

Thus if p1 = p2, we have P (X1 +X2 > j) = jp1(1− p1)j−1 + (1− p1)j ; and for p1 6= p2, we have

P (X1 +X2 > j) = p1
(1− p1)j − (1− p2)j

p2 − p1
+ (1− p1)j

=
p2(1− p1)j − p1(1− p2)j

p2 − p1
.
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Let {Xi}1≤i≤m be independent variables, and Xi ∼ Geo(pi) for i = 1, . . . ,m. We define the following auxiliary function
for our analysis

fm,j(p1, p2, · · · , pm) , P

(
m∑
i=1

Xi ≥ j

)
.

To prove Lemma 5, we need to solve the following minimization problems

min∑m
i=1 pi=c

fm,j(p1, p2, · · · , pm),

where c is a given constant.

We first prove the following inequality for our further analysis.

Lemma 11. For any x ≥ 0 and j ≥ 2, we have

1− j − 1

x+ j/2
≤
(

x

x+ 1

)j−1
. (15)

Proof. We just need to show that

(x+ 1)j−1(x+ j/2)− (j − 1)(x+ 1)j−1 ≤ xj−1(x+ j/2),

that is

(x+ 1)j − j(x+ 1)j−1/2− xj−1(x+ j/2) ≤ 0,

i.e.,
j−2∑
l=0

[(
j

l

)
− j

2

(
j − 1

l

)]
xl ≤ 0.

Note that for all l ≤ j − 2, we have (
j

l

)
− j

2

(
j − 1

l

)
=

(
1− j − l

2

)(
j

l

)
≤ 0,

thus inequality (15) hosts for any x ≥ 0 and j ≥ 2.

Now we can show that f2,j(p1, p2) ≥ f2,j
(
p1+p2

2 , p1+p22

)
as follows.

Lemma 12. Let X1 ∼ Geo(p1), X2 ∼ Geo(p2), Y1, Y2 ∼ Geo
(
p1+p2

2

)
be independent random variables with 0 <

p1, p2 ≤ 1. Then for any positive integer j, we have

P (X1 +X2 > j) ≥ P (Y1 + Y2 > j) .

Proof. We start the proof from the simplest case. It is obviously that for j = 1, we have P (X1 +X2 > j) = 1 =
P (Y1 + Y2 > j); and for p1 = p2 = 1 and j ≥ 2, we have P (X1 +X2 > j) = 0 = P (Y1 + Y2 > j).

Without loss of generality, we can assume that p1 ≤ p2. Let j ≥ 2, and c , p1 + p2 < 2 be a given constant.

Now we prove that h(p1) , P (X1 +X2 > j) is a decreasing function with respect to 0 < p1 < c/2.

Employing equation (13) in Lemma 10, for 0 < p1 < c/2, we have

h(p1) =
(c− p1)(1− p1)j − p1(1 + p1 − c)j

c− 2p1
,

and

h′(p1) =
−(1− p1)j − j(c− p1)(1− p1)j−1 − (1 + p1 − c)j − jp1(1 + p1 − c)j−1

c− 2p1
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+ 2
(c− p1)(1− p1)j − p1(1 + p1 − c)j

(c− 2p1)2

=
[c(1− p1)− j(c− p1)(c− 2p1)](1− p1)j−1 − [c(1 + p1 − c) + jp1(c− 2p1)](1 + p1 − c)j−1

(c− 2p1)2
.

Hence h′(p1) < 0 is equivalent to

c(1− p1)− j(c− p1)(c− 2p1)

c(1 + p1 − c) + jp1(c− 2p1)
<

(
1 + p1 − c

1− p1

)j−1
. (16)

Note that

c(1− p1)− j(c− p1)(c− 2p1)

c(1 + p1 − c) + jp1(c− 2p1)
= 1− (j − 1)c(c− 2p1)

c(1 + p1 − c) + jp1(c− 2p1)
= 1− j − 1

1+p1−c
c−2p1 + j p1c

.

Denoting x = 1+p1−c
c−2p1 , we can rewrite inequality (16) as

1− j − 1

x+ jp1/c
<

(
x

x+ 1

)j−1
.

Observe that if c ≤ 1, we have x > 1−c
c ≥ 0; and if c > 1, then p1 ≥ c− 1 and x ≥ 1+c−1−c

2−c = 0. Together with Lemma
11, we have (

x

x+ 1

)j−1
≥ 1− j − 1

x+ j/2
> 1− j − 1

x+ jp1/c
.

Consequently, h′(p1) < 0 hosts for any p1 < c/2 and j ≥ 2.

Along with the fact that limp1→c/2 h(p1) = h(c/2) according to equation (14), we have

P (X1 +X2 > j) ≥ P (Y1 + Y2 > j) .

for any and 0 < p1 ≤ 1, 0 < p2 ≤ 1 and positive integer j.

Lemma 12 implies that minp1+p2=c f2,j(p1, p2) = f2,j(c/2, c/2). Moreover, we can establish a similar result for the
function fm,j(p1, p2, · · · , pm).

Lemma 13. For any j ≥ 1,m ≥ 2 and 0 < pi ≤ 1(1 ≤ i ≤ m), we have

min∑m
i=1 pi=c

fm,j(p1, p2, · · · , pm) = fm,j(c/m, c/m, · · · , c/m).

Proof. Let X1, X2, Y1, Y2, Z be independent random variables where Y1, Y2 ∼ Geo
(
p1+p2

2

)
and Z is a random variable

which takes nonnegative integer values.

Following from Lemma 12, we can obtain

P (Z +X1 +X2 > j) =

j−1∑
l=0

P (Z = l)P (X1 +X2 > j − l) + P (Z > j − 1)

≥
j−1∑
l=0

P (Z = l)P (Y1 + Y2 > j − l) + P (Z > j − 1)

= P (Z + Y1 + Y2 > j) . (17)
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Next, we define a sequence {(pt,1, pt,2, · · · , pt,m)}t≥1 recursively. At first, let

p1,i = p1, 1 ≤ i ≤ m.

Now suppose (pt,1, pt,2, · · · , pt,m) such that
∑
i=1 pt,i = c has been obtained. If pt,1 = pt,2 = · · · = pt,m = c/m, then

we define pt+1,i = c/m for 1 ≤ i ≤ m. Otherwise there exists kt and lt such that pt,kt < c/m < pt,lt , and we define

pt+1,kt = pt+1,lt =
pt,kt + pt,lt

2
, pt,i = pt+1,i for i 6= kt, lt.

It is clearly that
∑m
i=1 pt+1,i = c. And following from Equation 17, we have

fm,j(pt,1, pt,2, · · · , pt,m) ≥ fm,j(pt+1,1, pt+1,2, · · · , pt+1,m).

If there exists T such that pT,1 = pT,2 = · · · = pT,m = c/m, then our desired conclusion holds apparently. Otherwise, note
that

m∑
i=1

|pt+1,i − c/m| =
m∑
i=1

|pt,i − c/m|+ 2|pt,kt + pt,lt − 2c/m| − |pt,kt − c/m| − |pt,lt − c/m|

<

m∑
i=1

|pt,i − c/m|.

Thus the sequence {
∑m
i=1 |pt,i − c/m|}t≥1 is convergent. Suppose that limt→∞

∑m
i=1 |pt,i − c/m| = θ. It is clearly that

θ ≥ 0. If θ > 0, then we can choose a subsequence {ts} such that

lim
s→∞

pts,i = p′i, for 1 ≤ i ≤ m.

Apparently, we have
∑m
i=1 |p′i − c/m| = θ > 0, and ε0 , mini:p′i 6=c/m |p

′
i − c/m| > 0. For ε < ε0/(m+ 2), there exists

S such that |ptS ,i − p′i| < ε for 1 ≤ i ≤ m. Consequently, we have

m∑
i=1

|ptS+1,i − c/m| =
m∑
i=1

|ptS ,i − c/m|+ 2|ptS ,ktS + ptS ,ltS − 2c/m| − |ptS ,ktS − c/m| − |ptS ,ltS − c/m|

=

m∑
i=1

|ptS ,i − c/m|+ 2|ptS ,ktS + ptS ,ltS − 2c/m|+ ptS ,ktS − ptS ,ltS

≤
m∑
i=1

|ptS ,i − p′i|+
m∑
i=1

|p′i − c/m| − 2 min{c/m− ptS ,ktS , ptS ,ltS − c/m}

< mε+ θ + 2ε− 2 min{c/m− p′ktS , p
′
ltS
− c/m}

≤ θ + (m+ 2)ε− 2ε0 < θ,

That is a contradiction. Therefore, we have θ = 0 and limt→∞ pt,i = c/m for 1 ≤ i ≤ m. Finally, according to the
continuity of fm,j , we get

fm,j(p1, p2, · · · , pm) ≥ lim
t→∞

fm,j(pt,1, pt,2, · · · , pt,m) = fm,j(c/m, c/m, · · · , c/m).

To prove Lemma 5, we also need a concentration inequality of m i.i.d. geometric random variables.

Lemma 14. Let {Xi}1≤i≤m be i.i.d. random variables with X1 ∼ Geo(p). Then we have

P

(
m∑
i=1

Xi >
m

4p

)
≥ 1− 16

9m
. (18)



Submission for ICML 2020

Proof. Denote
∑m
i=1Xi by τ . It is easily to check that

E[τ ] =
m

p
, and Var(τ) =

m(1− p)
p2

.

Hence, we have

P
(
τ >

1

4
Eτ
)

= P
(
τ − Eτ > −3

4
Eτ
)

= 1− P
(
τ − Eτ ≤ −3

4
Eτ
)

≥ 1− P
(
|τ − Eτ | ≥ 3

4
Eτ
)
≥ 1− 16Var(τ)

9(Eτ)2
= 1− 16m(1− p)

9m2
≥ 1− 16

9m
.

Combining Lemma 13 and Lemma 14, it is easily to deduce the result of Lemma 5.

D. Technical results for proving Lemma 8 and Lemma 9
In this section, we provide Lemma 17 and Lemma 19 which are used in proofs of Lemma 8 and Lemma 9 respectively.

We first give the following useful lemma.

Lemma 15. Define the function

Jk,β(y1, y2, · · · , yk) , y2k +

k∑
i=2

(yi − yi−1)2 + (y1 − β)2.

Then we have min Jk,β(y1, · · · , yk) = β2

k+1 .

Proof. Letting the gradient of Jk,β equal to zero, we get

2yk − yk−1 = 0, 2y1 − y2 − β = 0, and yi+1 − 2yi + yi−1 = 0, for i = 2, 3, · · · , k − 1.

That is,

yi =
k − i+ 1

k + 1
β for i = 1, 2, · · · , k. (19)

Thus By substituting Equation (19) into the expression of Jk,β(y1, y2, · · · , yk), we achieve the desired result.

Next, we consider the function FSCC(x,y) in Problem (11). The following lemma provide the closed-form expressions of
maxy FSCC(·,y) and maxx FSCC(x, ·).

Lemma 16. Consider the function FSCC defined in Definition 9, we denote

φ(x) , max
y

FSCC(x,y) and ψ(y) , min
x∈X ′

FSCC(x,y).

Then, functions φ(x) and ψ(x) have the closed-form expression as follows:

φ(x) =
ξ2

2n2µ
‖B(m, 1)x‖22 −

γ

n
〈em,x〉 and ψ(y) = −Rx

n

∥∥ξB(m, 1)>y − γem
∥∥
2
− µ

2
‖y‖22 ,

where ξ =

√
L2−2µ2

2 .

Proof. Recall the function FSCC in Definition 9 is

FSCC(x,y) =− µ

2
‖y‖22 −

γ

n
〈em,x〉+

ξ

n
〈B̂x,y〉,
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where B̂ = B(m, 1). We can directly compute φ(x) as follows:

φ(x) = max
y

FSCC(x,y) = max
y

(
−µ

2

∥∥∥∥y − ξ

nµ
B̂x

∥∥∥∥2
2

+
ξ2

2n2µ

∥∥∥B̂x
∥∥∥2
2
− γ

n
〈em,x〉

)

=
ξ2

2n2µ

∥∥∥B̂x
∥∥∥2
2
− γ

n
〈em,x〉.

On the other hand, there holds

min
‖x‖2≤Rx

〈x, ξB̂>y − γem〉 ≥ min
‖x‖2≤Rx

−‖x‖2
∥∥∥ξB̂>y − γem∥∥∥

2
≥ −Rx

∥∥∥ξB̂>y − γem∥∥∥
2

(20)

where the equality will hold when either x = − Rx
‖ξB̂>y−γem‖

2

(ξB̂>y− γem) or ξB̂>y− γem = 0m. Therefore we have

ψ(y) = min
x∈X ′

FSCC(x,y) = −Rx
n

∥∥∥ξB̂>y − γem∥∥∥
2
− µ

2
‖y‖22 . (21)

Based on Lemma 16, we can show the following Lemma that is related to the proof of Lemma 8.

Lemma 17. Let φ(x) , maxy FSCC(x,y) and ψ(y) , minx∈X ′ FSCC(x,y). Then, for 1 ≤ k < m, we have

min
x∈X ′∩Fk

φ(x) =
−2µkγ2

L2 − 2µ2
, and max

y∈Gk
ψ(y) ≤ − Rxγ

n
√
k + 1

.

Proof. The result of Lemma 16 means

φ(x) =
ξ2

2n2µ
‖B(m, 1)x‖22 −

γ

n
〈em,x〉,

ψ(y) = −Rx
n

∥∥ξB(m, 1)>y − γem
∥∥
2
− µ

2
‖y‖22 ,

where ξ =

√
L2−2µ2

2 . For x ∈ X ′ ∩ Fk, we can suppose x =

[
0m−k
x̂

]
and rewrite φ(x) as

φ(x) =
ξ2

2n2µ
‖B(k, 1)x̂‖22 −

γ

n
〈êk, x̂〉 , φk(x̂),

where êm ∈ Rk. Letting ∇φk(x̂) = 0, we get

B(k, 1)>B(k, 1)x̂ =
nµγ

ξ2
êk,

that is x̂ = nµγ
ξ2 (1, 2, · · · , k)> = 4nµγ

L2−2µ2 (1, 2, · · · , k)>. Noting that x = 4nµγ
L2−2µ2 (0, · · · , 0, 1, · · · , k)> ∈ X ′, we obtain

min
x∈X ′∩Fk

φ(x) =
−2µkγ2

L2 − 2µ2
.

We can upper bound ψ(y) as

ψ(y) = −Rx
n

∥∥∥ξB̂>y − γem∥∥∥
2
− µ

2
‖y‖22 ≤ −

Rxξ

n

∥∥∥∥B̂>y − γ

ξ
em

∥∥∥∥
2

= −Rxξ
n

√
Jk,γ/ξ(y1, y2, · · · , yk) ≤ −Rxξ

n

γ

ξ
√
k + 1

= − Rxγ

n
√
k + 1

,

where the last inequality follows from Lemma 15.
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Then, we consider function FC(x,y) in Problem (11). We can provide the closed-form expressions of maxy FC(·,y) and
maxx FC(x, ·).

Lemma 18. Consider the function FC defined in Definition 10, we denote

φC(x) , max
y∈Y′

FC(x,y) and ψC(y) , min
x∈X ′

FC(x,y).

Then, functions φC(x) and ψC(x) have the closed-form expression as follows:

φC(x) =
LRy
2n
‖B(m, 1)x‖2 −

LRy
2n
√
m
〈em,x〉 and ψC(y) = −LRx

2n

∥∥∥∥B(m, 1)>y − Ry√
m
em

∥∥∥∥
2

.

Proof. Recall the function FC in Definition 10 is

FC(x,y) =
L

2n
〈B(m, 1)x,y〉 − LRy

2n
√
m
〈em,x〉.

Then we can conclude this statement by similar analysis from Equation (20) to Equation (21) of Lemma 16.

We present the following Lemma which is used in the proof of Lemma 9.

Lemma 19. Let φC(x) , maxy∈Y′ FC(x,y) and ψC(y) , minx∈X ′ FC(x,y). Then for 1 ≤ k < m, we have

min
x∈X ′∩Fk

φC(x) = 0, and max
y∈Y′∩Gk

ψC(y) = − LRxRy

2n
√
m(k + 1)

.

Proof. The result of Lemma 18 means

φC(x) =
LRy
2n
‖B(m, 1)x‖2 −

LRy
2n
√
m
〈em,x〉,

ψC(y) = −LRx
2n

∥∥∥∥B(m, 1)>y − Ry√
m
em

∥∥∥∥
2

.

Note that

φC(x) = max
y∈Y′

FC(x,y) ≥ max
y∈Y′

min
x∈X ′

FC(x,y) = max
y∈Y′

ψ(y) ≥ ψ(y∗) = 0,

where y∗ =
Ry√
m
1m ∈ Y ′, therefore

min
x∈X ′∩Fk

φC(x) = φC(0) = 0.

At last, following from Lemma 15, we can obtain

max
y∈Y′∩Gk

ψC(y) = max
y∈Y′∩Gk

−LRx
2n

∥∥∥∥B(m, 1)>y − Ry√
m
em

∥∥∥∥
2

= −LRx
2n

Ry√
m(k + 1)

,

where the optimal point is ỹ∗ =
Ry

(k+1)
√
m

(k, k − 1, · · · , 1, 0, · · · , 0)> which satisfies

‖ỹ∗‖2 =
Ry

(k + 1)
√
m

√
k(k + 1)(2k + 1)

6
≤ Ry.
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E. The Proof of Corollary 2
The proof of this corollary is based on the observation that we can not reach an ε-suboptimal solution of the specific
finite-sum convex-concave problem in fewer than Ω(n) complexity for ε ≤ O(RxRyL).

We consider the following construction.
Definition 12. For fixed L,Rx, Ry and n such that L,Rx, Ry > 0 and n ≥ 2, we define functions ĝi : R → R for
i = 1, . . . , n

ĝi(x, y) =

{
Lxy − nLRxy, for i = 1,

Lxy, otherwise,

and the minimax problem

min
|x|≤Rx

max
|y|≤Ry

Ĝ(x, y) ,
1

n

n∑
i=1

ĝi(x, y) = Lxy − LRxy. (22)

It is easy to check that each component function gi is L-smooth and convex-concave. Moreover, we have

max
|y|≤Ry

Ĝ(x, y) = LRy|x−Rx|, and min
|x|≤Rx

Ĝ(x, y) = −LRx(|y|+ y) ≤ 0,

and there holds:

min
|x|≤Rx

max
|y|≤Ry

Ĝ(x, y) = max
|y|≤Ry

min
|x|≤Rx

Ĝ(x, y) = 0.

Now we can establish the lower bound complexity for finding ε-suboptimal solution to Problem (22).

Lemma 20. Consider minimax problem (22) and ε > 0 such that ε ≤ LRxRy
4 . Then in order to find (x̂, ŷ) such that

E
(

max
|y|≤Ry

Ĝ(x̂, y)− min
|x|≤Rx

Ĝ(x, ŷ)

)
< ε,

the PIFO algorithm A needs at least Ω(n) PIFO queries.

Proof. Note that for i ≥ 2, there holds

∇xĝi(x, y) = Ly, ∇y ĝi(x, y) = Lx, and proxγĝi(x, y) =

(
Lγx+ y

L2γ2 + 1
,
x− Lγy
L2γ2 + 1

)
,

which implies xt = yt = x0 = y0 = 0 will holds till the PIFO algorithm A draws ĝ1.

Denote T = min{t : it = 1}. Then, the random variable T follows a geometric distribution with success probability p1,
and satisfies

P (T ≥ n/2) = (1− p1)b(n−1)/2c ≥ (1− 1/n)(n−1)/2 ≥ 1/2, (23)

where the last inequality is according to h(β) = ( β
β+1 )β/2 is a decreasing function and limβ→∞ h(β) = 1/

√
e ≥ 1/2.

For N = n/2 and t < N , we know that

E
(

max
|y|≤Ry

Ĝ(xt, y)− min
|x|≤Rx

Ĝ(x, yt)

)
≥ E

(
max
|y|≤Ry

Ĝ(xt, y)− min
|x|≤Rx

Ĝ(x, yt)
∣∣ t < T

)
P (T > t)

= E
(

max
|y|≤Ry

Ĝ(0, y)− min
|x|≤Rx

Ĝ(x, 0)
∣∣ t < T

)
P (T > t) =

LRxRy
2

P (T ≥ N) ≥ LRxRy/4 ≥ ε.

Therefore, in order to find (x̂, ŷ) such that E
(

maxy Ĝ(x̂, y)−minx Ĝ(x, ŷ)
)
< ε, algorithm A needs at least N = Ω(n)

PIFO queries.

Then, we can directly obtain Corollary 2 by combing the results of Theorem 3 and Lemma 20.
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F. An Improved Result for Theorem 2
Recall that Theorem 2 shows that we can not reach an ε-suboptimal solution of the specific finite-sum (0, µ)-convex-concave
problem in fewer than Ω

(
n+ RxL√

µε

)
complexity for ε ≤ O(

L2R2
x

n2µ ). In the case of L/µ ≤ O(n2), we can relax the

assumption on ε into ε ≤ O(LR2
x). The analysis is similar to Appendix E. We first introduce the following construction.

Definition 13. For fixed L, µ,Rx and n such that L ≥ µ > 0, Rx > 0 and n ≥ 2, we define functions gi : R → R for
i = 1, . . . , n

gi(x, y) =

{
L
2 (x2 − y2)− nLRxx, for i = 1,
L
2 (x2 − y2), otherwise,

and the minimax problem

min
|x|≤Rx

max
y∈R

G(x, y) ,
1

n

n∑
i=1

gi(x, y) =
L

2
(x2 − y2)− LRxx. (24)

It is easy to check that each component function gi is L-smooth and (0, µ)-convex-concave. Moreover, we have

max
y

G(x, y) =
L

2
x2 − LRxx, and min

|x|≤Rx
G(x, y) = −LR

2
x

2
− L

2
y2,

and there holds:

min
|x|≤Rx

max
y

G(x, y) = max
y

min
|x|≤Rx

G(x, y).

Then, we can establish the lower bound complexity for finding ε-suboptimal solution to Problem (24) as follows.

Lemma 21. Consider minimax problem (24) and ε > 0 such that ε ≤ LR2
x

4 . Then in order to find (x̂, ŷ) such that

E
(

max
y

G(x̂, y)− min
|x|≤Rx

G(x, ŷ)

)
< ε,

the PIFO algorithm A needs at least Ω(n) PIFO queries.

Proof. Note that for i ≥ 2, there holds

∇xgi(x, y) = Lx, proxγgi(x, y) =

(
x

Lγ + 1
,

y

Lγ + 1

)
.

That implies xt = x0 = 0 will holds till the PIFO algorithm A draws g1. Denote T = min{t : it = 1}. By Equation (23),
we have P (T ≥ n/2) ≥ 1/2. Consequently, for N = n/2 and t < N , we know that

E
(

max
y

G(xt, y)− min
|x|≤Rx

G(x, yt)

)
≥ E

(
max
y

G(xt, y)− min
|x|≤Rx

G(x, yt)

∣∣∣∣t < T

)
P (T > t)

= E
(

max
y

G(0, y)− min
|x|≤Rx

G(x, yt)

∣∣∣∣t < T

)
P (T > t) ≥ LR2

x

2
P (T ≥ N) ≥ LR2

x/4 ≥ ε.

Therefore, in order to find (x̂, ŷ) such that E (maxy G(x̂, y)−minxG(x, ŷ)) < ε, algorithm A needs at least N = Ω(n)
PIFO queries.

Combing the result of Theorem 2 and Lemma 21, we can directly obtain Corollary 1.
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G. Lower Bound of ε-suboptimal solution for strongly-convex-strongly-concave case
For strongly-convex-strongly-concave minimax problems, we have established lower bound of ε-saddle point in Section 4.1.
Similarly, we can also provide the lower bound with respect to ε-suboptimal solution.

We consider the function FSC in Problem (7). We can provide the closed-form of functions minx∈Fk FSC(x, ·) and
maxy∈Gk FSC(·,y).

Lemma 22. Consider the function FSC defined in Definition 8, we denote φSC(x) , maxy∈Y FSC(x,y) and ψSC(y) ,
minx∈X FSC(x,y). Then for 1 ≤ k < m, we have

min
x∈Fk

φSC(x) = − µ(α+ 1)

L2 − 2µ2

q − q2k+1

1 + q2k+1
, and max

y∈Gk
ψSC(y) = − 1

n2µ(α+ 1)

1 + q2k+1

1− q2k+2
.

Proof. Recall the expression of FSC is

FSC(x,y) =
µ

2

(
‖x‖22 − ‖y‖

2
2

)
− 1

n
〈em,x〉+

ξ

n
〈B̂x,y〉,

where ξ =

√
L2−2µ2

2 and B̂ = B (m,ω). Then we have

FSC(x,y) = −µ
2

∥∥∥∥y − ξ

nµ
B̂x

∥∥∥∥2
2

+
ξ2

2n2µ

∥∥∥B̂x
∥∥∥2
2

+
µ

2
‖x‖22 −

1

n
〈em,x〉.

Thus we have

φSC(x) =
ξ2

2n2µ

∥∥∥B̂x
∥∥∥2
2

+
µ

2
‖x‖22 −

1

n
〈em,x〉.

For x ∈ Fk, we can suppose x =

[
0m−k
x̂

]
and rewrite φSC(x) as

φSC(x) =
ξ2

2n2µ
‖B(k, 1)x̂‖22 +

µ

2
‖x̂‖22 −

1

n
〈êk, x̂〉 , φk(x̂).

With letting the gradient of φk(x̂) equal to zero, we obtain

ξ2

n2µ
B(k, 1)>B(k, 1)x̂ + µx̂ =

1

n
êk,

that is 
2 + β −1
−1 2 + β −1

. . . . . .
−1 2 + β −1

−1 1 + β

 x̂ =


0
0
...
0
β
nµ

 , (25)

where β = n2µ2

ξ2 = 4n2µ2

L2−2µ2 .

Recall that α =
√

L2−2µ2

n2µ2 + 1 and q = α−1
α+1 . q and 1/q are two roots of the equation

z2 −
(

2 +
4n2µ2

L2 − 2µ2

)
z + 1 = 0.

Then, we can check that the solution to Equation (25) is

x̂∗ =
2nµ(α+ 1)

(L2 − 2µ2)(1 + q2k+1)
(qk − qk+2, qk−1 − qk+3, · · · , q − q2k+1)>,
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and the optimal value of minx∈Fk φSC(x) is

min
x∈Fk

φSC(x) = − µ(α+ 1)

L2 − 2µ2

q − q2k+1

1 + q2k+1
.

On the other hand, observe that

ψSC(y) = min
x
FSC(x,y)

= min
x

(
µ

2

∥∥∥∥x +
ξ

nµ
B̂>y − 1

nµ
em

∥∥∥∥2
2

− 1

2n2µ

∥∥∥ξB̂>y − em

∥∥∥2
2
− µ

2
‖y‖22

)

= − 1

2n2µ

∥∥∥ξB̂>y − em

∥∥∥2
2
− µ

2
‖y‖22

For y ∈ Gk, we can suppose y =

[
ŷ

0m−k

]
and rewrite ψSC(y) as

ψSC(y) = − 1

2n2µ

∥∥∥∥∥∥ξ
0m−k−1−yk
B(k, 1)ŷ

− em

∥∥∥∥∥∥
2

2

− µ

2
‖y‖22

= − ξ2

2n2µ
y2k −

1

2n2µ
‖ξB(k, 1)ŷ − êk‖22 −

µ

2
‖ŷ‖22 , ψk(ŷ).

Letting the gradient of ψk(ŷ) equal to zero, we obtain

ξ2

n2µ
êkê
>
k ŷ +

ξ

n2µ
B(k, 1) (ξB(k, 1)ŷ − êk) + µŷ = 0k, i.e.(

ξ2

n2µ
(êkê

>
k + B(k, 1)2) + µIk

)
ŷ =

ξ

n2µ
ê1,

that is 
2 + β −1
−1 2 + β −1

. . . . . .
−1 2 + β −1

−1 2 + β

 ŷ =


1
ξ

0
0
...
0

 , (26)

where β = n2µ2

ξ2 = 4n2µ2

L2−2µ2 . Then, we can check that the solution to above equation is

ŷ∗ =
2√

L2 − 2µ2(1− q2k+2)
(q − q2k+1, q2 − q2k, · · · , qk − qk+2)>,

and the optimal value of miny∈Gk ψSC(y) is

min
y∈Gk

ψSC(y) = − 1

2n2µ

(
1− q − q2k+1

1− q2k+2

)
= − 1

n2µ(α+ 1)

1 + q2k+1

1− q2k+2
.

A simple calculation will imply that φSC(0) = 0 and ψSC(0) = − 1
2n2µ , thus we have φSC(0)− ψSC(0) = 1

2n2µ .

Furthermore, we can bound the prime dual gap with x,y restricting in subspace Fk,Gk respectively.

Lemma 23. Using the notations of Lemma 22, we have

min
x∈Fk

φSC(x)− max
y∈Gk

ψSC(y) ≥ q2k

n2µ(α+ 1)
.
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Proof. We can show the lower bound based on the closed-form expression of φSC(x) and ψSC(y) in Lemma 22:

min
x∈Fk

φSC(x)− max
y∈Gk

ψSC(y) = − µ(α+ 1)

L2 − 2µ2

q − q2k+1

1 + q2k+1
+

1

n2µ(α+ 1)

1 + q2k+1

1− q2k+2

= − µ(α2 − 1)

(L2 − 2µ2)(α+ 1)

1− q2k

1 + q2k+1
+

1

n2µ(α+ 1)

1 + q2k+1

1− q2k+2

=
1

n2µ(α+ 1)

(
1 + q2k+1

1− q2k+2
− 1− q2k

1 + q2k+1

)
=

1

n2µ(α+ 1)

2q2k+1 + q2k + q2k+2

(1− q2k+2)(1 + q2k+1)

≥ q2k

n2µ(α+ 1)
,

where we have recalled that α =
√

L2−2µ2

n2µ2 + 1 and q = α−1
α+1 . And the inequality in above equation is according to

1 + q2k+1 ≤ 1 + q3 ≤ (1 + q)2.

Now we can establish the lower complexity bound of the number of queries that the PIFO algorithm A needed to find a
ε-suboptimal solution to Problem (7).

Theorem 4. Consider minimax problem (7) and ε > 0 such that

L

µ
≥
√
n2 + 2, ε ≤ 2

α+ 1

(
α− 1

α+ 1

)2

, and m =

⌊
α

4
log

(
2

9(α+ 1)ε

)⌋
+ 1,

where α =
√

L2−2µ2

n2µ2 + 1. In order to find (x̂, ŷ) such that

E (φSC(x̂)− ψSC(ŷ)) < ε (φSC(x0)− ψSC(y0)) ,

the PIFO algorithm A needs at least

Ω

((
n+

L

µ

)
log
(nµ
Lε

))
PIFO queries.

Proof. The proof is similar to the one of Theorem 1. At first, recall that for L/µ ≥
√
n2 + 2, we have α =

√
L2−2µ2

n2µ2 + 1 ≥
√

2 and q = α−1
α+1 satisfies

α

2
+ h(
√

2) ≤ − 1

log q
≤ α

2
.

Let M =
⌊
log(9(α+1)ε/2)

2 log q

⌋
. The assumption on ε and m imply that M ≥ 1 and

m =

⌊
α

4
log

(
2

9(α+ 1)ε

)⌋
≥
⌊

log(9(α+ 1)ε/2)

2 log q

⌋
+ 1 > M.

Following from Corollary 23, we obtain

minx∈FM φSC(x)−maxy∈GM ψSC(y)

φSC(x0)− ψSC(y0)
≥ 2

α+ 1
q2M ≥ 9ε.
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Hence, following by Lemma 6 with M and N = nM/2, we know that

min
t≤N

E
(
φSC(xt)− ψSC(yt)

φSC(x0)− ψSC(y0)

)
≥ ε.

Therefore, in order to find (x̂, ŷ) such that

E (φSC(x̂)− ψSC(ŷ)) < ε (φSC(x0)− ψSC(y0)) ,

the PIFO algorithm A needs at least N PIFO queries.

Similar to the way we estimator N in proof of Theorem 1, we can estimate N here by

N = Mn/2 ≥ n

8

(√
2L2/µ2 − 4

4n
+

√
2

4
+ h(
√

2)

)
log

(
2

9(α+ 1)ε

)
= Ω

((
n+

L

µ

)
log
(nµ
Lε

))
.


