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Abstract

We propose Zeno++, a new robust asynchronous
Stochastic Gradient Descent (SGD) procedure,
intended to tolerate Byzantine failures of work-
ers. In contrast to previous work, Zeno++ re-
moves several unrealistic restrictions on worker-
server communication, now allowing for fully
asynchronous updates from anonymous workers,
for arbitrarily stale worker updates, and for the
possibility of an unbounded number of Byzantine
workers. The key idea is to estimate the descent
of the loss value after the candidate gradient is
applied, where large descent values indicate that
the update results in optimization progress. We
prove the convergence of Zeno++ for non-convex
problems under Byzantine failures. Experimen-
tal results show that Zeno++ outperforms exist-
ing Byzantine-tolerant asynchronous SGD algo-
rithms.

1. Introduction
Synchronous training and asynchronous training are the two
most common paradigms of distributed machine learning.
On the one hand, synchronous training requires the global
updates at the server to be blocked until all the workers
respond (after each period). In contrast, for asynchronous
training, the server can update the global model immediately
after each worker’s response. Theoretical and experimen-
tal analysis (Dutta et al., 2018) suggests that synchronous
training is more stable and has lower noise, but is slower
due to the global barrier across all the workers (after each
period). Since asynchronous training is comparatively faster
especially for heterogeneous systems with stragglers, in this
paper, we focus on asynchronous training. Doing so requires
us to tackle challenges including instability and noisiness
that arise from asynchony.
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Concretely, we study the security of distributed asyn-
chronous Stochastic Gradient Descent (SGD) in a cen-
tralized worker-server architecture, also known as the
Parameter Server (or PS) architecture. In the PS architec-
ture, there are server nodes and worker nodes. Each worker
pulls the global model from the servers, estimates the gradi-
ents using the local portion of the training data, then sends
the gradient estimates to the servers. The servers update the
model asynchronously, as soon as a new gradient is received
from any worker.

The security of machine learning has gained increasing at-
tention in recent years. In particular, tolerance to Byzantine
failures (Blanchard et al., 2017; Chen et al., 2017; Yin et al.,
2018; Feng et al., 2014; Su & Vaidya, 2016; 2018; Xie
et al., 2019b; Alistarh et al., 2018; Cao & Lai, 2018; Xie
et al., 2019c) has become an important topic in the dis-
tributed machine learning literature. Byzantine nodes can
behave arbitrarily, capturing behavior ranging from crash
failures to malicious and arbitrary or compromised actions.
In brief, the goal of Byzantine workers is to prevent con-
vergence of the model training. By construction, Byzantine
failures (Lamport et al., 1982) assume the worst case, i.e.,
the Byzantine workers can behave arbitrarily. Such failures
may be caused by a variety of reasons including but not
limited to: hardware/software bugs, vulnerable communi-
cation channels, poisoned datasets, or malicious attackers.
To make things worse, groups of Byzantine workers may
collude, resulting in more harmful attacks.

Byzantine failures have been well-studied for classical dis-
tributed systems, especially for consensus (Lamport et al.,
1982). These results include well-known bounds on how
many Byzantine workers can be tolerated. Yet, in distributed
machine learning, Byzantine failures have a different impact
than in classical consensus (Damaskinos et al., 2018). Un-
like previous work, we consider Byzantine tolerance with
minimal assumptions—an unbounded number of Byzantine
workers, and full asynchrony with unbounded delay.

Byzantine tolerance of asynchronous SGD is challenging
due to several reasons:

• Full asynchrony. Lack of synchrony introduces addi-
tional noise into the stochastic gradients. This makes it
more difficult to distinguish gradients sent by Byzantine
workers from gradients sent by benign ones, especially
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as Byzantine behavior may exacerbate staleness.

• Unpredictable successive updates. The lack of syn-
chronous scheduling means “fast” workers may send up-
dates, to the server, more frequently than “slower” work-
ers. Byzantine workers may exploit this by suffocating
the server with their wrong gradients.

• Unbounded number of Byzantine workers. While tra-
ditional Byzantine consensus assumes an upper bound
on the number of malicious workers (typically one-third
or half (Lamport et al., 1982)), for fully asynchronous
training, the assumption of a bounded number of Byzan-
tine workers is impractical. In Byzantine-tolerant syn-
chronous training (Blanchard et al., 2017; Chen et al.,
2017; Yin et al., 2018; Xie et al., 2019b;a; 2018), the
servers can compare the candidate gradients with each
other, and either utilize a majority to filter out the harmful
gradients, or use robust aggregation to bound the error.
However, such strategies are infeasible in asynchronous
training, since there may be nothing to compare against,
or aggregate with. Aggregating the successive gradients
is also meaningless since the successive gradients could
all be pushed by the same Byzantine worker. Further-
more, although most of the previous work (Blanchard
et al., 2017; Chen et al., 2017; Yin et al., 2018; Feng
et al., 2014; Su & Vaidya, 2016; 2018; Alistarh et al.,
2018; Cao & Lai, 2018) assumes a majority of honest
workers, this requirement is not guaranteed to be satisfied
in practice.

We propose Zeno++, a new algorithm that validates the
gradients with low computation overhead on the server via
lazy updates. Our key idea is to estimate the descent of
the loss value after the candidate gradient is applied to the
model parameters–for the latter we leverage the Byzantine-
tolerant synchronous SGD algorithm called Zeno (Xie et al.,
2019b). Intuitively, if the loss value decreases, the candidate
gradient is likely to result in optimization progress. We
also propose a mechanism of lazy updates to reduce the
computation overhead.

To the best of our knowledge, this paper is the first to theoret-
ically and empirically study Byzantine-tolerant fully asyn-
chronous SGD with anonymous workers, and potentially an
unbounded number of Byzantine workers. In summary, our
contributions are:

• We propose Zeno++, a new approach for Byzantine-
tolerant fully asynchronous SGD with anonymous work-
ers, and low overhead of the additional computation for
the validation on the servers.

• We show that Zeno++ tolerates Byzantine workers with-
out any limit on either the staleness or the number of
Byzantine workers.

• We prove the convergence of Zeno++ for non-convex
problems.

• Experimental results validate that 1) existing algorithms
may fail in practical scenarios, and 2) Zeno++ gracefully
handles such cases.

2. Related Work
Most of the existing Byzantine-tolerant SGD algorithms
focus on synchronous training. Chen et al. (2017); Su &
Vaidya (2016; 2018); Yin et al. (2018); Xie et al. (2018)
use robust statistics (Huber, 2004) including the geomet-
ric median, coordinate-wise median, and trimmed mean
as Byzantine-tolerant aggregation rules. Blanchard et al.
(2017); Mhamdi et al. (2018) propose Krum and its vari-
ants, which select the candidates with minimal local sum of
Euclidean distances. Alistarh et al. (2018) utilize historical
information to identify harmful gradients. Chen et al. (2018)
use coding theory and majority voting to recover correct
gradients. Most of these synchronous algorithms assume
that most of the workers are non-Byzantine. However, in
practice, there are no guarantees that the number of Byzan-
tine workers can be controlled. Xie et al. (2019b); Cao &
Lai (2018) propose synchronous SGD algorithms for an
unbounded number of Byzantine workers.

Recent years have witnessed an increasing number of large-
scale machine learning algorithms, including asynchronous
SGD (Zinkevich et al., 2009; Lian et al., 2018; Zheng et al.,
2017; Zhou et al., 2018). Damaskinos et al. (2018) pro-
posed Kardam, which to our knowledge is the only prior
work to address Byzantine-tolerant asynchronous training.
Kardam utilizes the Lipschitzness of the gradients to fil-
ter out outliers. However, Kardam assumes a threat model
much weaker than ours. The major differences in the threat
model are listed as follows:

• Verification of worker identity. Unlike Kardam, we do
not require verifying the identities of the workers when
the server receives gradients. Kardam uses the so-called
empirical Lipschitz coefficient, to test the benignity of the
gradient sent by a specific worker. Such a mechanism
keeps the record of the empirical Lipschitz coefficient of
each worker. Thus, whenever a gradient is received, the
Kardam server must be able to identify the identity/index
of the worker. However, since Byzantine workers can
behave arbitrarily, they can fake their identities/indices
when sending gradients to the servers. Thus, Kardam
assumes a threat model much weaker than the traditional
Byzantine failure/threat model. Note that for synchronous
training, the server can partially counter the index spoof-
ing attack by simply filtering out all the gradients with
duplicated indices. However, such an approach is infeasi-
ble for asynchronous training.
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• Bounded staleness of workers/limit of successive gra-
dients. Unlike Kardam, we do not require bounded stal-
eness of the workers. Kardam requires that the number
of gradients successively received from a single worker
is bounded above. To be more specific, on the server,
any sequence of successively received gradients of length
2q + 1 must contain at least q + 1 gradients from honest
workers. However, in real-world asynchronous training,
such an assumption is very difficult to satisfy.

• A majority of honest workers. Unlike Kardam, we do
not require a majority of honest workers. Kardam requires
that the number of Byzantine workers is less than one-
third of the total number of workers – much stronger
restriction than the standard setting that allows for the
number of Byzantine workers to be up to 50% of the
total number of workers. Zeno++ further extends this
guarantee to allow for not only 50%, but also a majority
of Byzantine workers.

3. Model
We consider the following optimization problem:
minx∈Rd F (x), where F (x) = 1

m

∑
i∈[m] Ezi∼Di

f(x; zi),
for ∀i ∈ [m], zi is sampled from the local data Di on the
ith device.

We solve this problem in a distributed manner with m work-
ers. Each worker trains the model on local data. In each
iteration, the ith worker will sample n independent data
points from the dataset Di, and compute the gradient of the
local empirical loss Fi(x) = 1

n

∑n
j=1 f(x; zi,j),∀i ∈ [m],

where zi,j ∼ Di is the jth sampled data on the ith worker.
When there are no Byzantine failures, the servers update the
model whenever a new gradient is received:

xt+1 = xt − γtgτ ,

gτ =
1

n

∑
j∈[n]

∇f(xτ ; zi,j), τ ≤ t, i ∈ [m].

When there are Byzantine failures, gτ can be replaced by
arbitrary value (Damaskinos et al., 2018). Formally, we
define the threat model as follows.

Definition 1. (Threat Model). When the server receives
a gradient estimator g̃τ , it is either correct or Byzantine.
If sent by a Byzantine worker, g̃τ is assigned arbitrary
value. If sent by an honest worker, the correct gradient
is 1
n

∑n
j=1∇f(xτ ; zi,j), τ ≤ t, i ∈ [m]. Thus, we have

g̃τ =

{
arbitrary value, if the worker is Byzantine,
1
n

∑n
j=1∇f(xτ ; zi,j), otherwise.

We assume that q out of m workers are Byzantine, where
q ≤ m. Furthermore, the indices of Byzantine workers can
change across different iterations.

Table 1. Notation

Notation Description
m, [m] Number of workers, set of integers {1, . . . ,m}
q Number of Byzantine workers
Di Di is the training dataset on the ith worker
S The validation dataset on Zeno++ server
n Mini-batch size of workers
ns Mini-batch size of Zeno++ server
T , t Number of global iterations, global iteration index
γ Learning rate
ρ, ε Hyperparameters of Zeno++
k Maximum delay of gr , i.e., “server delay”
kw Maximum delay of workers, i.e., “worker delay”
‖ · ‖ All the norms in this paper are l2-norms

4. Methodology
In this section, we introduce Zeno++, a Byzantine-tolerant
asynchronous SGD algorithm based on inner-product val-
idation. Zeno++ is a computationally efficient version of
its prototype: Zeno+.

4.1. Zeno+

For completeness, we first introduce an auxiliary algorithm:
Zeno+. Note that Zeno+ is hard to be applied in practice,
due to its heavy computation overhead on the server for
validation. We introduce Zeno+ only to help understand
the concept of Zeno++.

Inspired by Zeno (Xie et al., 2019b), we compute a score
for each candidate gradient estimator by using the stochas-
tic zero-order oracle. However, in contrast to the existing
synchronous SGD with majority-based aggregation meth-
ods, we need a hard threshold to decide whether a gradient
is accepted, as sorting is not meaningful in asynchronous
settings. This descent score is described next.

Definition 2. (Stochastic Descent Score (Xie et al., 2019b))
Denote fs(x) = 1

ns

∑ns

j=1 f(x; zj), where zj’s are i.i.d.
samples drawn from S , where S 6= Di,∀i ∈ [m], and ns is
the batch size of fs(·). For any gradient estimator (correct
or Byzantine) g, model parameter x, learning rate γ, and
a constant weight ρ > 0, we define its stochastic descent
score as follows:

Scoreγ,ρ(g, x) = fs(x)− fs(x− γg)− ρ‖g‖2.
Remark 1. Note that we assume that the dataset S for
computing fs(·) is different from the training dataset, e.g.,
can be a separated validation dataset. In other words, S 6=
D1 6= · · · 6= Dm 6= ∪mi=1Di.

The score defined in Definition 2 is composed of two parts:
the estimated descent of the loss function, and the magni-
tude of the update. The score increases when the estimated
descent of the loss function, fs(x)− fs(x−γg), gets larger.
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We penalize the score by −ρ‖g‖2, so that the change of the
model parameter will not be too large. A large descent sug-
gests faster convergence. Observe that even when a gradient
is Byzantine, a small magnitude indicates that it will be less
harmful to the model.

Using the stochastic descent score, we can set a hard thresh-
old parameterized by ε to filter out candidate gradients with
relatively small scores. The detailed algorithm is outlined
in Algorithm 1.

Algorithm 1 Zeno+

Server:
x0 ← rand(), t← 1
repeat

Randomly sample zj ∼ S, ∀j ∈ [ns] to compute fs
(Note: S 6= D1 6= · · · 6= Dm)
Receive g̃ from an arbitrary worker
Normalize g = cg̃ such that ‖g‖2 = ‖∇fs(xt−1)‖2
if Scoreγ,ρ(g, xt−1) ≥ −γε then
xt ← xt−1 − γg, t← t+ 1

end if
until Convergence

Worker i = 1, . . . ,m:
if The worker is honest then

repeat
Pull xτ from the server
Draw random samples zi,j ∼ Di, ∀j ∈ [n], com-
pute g̃ ← 1

n

∑
j∈[n]∇f(xτ ; zi,j)

Push g̃ to the server
until Convergence

end if

4.2. Zeno++

Calculating the stochastic descent score for every candidate
gradient can be computationally expensive. To reduce the
computation overhead, we approximate it by its first-order
Taylor’s expansion with stale validation gradients.

Definition 3. (Approximated Stochastic Descent Score) De-
note fs(x) = 1

ns

∑ns

j=1 f(x; zj), where zj’s are i.i.d. sam-
ples drawn from S, where S 6= Di,∀i ∈ [m], and ns is
the batch size of fs(·). For any gradient estimator (correct
or Byzantine) g, model parameter x, learning rate γ, and
a constant weight ρ > 0, we approximate its stochastic
descent score as follows:

Scoreγ,ρ(g, x) ≈ γ 〈∇fs(x), g〉 − ρ‖g‖2,
where x is a stale version of model on the server.

In brief, Zeno++ is a computation-efficient version of
Zeno+ which reduces the computation overhead via two
techniques: approximated stochastic descent score, and lazy

Algorithm 2 Zeno++

Server:
x0 ← rand(), t← 1
repeat

repeat
Receive g̃ from an arbitrary worker
Read v with lock (v may be from an old version of
x: v = ∇fs(xτ ), τ ≤ t− 1)
Normalize g = cg̃ such that ‖g‖2 = ‖v‖2 (1)

until γ 〈v, g〉 − ρ‖g‖2 ≥ −γε (2)
xt ← xt−1 − γg, t← t+ 1
Lazy update of v: Run non-blocking
ZenoUpdater(xt), if idle, or after every k
iterations (3)

until Convergence

ZenoUpdater(x) on server:
Randomly sample zj ∼ S, ∀j ∈ [ns] to compute fs
(Note: S 6= D1 6= · · · 6= Dm)
Write with lock: v ← ∇fs(x) = 1

ns

∑ns

j=1∇f(x; zj)

Worker i = 1, . . . ,m:
if The worker is honest then

repeat
Pull xτ from the server
Draw random samples zi,j ∼ Di, ∀j ∈ [n], com-
pute g̃ ← 1

n

∑
j∈[n]∇f(xτ ; zi,j)

Push g̃ to the server
until Convergence

end if

updates of the validation gradient v. The detailed algo-
rithm is shown in Algorithm 2. Compared to Zeno, we
highlight several new techniques in Zeno++ (Algorithm 2),
specially designed for asynchronous training: 1) re-scaling
the candidate gradient (Line (1)); 2) first-order Taylor’s ex-
pansion (Line (2)); 3) hard threshold instead of comparison
with the others (Line (2)); 4) lazy update for reducing the
computation overhead (Line (3)).

Before moving forward, we wish to highlight several practi-
cal remarks for Zeno++:

• Preparing the validation dataset for Zeno++: The
dataset S used for calculating v (the validation gradi-
ent of Zeno++) can be collected in many ways. As a
machine-learning routine, it is common to separate the
entire dataset into 3 parts: training data, validation data,
and testing data. Such partition naturally provides the
validation dataset for Zeno++. It can also be a separate
validation dataset provided by a trusted third party. An-
other reasonable choice is that, a group of trusted workers
can upload local data perturbed by additional noise (to
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help protect the users’ privacy). Typically, the validation
dataset is small and different from the training dataset,
thus can only be used to validate the gradients, and cannot
be directly used for training, as shown in Section 6.

• Scheduling ZenoUpdater(x): ZenoUpdater(x) up-
dates v in the background. It will only be triggered when
the global model xt is updated and the server is idle. An-
other scheduling strategy is to trigger ZenoUpdater(x)
after every k iterations. Thus, k is the upper bound of the
delay of v. A reasonable choice is k = m, so that ideally
v is updated after all the m workers respond.

• Computational efficiency: We can reduce the computa-
tion overhead of the Zeno++ server by decreasing the
mini-batch size ns, or the frequency of the activation of
ZenoUpdater(x). However, doing so will potentially
incur larger noise for v, which makes a trade-off.

5. Theoretical Guarantees
In this section, we prove the convergence of Zeno++ (Algo-
rithm 2) under Byzantine failures. We start with definitions
used in the convergence analysis.

Definition 4. (Smoothness) Differentiable f(x) satisfies L-
smoothness if there exists L > 0 such that ∀x, y, f(y) −
f(x) ≤ 〈∇f(x; z), y − x〉+ L

2 ‖y − x‖
2.

Definition 5. (Polyak-Łojasiewicz (PL) inequality) Differen-
tiable f(x) satisfies the PL inequality (Polyak, 1963) if there
exists µ > 0, such that ∀x: f(x)− f(x∗) ≤ 1

2µ‖∇f(x)‖
2.

5.1. Convergence Guarantees

We prove the convergence of Algorithm 2 for non-convex
problems with the following assumption.

Assumption 1. (Bounded server delay) For Zeno++, we
assume that the delay of the validation gradient v is upper-
bounded. Without loss of generality, suppose the current
model is xt, and v = ∇fs(xτ ), where τ ≤ t. We assume
that ∀t, t− τ ≤ k.

Remark 2. Zeno++ does not require bounded delay for the
workers. The bounded delay requirement in Assumption 1
is only for the validation gradient v on the server.

Assumption 2. There exists at least one global minimum
x∗, where F (x∗) ≤ F (x),∀x.

We first analyze the convergence of functions that satisfy
the PL inequality.

Theorem 1. Assume that F (x) and fs(x) are L-smooth
and satisfy the PL inequality. Assume that ∀x, the cor-
rect gradients and validation gradients are upper-bounded:
‖∇F (x)‖2 ≤ V1, ‖∇fs(x)‖2 ≤ V1, and the valida-
tion gradients are always non-zero and lower-bounded:

‖∇fs(x)‖2 ≥ V2, where 0 < V2 ≤ V1. Furthermore, we as-
sume that the validation set is close to the training set, which
implies bounded variance: E

[
‖∇fs(x)−∇F (x)‖2

]
≤

V3,∀x. Taking γ < min(1, 1
L ) and ρ ≥ α

√
γV1

2µV2
, af-

ter T global updates, Algorithm 2 has the error bound:
E [F (xT )− F (x∗)] ≤ (1 − α

√
γ)T [F (x0)− F (x∗)] +√

γ

α O(k
2V1 + V3 + ε).

Remark 3. The assumption of the lower bounded gradient
‖∇fs(x)‖2 ≥ V2 is necessary. We need ∇fs(x) 6= 0, so
that the normalization in Line 6 and inner product in Line
7 of Algorithm 2 are feasible. In practice, if we have a
mini-batch with zero gradient ∇fs(x) = 0 on server, we
can simply draw additional samples and add them to the
mini-batch, until such gradient is non-zero.

For general smooth but non-convex functions, we have the
following convergence guarantee.
Theorem 2. Assume thatF (x) and fs(x) areL-smooth and
potentially non-convex. Assume that ∀x, the true gradients
and validation gradients are upper-bounded: ‖∇F (x)‖2 ≤
V1, ‖∇fs(x)‖2 ≤ V1, and the validation gradients are
always non-zero and lower-bounded: ‖∇fs(x)‖2 ≥ V2,
where 0 < V2 ≤ V1. Furthermore, we assume that the vali-
dation set is close to the training set, which implies bounded
variance: E

[
‖∇fs(x)−∇F (x)‖2

]
≤ V3,∀x. Taking

γ < min(1, 1
L ) and ρ ≥ α

√
γV1

V2
, after T global updates,

Algorithm 2 has the error bound:
E[

∑
t∈[T ] ‖∇F (xt−1)‖2]

T ≤
E[F (x0)−F (x∗)]

α
√
γT +

√
γ

α O(k
2V1 + V3 + ε).

Furthermore, if we take γ = 1
LT , then we have

E[
∑

t∈[T ] ‖∇F (xt−1)‖2]
T ≤ O

(
1

α
√
T

)
.

Remark 4. ρ controls the trade-off between the acceptance
ratio and the convergence rate. Large positive ρ makes the
convergence faster, but fewer candidate gradients pass the
test of Zeno++. Small positive ρ increases the acceptance
ratio, but may also potentially slow down the convergence
or incur larger variance. We use α > 0 to bridge ρ to the
convergence rate and the variance. Larger α makes ρ larger,
which improves the convergence rate, but also enlarges the
variance. Using non-zero ε potentially results in negative
thresholds, which enlarges the acceptance ratio, but also
increases the false negative ratio (the ratio of Byzantine
gradients that are not filtered out by Zeno++).

6. Experiments
In this section, we evaluate the proposed algorithm,
Zeno++. Note that we do not evaluate the auxiliary al-
gorithm Zeno+, since its computation overhead is too large
for practical settings. Due to the space limitation, zoomed
figures and additional experiments (including evaluation on
an additional types of attacks, and testing the sensitivity to
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hyperparameters) are presented in the appendix. We con-
duct experiments on two benchmarks: CIFAR-10 image
classification dataset (Krizhevsky, 2009), and WikiText-2
language modeling dataset (Merity et al., 2017).

6.1. Baselines

We use the asynchronous SGD without attacks as the gold
standard, referred to as AsyncSGD without attack.
Since Kardam is the only previous work on Byzantine-
tolerant asynchronous SGD, we use it as the baseline.

One may conjecture that Zeno++ is analogous to training
on the validation data. To explore this, we consider train-
ing only on S – assumed to be clean data on the server,
i.e., update the model only using v = ∇fs(x) on the
server, without using any workers. We call this baseline
Server-only. We fine-tune the learning rate and show
the best results of Server-only.

6.2. CIFAR-10

The CIFAR-10 image classification dataset (Krizhevsky,
2009) is composed of 50k images for training and 10k
images for testing. We use a convolutional neural net-
work (CNN) with 4 convolutional layers followed by 2
dense layers. The detailed network architecture can be
found in our submitted source code (will be released upon
publication). From the training set, we randomly extracted
2.5k of them as the validation set for Zeno++, the remain-
ing are randomly partitioned onto all the workers. In each
experiment, we launch 10 worker processes. We repeat each
experiment 10 times and take the average. Each experiment
is composed of 200 epochs, where each epoch is a full pass
of the training dataset. We simulate asynchrony by drawing
random delay from a uniform distribution in the range of
[0, kw], where kw is the maximum worker delay (different
from the maximum server delay k of Zeno++). In all the
experiments, we take the learning rate γ = 0.1, mini-batch
size n = ns = 128, ρ = 0.002, ε = 0.1, k = 10.

We use the top-1 accuracy on the testing set and the cross-
entropy loss function on the training set as the evaluation
metrics. We also report the false positive rate (FP), which is
the ratio of correct gradients that are recognized as Byzan-
tine and filtered out by Zeno++ or the Kardam baseline.

6.2.1. EMPIRICAL RESULTS

We first test the convergence when there are no attacks.
For Kardam, we take q = 2 (i.e. here Kardam assumes
that there are 2 Byzantine workers). The result is shown
in Figure 1. Zeno++ converges a little bit slower than
AsyncSGD, but faster than Kardam, especially when the
worker delay is large. When kw = 10, Zeno++ converges
much faster than Kardam. Server-only performs badly

on both training and testing data.

We test the Byzantine-tolerance to the “sign-flipping” attack,
which was proposed in (Damaskinos et al., 2018). In such
attacks, the Byzantine workers send −10∇f(x) instead of
the correct gradient∇f(x) to the server. The result is shown
in Figure 2, with different number of Byzantine workers q.
It is shown that when q = 4, Zeno++ converges slightly
slower than AsyncSGD without attacks, and much faster
than Kardam. Actually, we observe that Kardam fails
to make progress when the worker delay is large. When
the number of Byzantine workers gets larger (q = 8), the
convergence of Zeno++ gets slower, but it still makes rea-
sonable progress, while AsyncSGD and Kardam fail. Note
that Kardam performs even worse than Server-only,
which means that Kardam is not even as good as training
on a single honest worker. Thus, when there are Byzantine
workers, distributed training with Kardam is meaningless.

In Figure 3, we show how the hyperparameters ρ, ε, and k
affect the convergence. In general, Zeno++ is insensitive
to ε. Larger ρ and k slow down the convergence.

6.2.2. DISCUSSION

Kardam performs surprisingly badly in our experiments.
The experiments in (Damaskinos et al., 2018) focus on
dampening staleness when there are no Byzantine failures.
For Byzantine tolerance, Damaskinos et al. (2018) only
reports that Kardam filters out 100% of the Byzantine gra-
dients, which matches the results in our experiments. How-
ever, we observe that in addition to filtering out 100% of
the Byzantine gradients, Kardam also filters nearly 100%
of the correct gradients. In Figure 2, we report that the
false positive rate of Kardam is nearly 99%, which makes
the convergence extremely slow. To make things worse,
Kardam does not even perform as good as Server-only.
For these reasons, we discourage the use of Kardam for
distributed training. One reason why Kardam performs
badly is that we use a more general threat model in this
paper, which does not guarantee an important assumption of
Kardam, namely “any sequence of successively received
gradients of length 2q + 1 must contain at least q + 1 gradi-
ents from honest workers”. It is clear that this assumption is
quite strong, as in an asynchronous setting, Byzantine work-
ers can easily send long sequences of erroneous responses.
Our approach does not depend on such a strong assumption.

In all the experiments, Zeno++ converges faster than the
baselines when there are Byzantine failures. Although the
convergence of Zeno++ is slower than AsyncSGD when
there are no attacks, we find that it provides a reasonable
trade-off between security and convergence speed. In gen-
eral, larger worker delay kw and more Byzantine workers q
add more error and noise to the gradients, which slows down
the convergence, because there are fewer valid gradients for
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(a) Top-1 accuracy on testing set,
kw = 5.

50 100 150

Global Epoch

0

0.5

1

1.5

2

2.5

L
o
s
s

 AsyncSGD without attack

 Kardam, FP=80.6

 Zeno++, FP=47.4

 Server-only

(b) Cross entropy on training set,
kw = 5.
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(c) Top-1 accuracy on testing set,
kw = 10.
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(d) Cross entropy on training set,
kw = 10.

Figure 1. Results on CNN and CIFAR-10, without attacks, with different maximum worker delays kw. ρ = 0.002, ε = 0.1, k = 10 for
Zeno++. FP refers to the fraction of false positive detect ions i.e. incorrect prediction that a message is Byzantine.
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(a) Top-1 accuracy on testing set,
kw = 5, q = 4.
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(b) Cross entropy on training set,
kw = 5, q = 4.
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(c) Top-1 accuracy on testing set,
kw = 15, q = 4.
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(d) Cross entropy on training set,
kw = 15, q = 4.

50 100 150

Global Epoch

0

0.2

0.4

0.6

0.8

T
o
p
-
1
 a

c
c
u
r
a
c
y

(e) Top-1 accuracy on testing set,
kw = 5, q = 8.
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(f) Cross entropy on training set,
kw = 5, q = 8.
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(g) Top-1 accuracy on testing set,
kw = 15, q = 8.
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(h) Cross entropy on training set,
kw = 15, q = 8.

Figure 2. Results on CNN and CIFAR-10, with sign-flipping attacks, and different maximum worker delays kw. For any correct gradient
g, if selected to be Byzantine, g will be replaced by −10g. q ∈ {4, 8} out of the 10 workers are Byzantine. ρ = 0.002, ε = 0.1, k = 10
for Zeno++. FP refers to the fraction of false positive detect ions i.e. incorrect prediction that a message is Byzantine.
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(a) Sensitivity to ρ and ε, k = 10, q = 4.
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Figure 3. Sensitivity to the hyperparameters on CNN and CIFAR-10. We test the number of global epochs to reach training loss value 0.2,
with sign-flipping attacks. kw = 15.
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(a) Perplexity on testing set, q = 0.
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(b) Perplexity on testing set, q = 4.
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(c) Perplexity on testing set, q = 6.

Figure 4. Perplexity (the lower the better) on LSTM-based language model and WikiText-2 dataset. We show the convergence under
sign-flipping attacks with maximum worker delays kw = 10. For any correct gradient g, if selected to be Byzantine, g will be replaced
by −10g. q ∈ {0, 4, 6} out of the 10 workers are Byzantine. γ = 20 for all the algorithms. ρ = 10, ε = 2.0, k = 10 for Zeno++. FP
refers to the fraction of false positive detect ions i.e. incorrect prediction that a message is Byzantine. Note that when q = 4 or 6, the
results of Kardam are off the charts.

the server to use. Zeno++ can filter out most of the harmful
gradients at the cost of FP ≈ 50%.

Note that Server-only is an extreme case that only uses
the server and the validation dataset to train the model in
a non-distributed manner, which will not be affected by
Byzantine workers. However, only using the validation data
is not enough for training, as shown in Figure 1. Similarly
in practice, we can use a small dataset separated from the
training data for cross-validation, but will never directly
train the model only on such validation dataset. Furthermore,
as shown in Figure 2, Zeno++ performs much better than
Server-only. Thus, we can draw the conclusion that
Zeno++ is efficiently training the model on the honest
workers in a distributed manner, which is not equivalent to
training on the validation dataset only.

On average, the server computes ns

k = 12.8 gradients in
each iteration, since the validation gradient v of Zeno++ is
updated after every k = 10 iterations. Thus, the workload
on the server is much smaller than a worker. Furthermore,
since we can parallelize the workload on the server and
workers, the computation overhead of v can be hidden, so
that Zeno++ can benefit from distributed training.

6.3. WikiText-2

The WikiText-2 dataset contains over 2 million tokens from
Wikipedia articles, and annotations from Wikidata. We train
a LSTM-based language model with one LSTM layer, and
one dense layer. The dimension of the hidden state is 200.
The back propagation through time (BPTT) is 35. In all the
experiments, we take the learning rate γ = 20, mini-batch
size n = ns = 20, k = kw = 10, ρ = 10, ε = 2. Each
experiment runs 40 epochs, where each epoch is a full pass
of the training data. The other basic settings are the same as
the experiments on CIFAR-10.

We use the perplexity (the exponential of the loss value)
on the testing set as the evaluation metric. We also report
the false positive rate (FP), which is the ratio of correct
gradients that are recognized as Byzantine and filtered out
by Zeno++ or the Kardam baseline.

6.3.1. EMPIRICAL RESULTS

In Figure 4, we test the Byzantine-tolerance to the “sign-
flipping” attack, on LSTM-based language models and
WikiText-2 dataset. It is shown that when there are no
Byzantine workers, Zeno++ converges as fast as vanilla
asynchronous SGD. When there are Byzantine workers,
Zeno++ converges slightly slower than AsyncSGD with-
out attacks, and much faster than Kardam. When the num-
ber of Byzantine workers gets larger, the convergence of
Zeno++ gets slower. In overall, on the language models,
Zeno++ achieves performance similar to what we observe
for CNN.

6.3.2. DISCUSSION

We show that Zeno++ can protect asynchronous SGD from
Byzantine failures on the workers in multiple applications,
including image classification and language models. Com-
pared to CIFAR-10, with smaller kw and q for WikiText-2,
the FP of Zeno++ can be as low as 10%. Note that the
choices of ρ and ε depends on the learning rate γ. Large γ
requires large ρ and ε. Kardam still performs badly due to
the large false positive rates.

7. Conclusion
We propose a novel Byzantine-tolerant fully asynchronous
SGD algorithm: Zeno++. Zeno++ provably converges. Our
empirical results show good performance compared to pre-
vious work. In future work, we will explore variations of
our approach for other settings such as federated learning.
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