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Abstract

Optimally solving decentralized partially observ-
able Markov decision processes (Dec-POMDPs)
under either full or no information sharing re-
ceived significant attention in recent years. How-
ever, little is known about how partial informa-
tion sharing affects existing theory and algorithms.
This paper addresses this question for a team of
two agents, with one-sided information sharing,
i.e. both agents have imperfect information about
the state of the world, but only one has access to
what the other sees and does. From the perspec-
tive of a central planner, we show that the original
problem can be reformulated into an equivalent
information-state Markov decision process and
solved as such. Besides, we prove that the optimal
value function exhibits a specific form of uniform
continuity. We also present heuristic search algo-
rithms utilizing this property and providing the
first results for this family of problems.

1. Introduction

Over the last few years, Dec-POMDPs have been used as
the underlying semantics for (optimal) planning and rein-
forcement learning in sequential decision making by a team
of collaborative agents (Foerster et al., 2018; Rashid et al.,
2018; Dibangoye & Buffet, 2018; Bard et al., 2020). In this
setting, every agent acts simultaneously but can neither see
the actual state of the world nor explicitly communicate its
observations with each other, due to communication cost,
latency, or noise (Bernstein et al., 2002). The critical prob-
lem with this assumption is that every decision variable, at
a given point in time, directly influences any other one at
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the same point. The mutual influence of decision variables
along with their double exponential growth with agents and
time explain the worst-case complexity, i.e. infinite-horizon
cases are undecidable, finite-horizon ones are NEXP-hard,
and finding approximations remains hard (Bernstein et al.,
2002).

Because in Dec-POMDPs, no agent can unilaterally choose
its optimal policy, Dibangoye et al. (2014b) adopted the
viewpoint of a central planner and recast the original prob-
lem into an equivalent non-observable MDP, namely Occu-
pancy MDPs (oMDPs). This framework allows reasoning,
all at once, about mutually dependent decision variables. In
this approach, states are sufficient statistics to jointly find
an optimal assignment to all mutually dependent decision
variables (Szer et al., 2005; Oliehoek, 2013; Nayyar et al.,
2013). In principle, theory and algorithms to optimally
solving MDPs can apply. Unfortunately, given the double
exponential growth of mutually dependent decision vari-
ables with agents and time, even a single update or backup
of a state can be prohibitively expensive (Szer et al., 2005;
Seuken & Zilberstein, 2008; Oliehoek et al., 2013; Mac-
Dermed & Isbell, 2013; Dibangoye et al., 2014c; Kumar
etal., 2015).

In many cases, however, real-world multi-agent environ-
ments contain significant structure. Indeed, several forms of
structure have been investigated in the past, ranging from
loosely coupled dynamics (Becker et al., 2004) and rewards
(Nair et al., 2005) to delayed and full information sharing
(Nayyar et al., 2011). Algorithms that take advantage of
this structure can optimally solve structured problems much
faster than generic ones (Goldman & Zilberstein, 2004;
Oliehoek & Spaan, 2012; Dibangoye et al., 2014a).

While Dec-POMDPs generally assume every agent acts
without full knowledge of what others observe or plan to
do, in many cases, one agent has access to what the others
see and do. In hierarchical organizational structures, for
example, each agent has virtually full knowledge of what
its immediate subordinates see and do. After one agent
takes a decision, its direct subordinates cannot change theirs.
Though these characteristics are embodied in many coop-
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erative real-world applications, including military systems,
corporations, and governments, little can be said so far, the
only exceptions being Hadfield-Menell et al. (2016); Malik
et al. (2018). They considered scenarios where only one
agent has access to (i) the actual state of the world, and (ii)
the action and observation of the other agent. Such a setting
allows one to reason directly upon the belief state—i.e. a
probability distribution over the states of the world. A simi-
lar line of research—beyond the scope of this paper—has
been pursued in (mostly two-player zero-sum) partially ob-
servable stochastic games (Ghosh et al., 2004; Hordk et al.,
2017; Hordk & BoSansky, 2019).

In this paper, we investigate the problem of optimally solv-
ing two-agent Dec-POMDPs under one-sided information
sharing (one-sidedness for short)—i.e. both agents have im-
perfect information about the state of the world, but only one
agent has public actions and observations. From the central
planner’s perspective, public actions and observations allow
us to move from non-observable oMDPs to partially observ-
able ones, branching on possible public action-observation
pairs. Doing so makes it possible to apply the theory and
algorithms for oMDPs (Dibangoye et al., 2014b), albeit on
(i) more concise state representations, e.g. probability dis-
tributions over belief states, and (ii) a piecewise-linear and
convex (PWLC) value function of states. Perhaps the main
result of this paper is the proof that, under one-sidedness,
one can move from a PWLC value function to a linear one,
though in a higher-dimensional space. Exploiting this prop-
erty leads to improved scalability mainly because decision
variables that previously influence one another can now be
decoupled and independently processed. To support our
findings, we provide three variants of the Heuristic Search
Value Iteration (HSVI) algorithm (Smith, 2007) using either
PWLC or linear value-function representations and compare
them on standard problems from the literature.

2. Optimally Solving Dec-POMDPs

We begin with an overview of the multi-agent Dec-POMDP
formalization. Then its single-agent reformulation, that
allows single-agent theory and algorithms to apply.

2.1. Multi-agent Formulation

Definition 1 (Bernstein et al.). A 2-agent Dec-POMDP is
given by M = (X, U, Z,r,p), where X is a finite set of
hidden states; U" is a finite action set of agent i, where U =
Ul x U? specifies the set of joint actions u = (u',u?); Z* is
an observation set of agent i, where Z = Z' x Z? specifies
the set of joint observations z = (2%, 2%); p describes a
transition function with conditional probability distribution
Py y defining the probability of transitioning from state x to
y after taking joint action u and seeing z; and r is a reward
model with immediate reward r(z,u).

Throughout the paper, we make the following assumptions.

Assumption 1. Agent 2 has public actions and observa-
tions, i.e. (u2,22, 1) C 214, for every point in time 7.

Assumption 2. Rewards are two-side bounded, i.e. there
exists some ¢ > 0, such that ||r(-, )|« < c.

Assumption 3. Planning horizon ¢ is finite, since oo-
horizon solutions are e-close to {-horizon optimal solutions,
where { = [log., (1 — )e/c], for discount factor v € [0, 1)
and some positive scalar e.

Optimally solving M aims at finding joint policy , i.e. a
n-tuple of sequences of private decision rules, one per agent,

= (a(l):Ea a?):é)?

maximizing the expected ~y-discounted cumulative rewards
starting at initial state distribution by onward, and given by

vo(bo; ™) = B{Y 0t v (2, ur) | bo, T}

For each agent i, private decision rule a® : o + u’ depends
on th histories 0. = (uf.._;, 2%, ), with Oth private history
being o} = (). Unfortunately, optimally solving M in its
multi-agent formulation is non-trivial, since it is not clear
how to define a right notion of state (Hansen et al., 2004).

To better understand this, notice that every agent acts si-
multaneously, but can neither see the actual state of the
world nor explicitly communicate its actions and observa-
tions with each other. As a consequence, what one agent
sees and does directly affect what the others see and do, thus
the mutual influence of all decision variables a, = (al,a2)
at each time step 7. The motivation for a single-agent re-
formulation is twofold. The primary reason is that it allows
us to reason simultaneously about all mutually dependent
decision variables a, : 0, — u,, a set we shall refer to as a
Tth joint decision rule, i.e. a mapping from joint histories
o, = (ol,02) to joint actions u, = (ul,u?). Besides, it

eases the transfer of theory and algorithms from single- to
multi-agent systems.

2.2. Single-agent Reformulation

This equivalent reformulation aims at recasting M from the
perspective of an offline central planner. Every point in time,
this planner acts all at once on behalf of all agents; taking a
joint decision rule, but receives no feedback. The history of
selected joint decision rules, i.e. a joint policy, describes a
non-observable MDP, namely occupancy MDP.

Definition 2 (Dibangoye et al.). An occupancy MDP w.r.t.
M is given by a tuple M = (S, A, T, R) where S is the
(occupancy-)state space, where (occupancy) states are con-
ditional probability distribution over hidden states and joint
histories given a joint policy followed so far; A is the space
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of actions describing joint decision rules; T: S x A +—

is the transition rule, where §,11 = T'(5;,d,),
§T+1(y7 (07 U, Z)) = Zz€X§T($, 0) ’ agf(o) : p;:;

R: 8 x A+ R describes the linear reward function, i.e.

R(§T,dr) = ZzeX EonéT(x7O) ’ 7“(33, d"'(o))'

Optimally solving M aims at finding value functions (v),
i.e. mappings states to reals, and solution of Bellman opti-
mality equations: for every § € .S,

vr(3) = maxge qp) [R(5,0) +yura (T6,a)] (1)

with boundary condition v;(-) = 0. Given the optimal
value function, one can greedily select an optimal joint
policy. Unfortunately, solving Bellman optimality equations
(1) is not feasible since state space S describes a continuum.
Instead, Dibangoye et al. (2014b) build on the fact that the
optimal value function is a piecewise linear and convex
function of the state space.

Lemma 1 (Dibangoye et al.). When optimized exactly an op-
timal value function of the Bellman optimality equation is al-
ways a piecewise linear and convex in the history-occupancy
space, i.e. for every s,

U3 (87) = max¢, er, Doy 0pen(s,) 5r(2:0) - (- (@,0)

where I is a finite set of vectors (; in the probability space
defined by sample space X x O, the o-algebra X x O,
and /\(8;) is the set of state and joint history pairs with
non-zero probability w.r.t. to §;.

Also, they introduced a backup operator that can circum-
vent the exhaustive enumeration of all joint decision rules
using mixed-integer linear programs. To enhance value
generalization from one state to another one, they provided
equivalence relations among private histories. Altogether,
these operations made it possible to use a couple of single-
agent algorithms to solve multi-agent problems. But, the
scalability remains the major issue.

2.3. Limitations w.r.t. One-Sidedness

The theory above also applies under one-sidedness, but the
curse of dimensionality restricts its scalability in the face
of domains of a practical scale. To better understand this,
notice that its complexity depends on two operators: the
Bellman backup operator necessary to improve the value
function; and the estimation operator useful to maintain
history-occupancy states. In either case, this theory is not
geared to exploit the one-sidedness. Thus, it is typical to
have to consider history-occupancy states and value func-
tions over exponentially many variables, though multiple
variables may have little influence on one another.

Performing the exact Bellman backup operator is infea-
sible because the history-occupancy space is a contin-
uum. Instead, Dibangoye et al. (2014b) suggest employing
point-based Bellman backup operator for each encountered
history-occupancy state. Still, each application of this op-
erator requires enumerating exponentially many joint de-
cision rules, which limits its applicability. Mixed-integer
linear programming formulations of the point-based Bell-
man backup operator exist, but the scalability remains lim-
ited. The reason is not only the time required to perform
the backup but also the time necessary to encode the pro-
gram. The estimation operator is also cumbersome. Indeed,
maintaining history occupancy states, i.e. probability distri-
butions over states and joint histories, requires enumerating
exponentially many joint histories. Besides, this operator
quickly becomes intractable with large planning horizons,
let alone the infinite planning horizon. Finally, the gen-
eralization of values from one history occupancy state to
another one applies whenever they share the same support,
e.g. the sawtooth approximation (Hauskrecht, 2000; Smith,
2007; Dibangoye et al., 2014b).

In this paper, we investigate more concise sufficient statistics
and a PWLC property about the optimal value function
by fully exploiting the one-sidedness. In other words, we
address the following question—how can we improve the
representation of history occupancy states and the PWLC
value function and make backups more efficient to optimally
solving M under one-sidedness? Recently, Hadfield-Menell
et al. (2016) and Malik et al. (2018) investigated the same
question but for M with one-sided partial observability,
i.e. agent 1 (w.l.o.g.) has access to the state of the world
and agent 2’s actions and observations are public. In such a
setting, they demonstrated history-occupancy states could be
restricted to belief states and point-based Bellman operator
made more efficient. While their approach does not apply in
the general case we target, we nonetheless establish strong
connections. In particular, we show that under collective
full observability, i.e. joint observations reveal the actual
state of the world, our approach is equivalent to theirs.

3. From Non- to Partially Observable oMDPs

According to the centralized planning for decentralized exe-
cution theory, a central planner with no observations about
what agents see and do at the online execution phase, can
nonetheless plan on behalf of all agents at the offline plan-
ning phase. To fully exploit the one-sidedness assumption,
we slightly relax this theory in the remainder.

In general, no agent can unilaterally choose its optimal
policy because there is no explicit information sharing. This
assumption explains Dibangoye et al. (2014b) adopted the
viewpoint of a central planner and recast M into equivalent
non-observable o MDP, where sufficient statistics are history
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occupancy states. Whatever actions or observations are
made public to all agents allow, however, recasting M into a
partially observable oMDP, thus branching out according to
possible public actions/observations histories, and reasoning
on more concise sufficient statistics.

3.1. Optimality of Belief-Dependent Policies

The statistics summarizing the information available to the
central planner about the process are called information
states. A straightforward application of Dibangoye et al.
(2014b) shows that the one-sidedness assumption allows
(1) branching on histories of agent 2 and (ii) using, as an
information state at time 7, the probability distribution over
hidden states and agent 1’s histories given history occupancy
state and agent 2’s history, i.e.

Lr(xr,0L) = P(z,,0L | 4;,02).

Also, one can prove that (i) this information state is sufficient
to estimate immediate rewards, and (ii) next information
state ¢, 11 = T'(t,,ar, 2%) depends on current one ¢, joint
decision rule a, = (a',u?), and next observation 22,

1,2
E: ulu? 2t 2
—5 1(01) L7— Z, 0 ply
zeX

tra(y, (o ut 2!

Given the information state, the central planner acts on
behalf of both agents by selecting an action for the second
agent and a decision rule for the first one based upon their
histories. However, the primary result of this paper, cf.
Theorem 1, is the proof that one can equivalently condition
the action selection upon either belief states or posterior
probability distributions over belief states for agent 1 and 2,
respectively. Before proceeding any further, we define two
key concepts, namely belief occupancy states and belief-
dependent joint decision rules.

Definition 3. The belief occupancy state is a probability
distribution' over belief states conditional on the informa-
tion state, ie. Vb € A(X), s; = P(ble;) for any time
T.

We call augmented belief occupancy state a belief occu-
pancy state paired with agent 2’s history 02 (denoted h(s)).
The latter will prove useful to extract the policy of agent 2
given the optimal value function.

Definition 4. The belief-dependent joint decision rule
a; = (a*,u?) at any time T maps belief states to prob-
ability distributions over joint actions, i.e. Vb € A(X),
ar(ulb) = (at(ul|b),u?) and a*: A(X) — A(U?L).

"From Assumption 3, we know the number of joint histories
that belief states summarize is finite, so is the number of reachable
belief states. As a consequence, one can maintain distribution over
reachable belief states.

The primary result of this paper is the proof that, under
one-sidedness, belief-dependent joint decision rules are as
good as history-dependent ones.

Theorem 1 (Proof in App. A.1). In Dec-POMDPs with one-
sidedness, optimal policies depend only upon belief states
for agent 1 and belief occupancy states for agent 2.

This theorem shows that agent 1 with access to joint histo-
ries can act optimally based on corresponding belief states.
Instead, agent 2 has to reason on its belief about agent 1’s
belief states, i.e. the belief occupancy states. It is worth
noticing that if agent 2 has private observations, then both
agents’ policies are history-dependent. However, Theorem
1 holds whether or not agent 2’s actions are made public.
That is because actions can be recovered from observation
histories (Oliehoek, 2013). These policies can be made even
more concise, assuming one-sided partial observability as
in Hadfield-Menell et al. (2016), and Malik et al. (2018),
e.g. (i) agent 2’s actions and observations are public, and
(ii) every joint observation reveals the actual state of the
world. The collective full observability assumption turns
all agent 1’s belief states into states, and thus all agent 2’s
belief occupancy states into belief states.

3.2. Sufficiency of Belief Occupancy States

To demonstrate the sufficiency of both belief occupancy
states and belief-dependent joint decision rules to optimally
solve Dec-POMDPs with one-sidedness, it will prove useful
to establish the following preliminary results.

Lemma 2 (Proof in App. A.2). The belief occupancy state
s describes a process that is Markov, i.e. the next belief
occupancy state, s' = T(s,a, z?), depends on the current
belief occupancy state s, belief-dependent joint decision

rule a and observation 72,

S o< > s(b) Y al(ullb) Zabuzz

beA(s) ul T,y

pIy?

where /\(s) = {b € A(X): s(b) > 0} is a finite subset of
the simplex \(X) and b**(y) o< Y o x b(x) - pii.

Next, we show the belief occupancy states and belief-
dependent joint decision rules are sufficient statistics for
estimating immediate rewards.

Lemma 3 (Proof in App. A.2). For any arbitrary informa-
tion state | and belief-dependent joint decision rule a, the
immediate reward, i.e. R(1,a) = E{r(z,u) |, a}, depends
only upon the corresponding belief occupancy state s:

R(t,a) =Y " s(b)> a(ulb) > b()
b u T

where s(b) =

u) = R(s,a),

P(b|e) for every b € A(s).
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We also show that the belief occupancy state is a suffi-
cient statistic for estimating the probability that an observa-
tion is made public given an information state and (belief-
dependent) joint decision rule.

Lemma 4 (Proof in App. A.2). For any arbitrary informa-
tion state , belief-dependent joint decision rule a, the prob-
ability that observation z2 is made public, i.e. Q(22|1,a) =
P(22 | 1, a), depends on 1 only through the corresponding
belief occupancy state s: Q(22]t,a) = Q(22]s, a), where

Q(22]5,a) = Cpen(s) 8(0) Xy alulb) - blw) 30 Pl
Taking all lemmas together, we note that the process the
belief occupancy state describes is a partially observable
oMDP, namely the belief-occupancy MDP (boMDP).
Definition 5. The boMDP is given by M = (S, A, R, P)
where: S defines the set of belief occupancy states, with
initial belief occupancy state being sq = by, A is the set of
Jjoint decision rules; R: S x A — R defines the immediate
reward after taking joint decision rule in a belief occupancy
state; P: S x A x S — [0,1] describes the probability
Pey =D 0ez QU s, a)é%/(sya’zg) of the next belief oc-
cupancy state s' after taking joint decision rule a in s.

The optimal value function of M is the solution of the
Bellman optimality equation:

s} (@)

We are ready to prove another important result of the paper,
which will make it possible to optimally solve M with one-
sidedness by optimally solving M.

v*(s) = maxaea {R(s,a) +7> ,eq Pl V" (

Theorem 2 (Proof in App. A.2). The belief occupancy state
constitutes a sufficient statistic of the information state for
optimally solving M. Besides, an optimal solution for M is
also an optimal solution for M with one-sidedness.

Following the centralized planning for decentralized exe-
cution theory, it only remains to exhibit and exploit the
properties of the optimal value function, before one can
transfer algorithms from MDP theory and algorithms to
Dec-POMDPs with one-sidedness.

4. Exploiting Value-Function Properties

This section presents perhaps the main results of the paper,
including the proof that the optimal value function is a
linear function of augmented belief occupancy states. Also,
we investigate practical representations of lower and upper
bounds of the optimal value function.

Lemma 5 (Proof in App. B.1). The optimal value function
(V})reqo,....e—1}, Solution of Equation (2), is a piecewise-
linear and convex function of the belief occupancy states.

Moreover, for any time T, there exists a family (A;) of sets

(8:) with | X |-dimensional vectors (called c-vectors) such
that, for any belief occupancy state s,

vi(sy) = nax be;:s )ST(b) [max ;{ b(z)a-(z). (3)

This property shows Lemma 1 also holds under one-
sidedness but now over belief occupancy states, which are
more concise than history occupancy states. Yet, both prop-
erties remain fundamentally different in their generalization
capabilities. Here, the PWLC function over belief occu-
pancy states is a family of PWLC functions over belief
states. That suggests Lemma 5 has more ability to handle
unseen states than Lemma 1. Yet, as we will show in Sec-
tions 4.1 and 4.2, storing and updating PWLC functions is
non-trivial. Maintaining a value function over the entire
belief occupancy space is cumbersome. Instead, one can
alternatively only keep track of the value function induced
by the current best joint policy, as in Dibangoye & Buffet
(2018). That is, we only store and maintain values for belief
occupancy states visited under that joint policy.

Lemma 6 (Proof in App. B.2). If we let 7* be an optimal
Jjoint policy of M with one-sidedness, then the optimal value
function (v})reqo,... i1}, solution of Equation (2), is a
linear function of augmented belief occupancy states s

visited under 7 = (7', 7?), i.e.

Ui (s7) = Ypen(s) 5(0) - Vi (h(s7),b) = V2(h(s-)) ()

where V1: 02 x A(X) — R and V2: O2 — R denote Tth
value functions under policies 7' and 7*

A careful reader may wonder why do we need two value
functions instead of a single one, as V! = (V) cq0,....0-1}
seems to subsume V2 = (V?),c(o,... ¢—1}- The knowledge
of V2 is critical when updating the value function. Intu-
itively, V2 keeps track of the current best values under the
current best policy of agent 2, which is not explicit in value
function V1. Thus, before agent 2 commits to another pol-
icy, one can check whether or not the latter improves the
previous one, hence ensuring updates never commit to worst
policies. Overall, Lemma 6 trades generalization capabili-
ties of Lemma 5 for fast point-based backups.

Theorem 3 (Proof in App. B.2). The point-based backup
of the value functions (V1,V?) at point s satisfies

1 V(h(s),b), if VZ(h(s)) = WZ(h(s))
Vi (h(s),b) = { QL(h(s),b,a®(b)), otherwise,

(h(s)), WZ(h(s))}

where p(b,u) = (b,7(-,u)), and a®, W2, QL are given by:

WZ(h(s)) = Ypen(s) s(0)Q1(h(s),b,a* (b))
a® = argmax(,z 41y Ype(s) S(0) - Qr(h(s), b, a' (b), u?)
Qr(h(5),b,u) = p(b,u) + YEL{V 1 ((A(s), u?, 22), b%7)}

V2(h(s)) = max{V2(
(
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Intuitively, Theorem 3 establishes a policy improvement
strategy of the joint policy embodied into the current lin-
ear value function. It makes possible to perform point-
based backups in polynomial time, i.e. O(|A(s)||U||Z]), cf:
Lemma 7 in App B.2, mainly because it performs local im-
provements of a single joint policy. This result generalizes
to M with one-sidedness a recent efficient backup operator
for M with one-sided partially observability, c¢f. Malik et al.
(2018). Next, we provide different representations of the
optimal value function using either piece-wise linearity and
convexity or linearity properties, along with update rules.

4.1. Lower-Bound Representations

This section presents lower-bound representations of the op-
timal value function using either PWLC or linear properties
from Lemmas 5 and 6, respectively.

The family of sets representation is not commonly used to
update and store lower bounds on the optimal value func-
tion. In such a representation, the value at time 7 of belief
occupancy state s is the maximum projection of s onto a
family A, of sets (8;) of a-vectors, ¢f. Figure 1 in App.
B.1: v (s) = maxg en, D pen(s) S(b) maxaes, (b, ).
Theorem 5 shows a family of sets can represent the opti-
mal value function (v});cqo,... ,—1} exactly. Initially, fam-
ily of sets A, contains a singleton [, which includes
a-vector o, given by: for all state z € X, a,(z) =
(¢ — 7) min,ey r(z,w). Updating v, consists in adding a
novel set of a-vectors into A .

Corollary 1 (Proof in App. B.3). The backup operator of
the lower bound v .., represented as a family of sets, gener-

ates a new set B of a-vectors for a given belief occupancy
state s, i.e. backup(v,,s) = A, U {5}, where

max b a)

By = argmax Z

B2: acA

82 = {af | Wb e A(s)}

a - a(b)sz
X = Z Ap,pe,

z2€Z2

B2 = arg max s(b) (b, ab(g) s )

BEAT 11 pen(s)
> . R(u)

= 72 + Z arg max (b, a™%)
ezl VT a€cf

where o' *() =37 v a(y)p'y, and R(u) = r(-,u), for

anyu € Uandz € Z.

Corollary 1 describes an approach to update the family
of sets by computing possibly a novel set of a-vectors
for each belief occupancy state. However, this operation
can be extremely expensive. Indeed the full complex-
ity of a point-based backup of a family of sets is about

O(A[|ASIIX P22 +UIX[? Z]| A(s)]15||A]). where
8" i
slightly mitigate this drawback using mixed-integer linear
programming, cf. Corollary 2 in App. B.3. But the scala-
bility remains a major issue as the number of sets increases.
Finally, it is necessary to maintain a concise representation
of the lower-bound value function through pruning. Here,
we perform pruning incrementally. We first prune each
set 3 of a-vectors to preserve only a-vectors in /3 that are
non-dominated by other a-vectors in (3 using, for example,
point-wise dominance criterion (Smith, 2007). Next, we
prune sets 5 € A that are dominated by another set 5’ in A,
e.g. all a-vectors in set 3 are point-wise dominated by some
a-vector in set 8'. More efficient pruning procedures exist,
but their application often comes with prohibitive costs.

As for the lower-bound representation using the linearity
property, one relies on tabular representations. Initially,
Vi) = V2() = ({ — 7)min,ey 7(z,u). We update
these value functions as discussed in Theorem 3. No-
tice that, for every updated augmented belief-occupancy
state s, we need to update value function V! (h(s), -) over
the entire belief space. In the tabular representation, we
backup all belief states in A(s) and assign lower bound
(¢ — 7)min,ey 7r(x,u) to any other belief state, yet a set
of a-vectors could advantageously replace the tabular rep-
resentation. To mitigate the number of histories stored in
value functions V! and V2, we retain only a portion of
the entire history. Dibangoye et al. (2014b) show policies
dependent on finite-memory can achieve performances as
good as that of full-length histories. This approach may lead
to approximate solutions.

4.2. Upper-Bound Value Functions

Here, we present upper-bound representations of the optimal
value function using either PWLC or linear properties from
Lemmas 5 and 6, respectively.

The state-value mappings, i.e. ¥ = {(s*) i (%))}, are
commonly used to represent upper-bound value functions
0, such that for any arbitrary belief occupancy state s at
time 7, vi(s) < U,(s) where Vs, b,

U, (s) = min{vwpp(s), vsawrooru(s, &) | K € U}

USAWTOOTH(Sa KZ) = UMDP(S) + max s(b)/credit(/{, b)
beA(s")

s™(b)/(v" — vupp(s™))

where uypp: S — R defines the value induced by the opti-
mal policy of the underlying MDP; and vgpyrgors: S X ¥ —
R describes the sawtooth approximation of the convex hull
of points in ¥ (Smith, 2007), which is preferred to the
convex-hull to make it possible to write the update of the
upper-bound value function as a mixed-integer linear pro-
gram. Updating the upper-bound value function consists in

credit(k,b) =
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adding one point in the point set The update requires the
exhaustive enumeration of all joint decision rules, which
is extremely expensive for large domains. Similarly to the
lower bound, one can slightly mitigate this drawback us-
ing mixed-integer linear programming, c¢f. Corollary 3 in
App. B.3. But the scalability remains a major issue as the
number of sets increases. Finally, it is necessary to maintain
a concise representation of the upper-bound value function
through pruning. We prune points that are dominated if their
values are higher or equal to that obtained using the other
points (Smith, 2007).

Let us now turn our attention to the upper-bound represen-
tation using the linearity property. We proceed as in lower-
bound value functions. Initially, V*(-) = V.2(-) = vupp(+).
Then, we backup these value functions as discussed in The-
orem 3. For every encountered point s, we update all belief
states in A (s) and assign upper bound vypp (b) to any other
belief state b. One can alternatively use the sawtooth ap-
proximation to generalize from one belief to another one.

4.3. Optimally Solving 5oMDPs

In principle any algorithm that applies in information-state
MDPs should also apply in M (resp. M with one-sidedness).
Here, we adapt a state-of-the-art solver for information-
state MDPs, namely heuristic search value iteration (HSVI)
(Smith, 2007), cf. Algorithm 1. We choose HSVI because
it is guaranteed to find an optimal solution in finite time,
cf. (Smith, 2007; Dibangoye et al., 2014b), in contrast to
other alternatives like PBVI (Shani et al., 2013) or POMCP
(Silver & Veness, 2010).

Algorithm 1: The HSVI Algorithm for boMDP M.
function HSVI (sg, ¢) begin
Initialize © and v.

while gap(sg) > e do
| Explore (sp,0).

function Explore (s, 7)begin
if gap(s) > ey~ " then

s* € arg max,, pg;, (6(s') — v(s') — e/77+1).
Explore (s*, 7+ 1).
Update v and v at s.

All variants of HSVI proceed as follows. They generate
trajectories of states greedily guided by upper bounds and
iteratively update lower v and upper bounds v over states.
Each trajectory starts at the initial state, and continues until
either the planning horizon has been reached or the gap
between bounds, i.e. gap(s;) = U,(s;) — v.(s7), is zero.
Once a trajectory terminates, it updates upper and lower
bounds over states along the trajectory in the reversed order

a® € argmax, {R(s,a) +7) ,eg Pl 0(s)}-

of visit. The algorithm stops whenever the gap between
bounds at the initial belief occupancy state is zero. In all
our variants, states are (augmented) belief occupancy states
and actions are belief-dependent joint decision rules. They
remain, however, fundamentally different. They differ in
the way they represent and update lower and upper bounds.

We shall distinguish between three variants, i.e. HSVI (m),
HSVI, and HSVI;. Algorithm HSVI; (m) uses linear repre-
sentations and corresponding update rules. Its convergence
may, however, be significantly affected by the exponential
growth of histories of agent 2 with time. To study this issue,
we will consider m-length histories. Algorithms HSVI, and
HSVI; use PWLC representations, but employ exhaustive
enumeration and MILP to greedily select actions, respec-
tively.

S. Experiments
5.1. Setup

Algorithms. We ran our variants of HSVI algorithm on
an Ubuntu machine with 3.0GHz Xeon E5 CPU and 32GB
available RAM. We solved the MILPs using ILOG CPLEX
Optimization Studio. While algorithms for general Dec-
POMDPs exist, there is no reason they can compete against
our variants since they are not geared to exploit the one-
sidedness. Indeed, the state-of-the-art solver for general
Dec-POMDPs, namely FB-HSVI (Dibangoye et al., 2014b),
shares the same algorithmic schemes with our variants, yet
our variants use more concise notions of states and thus more
efficient update operators. For the sake of completeness,
we report performances for solving underlying MDP and
Dec-POMDP problems using value-iteration and FB-HSVI
algorithms, respectively.

Tested domains. We evaluate our algorithms on multiple
2-agent benchmarks from the literature of Dec-POMDPs
recast into Dec-POMDPs with one-sidedness. All used
domains are available at masplan.org including mabc,
Recycling, Grid3x3corners, boxPushing, Mars, and
tiger. These are the largest and most challenging bench-
marks from the Dec-POMDP literature, ¢f. Table 1 for their
dimensions, i.e. number of states | X |, joint actions |U|, ob-
servations | Z|, and histories |O] = Zﬁ;% |0, perhaps the
most important feature to assess the complexity of a bench-
mark. For each of them we compare our variants of HSVI
for planning horizon ¢ = 10 and discount factor v = 1
and report different statistics, i.e. time, memory, number of
trials, value, and gap. We set the time limit at 5 hours.

5.2. Results and analysis

Results. 1In all tested benchmarks, HSVI; outperforms
both HSVI; and HS VI3, providing near-optimal (if not op-
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timal) values at the initial state. For small domains, e.g.
mabc, where all algorithms find an optimal solution, HSVIy
is 5 and 200 times faster than HSVIs and HS VI3, respec-
tively. For large domains, e.g. Mars, only HSVI; can find
an optimal solution, and it takes about 2 and 3 orders of mag-
nitude less time than both HSVI; and HSVI;, respectively.
Another important observation is that HSVI; performs ex-
tremely cheap trials compared to HSVI, and HSVI3—e. g.
for tiger, HSVI; (9) performs about 652 trials per second
whereas HSVI,; and HSVI; perform about 0.55 and 0.005
trials per second, respectively. However, HSVI, and HSVI3
exhibit faster rates of convergence than HSVI;, e.g. for
Recycling, all variants find an optimal solution, yet with
#it being 83, 50, and 50 for HSVT; (1), HSVI; and HS VI3,
respectively. In all tested benchmarks, the only exception
being Grid3x3corners, HSVI; outperforms HSVIs. For
the domain with the largest |O|, i.e. Grid3x3corners,
HSVI; runs out of memory and was killed by the system.
We also studied affect of hyper-parameter m on the perfor-
mances of HSVI; (m). Of course, the smaller m the more
efficient is HSVI; (m). Non surprisingly, HSVI; (1) finds an
optimal solution for all tested domains, the only exception
being tiger, which required HSVI; (7). However, using
small m may lead to erratic performances. For example on
tiger, HSVI;(m) has lower bounds slightly higher than
upper bounds for m € {1,2,6}.

Analysis. Clearly, the experimental results support our
theoretical findings. First, they show HSVI; outperforms
both HSVI; and HSVI3 mainly because HSVI; makes use
of a polynomial-time backup operator while its competi-
tors employ exponential ones. Next, HSVI; and HSVI3
demonstrate faster rates of convergence w.r.t. HSVI; as
they take full advantage of the generalization capabilities
of the PWLC property of the optimal value function. Un-
fortunately, this advantage does not manifest in the over-
all running time because maintaining—i.e. updating and
pruning—a PWLC representation is prohibitively expensive.
Using the linear representation, HSVI; trades generaliza-
tion capabilities for efficient backups. Also, HSVI; outper-
forms HSVI3 in small- and medium-sized domains, as the
enumeration procedures are cheaper than solving MILPs.
Whenever we face large domains, the enumeration is no
longer feasible, but we can still solve MILPs, up to a cer-
tain point, of course. Finally, we notice erratic behaviors
for small hyper-parameters m than the ones necessary to
preserve optimality. We are pursuing our investigations to
understand better how to choose good hyper-parameters in
HSVI,; (m) for the problem at hand. To complete the anal-
ysis, we also provided experiments for domains with and
without information sharing, i.e. MDPs and Dec-POMDPs.
Non surprisingly, results show MDPs are much easier than
Dec-POMDPs with one-sidedness, which in turn are much
easier than Dec-POMDPs.

Algorithm t (#it)  ©vo(so)  wgl(so)  gap(so) size(v) size(v)
mabe [X[=4, [U[=16, [Z] =16, [O]~2 107
HSVIL (1) 0.004 (10) 9.2901 9.2901 0.0 20 20
HSVI, (2) 0.008 (18) 9.2901 9.2901 0.0 37 37
HSVI, 0.02 (1) 9.2901 9.29 0.0001 10 11
HSVI; 0.8 (1) 9.2901 9.29 0.0001 10 11
MDP 0.0 - 9.7856 9.7856 0.0 1 1
Dec-POMDP 0.78 - 9.30 9.29 0.1 - -

tiger [X| =2, [U] =9, |Z] =4, |O] =~ 2.3- 10%

HSVI, (1) 0.04627 (34)  35.0464  35.185 —0.139 117 117
HSVIL(2) 0.08167 (55) 36.7758 36.8574  —0.082 269 269
HSVI;(3) 0.18503  (123) 38.1152  36.4025 1.7127 622 622
HSVI, (4) 0.32220 (217) 38.1582 35.6555  2.5027 1159 1159
HSVI, (5) 0.85365  (570) 37.6476 35.8861  1.7615 2684 2684
HSVI, (6) 1.53857  (987)  37.4912 37.5 —0.0088 4909 4909
HSVIL(7) 2.3 (1477) 37.5 37.5 0.0 8061 8061
HSVI;(8) 3.12085 (2022) 37.5 37.5 0.0 11171 11171
HSVIL (9) 3.57568 (2333) 37.5 37.5 0.0 12283 12283
HSVI, 491.5 (274) 37.5 37.5 0.0 1090 653
HSVI3 17916 (88) 39.42 37.5 1.9 432 354
MDP 0.0 - 200.0 200.0 0.0 1 1
Dec-POMDP 65.57 — 15.194 15.184 0.01 — —
Grid3x3corners [X| =81, [U] =25, [Z] =81, [O] ~ 1.3 - 10717

HSVI; (1) 16.8 1) 4.779 4.751 0.028 1769 1769
HSVI, (2) 50.5533  (218) 4.78459 4.75261  0.03198 5593 5593
HSVI, — out of memory —

HSVI; 20806 (11 4.831 4.588 0.243 75 99
MDP 0.02 - 4.8819  4.8819 0.0 1 1
Dec-POMDP  34.42 — 4.69 4.68 0.01 - -

Recycling [X| =4, [U[=09, [Z] =4, [O] ~ 107
HSVIL (1) 0.016 (14) 32,1953 32.0743 0.13 83 83
HSVI; (2) 0.056 (36)  32.2636 31.9072  0.3564 273 273
HSVI, 0.81 (49) 321893  32.1893 0.0 150 50
HSVI3 212 (20)  32.1893  32.1893 0.0 89 50
MDP 0.0 - 33.8208  33.8208 0.0 1 1
Dec-POMDP 0.52 — 31.873 31.863 0.01 = —
boxPushing [X| = 100, [U] = 16, [Z] = 25, O] ~ 10°"T
HSVIL (1) 1.06659 (48) 228.035 228.035 0.0 367 367
HSVI, (2) 2.00303 (102) 228.032 228.031 0.001 677 677
HSVI, (3) 4.67623  (226) 228.031 228.031 0.0 1269 1269
HSVI, 4883.38 (29) 228.303  228.067 0.236 165 248
HSVI; 18195.7 (7 228.696  210.155 18.54 52 67
MDP 0.019 - 244.849  244.849 0.0 1 1
Dec-POMDP  293.7 - 223.75 223.74 0.01 - -
Mars |X| = 256, |U] = 36, |Z] = 64, O] ~ 2.6 - 10°%

HSVIL (1) 34.0906  (64) 26.5991  26.5983  0.0008 557 557
HSVI; (2) 27.8468 (62) 26.5482  26.5482 0.0 543 543
HSVI, 13196.4  (34) 27.4218  26.5723 0.85 135 204
HSVI3 19045.7 (30) 27.4295  26.5545 0.875 121 187
MDP 0.398 - 28.6133  28.6133 0.0 1 1
Dec-POMDP 62.7 — 26.32 26.31 0.01 - —

Table 1. Running time ¢ (in seconds), number of iterations #it,
upper and lower bound values at the initial state, the gap between
bounds, and sizes of upper and lower bounds.

6. Discussion

This paper provides the first theory and algorithms to solve
two-agent Dec-POMDPs with one-sided information shar-
ing optimally. Findings include proofs that (i) a sufficient
statistic for optimal decision making is the belief occupancy
state, (ii) the optimal value function is PWLC in the belief-
occupancy space and linear in a higher-dimensional space,
and (iii) a polynomial-time point-based backup operator
exists. We also present three HSVI variants utilizing these
properties, hence providing the first experimental results on
this family of problems. This paper specializes a previous
work on Dec-POMDPs (Dibangoye et al., 2014b; Dibangoye
& Buffet, 2018) by providing more concise sufficient statis-
tics and efficient backup operators. Besides, it generalizes a
recent work on two-agent Dec-POMDPs with one-sided par-
tial observability (Hadfield-Menell et al., 2016; Malik et al.,
2018)—here, however, we assume both agents have partial



Optimally Solving Two-Agent Decentralized POMDPs Under One-Sided Information Sharing

observations about the state of the world. We hope this work
will serve as a theoretical building block for the growing
field of cooperative multi-agent reinforcement learning (Fo-
erster et al., 2018; Rashid et al., 2018; Dibangoye & Buffet,
2018; Bard et al., 2020).

At the core of most methods in this field is the planner-
centric viewpoint, which allows a central planner to turn
the original problem into an information-state MDP, where
the information state is a partial joint policy (Szer et al.,
2005). Another critical step was the proof that this reformu-
lation allows (i) planning based on sufficient statistics of the
partial joint policies, i.e. history-occupancy states, and (ii)
exploiting the uniform-continuity property of the optimal
value function (Dibangoye et al., 2014b). This paper shows
that improved scalability can be achieved by (i) using the
linearity property of the optimal value function as in (Diban-
goye & Buffet, 2018), (ii) performing local improvements
of this value function as in (Malik et al., 2018), and (iii)
properly selecting the right history length of interest for the
given problem at hand. We are currently investigating the
question of how to take full advantage of the PWLC optimal
value function while still preserving efficient backups. We
shall extend our theory to hierarchical information-sharing
structures—i.e. agent n knows all agent (n-1) knows, agent
(n-1) knows all agent (n-2) knows, and so on—by reducing
them into acyclic structures similarly to topological ordering
approaches (Dibangoye et al., 2008; 2009). Several other
questions are still open, including the ability to apply these
insights to broader settings, e.g. in non-cooperative settings
(Horék et al., 2017; Hordk & Bosansky, 2019), or under
incomplete knowledge about the model.

Software and Data

The software and data we used to generate the experi-
ments are available at https://gitlab.inria.fr/jdibango/osis-
dec-pomdps.
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A. From Non- to Partially Observable oMDPs

A.1. Optimality of Belief-Dependent Policies

Theorem 1. (originally stated on page 4) In Dec-POMDPs with one-sidedness, optimal policies depend only upon belief
states for agent 1 and belief occupancy states for agent 2.

Proof. We construct the proof by induction. We show that at the last step 7 = ¢ — 1 of the process, joint policy depends on
histories only through corresponding belief states, i.e. for every information state ¢y_1

ar—1(te-1)
= argmax Z Z v1(Te-1,0p1) (w1, a5_1(04_1),uf_y)

a} 1 u?, 1 1 1
_1oUp_ .
2 4 0;_1€0;_, T 1€X

= argmax Z Z P(xg-1,05_1|te-1) - 1(we-1,a5_1 (0p_1), uf_)

% 177e—1 1 1 X
Ay _1,Uy_ X
¢ Oy IEOZ 1 e 1€

= argimax Z Z P(0L1|LZ71) : P(xffl‘oéfp Le-1) 'r(xfflvaéfl(o}fl)vuifl)

% 17e—1 1 1 X
Ay_1,Uy_ X
¢ Oy IEOZ 1 e 1€

= argmax Z Z 5?3(40;71”,1) Z b(ae-1) - P(oj_y|te—1) - 7(@e-1,a5_1(05_1), uf_y)

ab_,,u? 1 1 X
=1%ot ol €0l bEA(X) e1€

= argmax arg,: Z Z 5P( ol ,wey) DAX Z b(xe_1) - Plop_y|te—1)-r(xze_1,a;_1(0p_1),us ;)
K

2 Ul
Y1 ol €0l | beA(X 1€V ex
= ar b( -7 ( {15 U 1) P(0j_ylee-1) - 67
= argmax argg max (e—1) - T(To—1,up_1, U5y Og-1lte—1) = 0pcior )
uy_1 bEA(X = zp_1€X 0j_1€0;_4
1 2
= argmax arg,: E max E b(xp—1) - r(To—1,up_q1,u5_q) - P(blee—1)
u%71 beA(X 71 rp_1€X

1 2
= argzmax arg,: Z se—1( max Z b(xe—1) - r(To—1,up_q1,Uf_1)
Ue—1 beA(X) Ui zp_1€X
- 1 b . . . .
where s;_1(b) = Z% ot P(oj_qlte-1)- 5P(‘|o;,1,u71) denotes the belief occupancy state given information state t_1.
Thus, the hypothesis holds at the last step.
As for the induction step, we can show that if joint policy from step 7 + 1 onward depends only upon belief states and
belief occupancy states for agent 1 and 2, respectively; then joint decision rules at step 7 depend on histories only through

corresponding belief states and belief occupancy states for agent 1 and 2, respectively. The selection of the joint decision
rule at 7 is written as follows:

ar(1) = arg max Z Z O{at (o1),u2) Z (x,0") [r(w,u) + Z Z P Z 5(01 u Z)UT+1(y, i1,a,2%)

a=(a',u?) oleOl uelU zeX 2€Z yeX 1€Ol+1

Using the induction hypothesis, i.e. v,41 depends on histories 6! only through induced belief state P(-|6!, ¢, a, 2?), we then
obtain:

= arg, argmax Z argmaxZé(al(ol)uz) Z oz, 0t (z,u —|—vz pryy Z 6(0 UZ)UT+1(y,b a2,

1
oteor WEU' weu zeX 2€ZyeX  gleol,,

where b°" () = P(x|o%, by) is the posterior distribution over hidden states z given initial belief by and history of agent 1’s
o' Next, if we let u(z,0") = 37, A (x) b(2)8p( 51,y P(0"|1), then we have that:

= arg, arg max Z argmaxZé(a ol),u?) Z Z b(z)db, (1ot Plo )

1 1
u oteor W EU TEX beA(sy)
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1 o
.7;‘ u +WZ prl”y Z 6€ol,u,z)UT+1(y7bo ;L7a722) s

zeZyeX o e071_+1

Besides, if we let b"*(y) oc > o x b(x) - pys; for any (u,y, z), then we obtain:
b
= arg,: argurznax 12 az%enll]?XZ(S(al(o u?) Z Z b(x)dp (o1, P (0 o) r(x,u +fyz pru Uy 1 (y, 0750, a, 2%)
oleOl z€X beEA(s7) z€Z yeX

Rearranging terms, i.e. pushing terms depending on o' in the right-hand side and those depending on b on the left-hand side,
we obtain:

= arg,: arg max Z max, Ot u2) Z b(z) |r(z,u +WZ Zp Z v (y, 075, a, 2%) Z 5?;(_‘51’L)P(01‘L)

E YN = zEX 2€Z yeX oleo!
Given that s-(b) = 3" 1 con 52,(451 L)P(01|L), we have:
a, (1) = arg,: arg max Z IPa[}]{l Z Ot u2) Z b(x) [r(z,u)+~ Z Z Day - Ur41(y, 0750, a, 22)
W e n(sy) vV wer zeX 2€Z yex
Having demonstrated the statement for time 7, therefore the property hold for every time step. [

A.2. Sufficiency of Belief Occupancy States

Lemma 2. (originally stated on page 4) The belief occupancy state s describes a process that is Markov, i.e. the next belief
occupancy state, s' = T\(s, a, z?), depends on the current belief occupancy state s, belief-dependent joint decision rule a

2
() Z s(b) Za (ut|b) Z(Sbu - Zb(m) Py
) ul T,y

and observation z°,
beA(s

where A(s) = {b € A(X): s(b) > 0} is a finite subset of the simplex A(X) and b**(y) o< Y b(z) - pys.

Proof. The proof proceeds first by deriving equations that lead to the update rule for belief occupancy states. Then, we
discuss the properties that explain the successive equations.

Sr41(brt1) = P(bryaltrir) S))
= P(bryilir,ar, 2244) (6)
= P<bT+17LT7aTv 72—+1)/P(LT7CLT’ 2+1) @)

ocz Z Z P(brybrgt, ey Grytry 271, 224 1) ®)

br ur€U 21 1,,€20

X Z Z Z T+17ZT+1|bT7LT7aT7uT)P(uT|bT7LT7a‘T)P(bT‘LT7a’T)P(LT)aT) (9)

by ur€U 21 Jrl€Z1

X Z Z Z -,—Jrl,ZT+1|bT,tT—,a?,’U/T)P(u7|b-r,t?7a-,-)P(b-,—‘L-,—,ﬂ?) Ty AT (10)

by ur€U 21 +1621

X Z Z Z P 7-+1,Z7-+1|b7-,’u,7-) (u7|b77a‘r)P(bT|L‘r) an

by ur€U 2?1 Jrl€Z1

X Z Z Z P(bT+1) Z‘r+1|b7'au7') : CLT(U7—|b7—) ' ST(bT)' (12)

brEA(s,) ur€U 21 €21
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The first equation (5) follows directly from the definition of belief occupancy states. We obtain (6) by replacing ¢, by
(tr,ar, 22 +1) given a belief-dependent joint decision rule a,. The application of the Bayes’ theorem results in (7), it is
worth noticing that the normalizing constant is given by: P(t,,ar, 22, ;) = 2o, P, i, ar, 22,1). We use the law
of total probability to get (8). Then, successive applications of Bayes’ theorem lead to (9). Equation (10) results from
removing terms that have no effect on the corresponding factor. The first factor in (10) describes the probability of being in
next belief b, 1 and observing z, 1 depends only upon the current belief b and joint action w., but not on (¢, a). This
quantity describes the dynamics in the belief states given by: for any arbitrary b, 1, 2741,

— sbr+1 § E Ur .2
P(bT+1aZT+1|bT7uT 6 :;T Er 41 b 'TT pg,:x:_ii

xr€X Tr41E€EX

where by 7“7t is the next belief state after taking joint action u, and observing joint observation z, | starting at belief state

b-. The second factor in (10) describes the joint decision rule, which prescribes joint action conditional on joint belief states,
thus it is invariant w.r.t. to the information state. The third factor in (10) defines the probability of being in a joint belief
state at the current epoch given that we know the current information state, i.e. the belief occupancy state. Non surprisingly,
this quantity does not depend on the current (belief-dependent) joint decision rule, which only affect the future joint belief
states. The last factor is the probability of being in the current information state and prescribing a joint decision rule. Since
the centralized algorithm has access to both data this probability is always 1. Altogether, these properties lead to equation
(12), which ends the proof. O]

Lemma 3. (originally stated on page 4) For any arbitrary information state v and belief-dependent joint decision rule a, the
immediate reward, i.e. R(1,a) = E{r(z,u) | ¢,a}, depends only upon the corresponding belief occupancy state s:

R(1,a) = Z s(b) Z a(uld) Z b(x) - r(z,u) = R(s,a),
b u T
where s(b) = P(b|.) for every b € A(s).

Proof. The proof proceeds by expanding the expectation over rewards conditional on information state ¢ and (belief-
dependent) joint decision rule a:

R(1,a) = E{r(z,u) | ¢,a} (13)
= Epop(0),u~P(-|ab),a~P(-p) {7 (@, u) } (14
= Y POl Pula,b) Y Pxfp) - r(x,u) (15)

beA(s) uelU zeX
= > s> alulp) > bx)-r(z,u) (16)

beA(s) uelU zeX

= R(s,a) a7
which ends the proof. O

Lemma 4. (originally stated on page 5) For any arbitrary information state 1, belief-dependent joint decision rule a, the
probability that observation 22 is made public, i.e. Q(2%|t,a) = P(2? | 1, a), depends on v only through the corresponding
belief occupancy state s: (22|, a) = Q(22|s, a), where

Q(Z2|S7 CL) = ZbGA(s) S(b) Ez,u,y a’(u|b) : b(.’l?) Ezl p;:?j

Proof. The proof proceeds by expanding the expectation over probabilities p;7 conditional on information state ¢ and joint
decision rule a:

Q(2%|1,a) = P(2%|1,a) (18)

Z ZZZZ (b,x,y, 24, 2% u | ,a) (19)

beA(s) zl ezt uelU zeX yeX

Z P ZPu|a,b Z P(z, 2% | b,u) (20)

beA(s) uelU ztezl
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= D s(0)) alulb) > bx) > Y pL: 1)

beA(s) uelU zeX 2lezt yeX
= Q(2%|s,a) (22)

which ends the proof. U

Theorem 2. (originally stated on page 5) The belief occupancy state constitutes a sufficient statistic of the information state
for optimally solving M. Besides, an optimal solution for M is also an optimal solution for M with one-sidedness.

Proof. In demonstrating the sufficiency of the belief occupancy state with respect to its corresponding information state,
we need to demonstrate (i) the optimal value function at a belief occupancy state is identical to that of its corresponding
information state and (ii) the future belief occupancy state depends only upon the current belief occupancy state, the current
(belief-dependent) joint decision rule, and the next observation of agent 2. We proved (ii) in Lemma 2, so it only remains to
prove statement (i). We show (i) by induction starting with the finite planning horizon and then extending the reasoning to
infinite planning horizon.

The sufficiency of the belief occupancy state w.r.t. its corresponding information state trivially holds at the last time step of
the problem. In fact, v} (¢7) = v}[ Z(Sg) = 0 for any arbitrary information state ¢, and its corresponding belief occupancy
state s since the planning horizon has been reached. If we assume the statement () holds for epoch 7 4+ 1 onward, we can

now show it also holds for epoch 7.

For any arbitrary information state ¢, given belief-dependent joint decision rules instead of history-dependent ones, Bellman
optimality equation suggests the following:

v7(tr) = max Rtrar)+ > Q2 ar) - 05 (T(er,an,22,0)) ¢ - (23)
o 22, . €22
T+1

by an abuse of notations, we are using 7'(-) to describe the next information state as well as the next belief occupancy state.
From the induction hypothesis, we have v (T'(tr, ar,22,)) = U}LTH (T(s7,ar,22,1)),if s; corresponds to the belief
occupancy state associated to ¢,. Taking this together with Lemmas 3 and 4, Equation (23) results in the following:

vi(r) = max § R(sroar) + Y QeTilsear) vy (T(srar,2740) (24)
! 22,,€22
= UXZ’T(S-,—), (25)

which ends the proof of statement (i) at epoch 7.

As a consequence, statement (¢) holds for any arbitrary information state and any epoch. Combining statements (¢) and (i),
we are guaranteed to find an optimal joint policy for boMDP M by using belief occupancy states instead of information
states. As such, an optimal joint policy for boMDP M, together with the correct estimation of the belief occupancy states,
is also optimal for the information-state partially observable MDP (or the original Dec-POMDP with one-sidedness M).
Given the optimal value function of M, an optimal joint policy ™ = ag,.,_, is given by: for all belief occupancy states s,

ay = argmax { R(sr,ar) + Z Q(22,1]sr,ar) 'U}LT_"_l(T(ST,aT, 22.1). ¢ (26)

ar 2 2
zZ7 €z

Unfortunately, finding the optimal value function for infinite planning-horizon is undecidable (Bernstein et al., 2002).
Instead, we restrict attention to e-optimal value functions, for any arbitrarily small positive scalar € > 0. Corresponding
joint policies that act optimally over a finite number of steps £ = log., (1 —7)¢/|7||oc and act randomly over the remaining
lifetime of the process, proved to be within € of the optimal ones. Since finite-horizon value function solution of Bellman
optimality equations are PWLC function of belief occupancy states, so are e-optimal value functions over an infinite horizon.
Which ends the proof. O
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B. Exploiting Value-Function Properties

B.1. Piecewise Linearity and Convexity Property

=
<
= s ! ® 5
5 g = ® 5
= 8 = e 3
w = -
5 8 b1
g g o
b N
g
%
g
s b

Figure 1. Representations of the lower-bound value function as either a set of collections of a-vectors (LHS) or the upper-envelop of linear
functions of belief occupancy states (RHS). Notice that one can always go from LHS to RHS representation but not the other way around,
using a convex combination of a-vectors. That explains LHS exhibits more generalization capabilities than the RHS representation.

Lemma 5. (originally stated on page 5) The optimal value function (V) cqo,... i1}, solution of Equation (2), is a piecewise-
linear and convex function of the belief occupancy states. Moreover; for any time T, there exists a family (A;) of sets (3;)
with | X |-dimensional vectors (called a-vectors) such that, for any belief occupancy state s,

vi(s;) = max Z sr(b) max b(x)a,(x). 3)

ar€
T BTIGX

Proof. We show Equation (3) holds by induction. Since v; ;(s¢—1) = 0 for all s,_; as the horizon has been reached,
we have that vj_;(s¢—1) = maxg, ;en, s Dopen(s, ;) Se—1(0) maxa, yep,, (b, ar—1) = 0, where Agy = {Br_1},
Be—1 = {ay—1},and ap—1(-) = 0. Hence, the statement holds for 7 = ¢ — 1.

Assume the statement holds for 7 4+ 1 onward. Now we want to prove the statement also holds for 7, starting with Eq. (3),

vy (sr) = Crlng)j R(sr,ar) +~ Z plsl:,s,ﬂ : U:+1(ST+1)
-

Sr41
Using the induction hypothesis, we have
vi(s;) =max | R(sr,ar;)+7 g Pel soin max g Sr4+1(br+1) max E bri1(x) - aryr(x)
ar€A Br+1€Ar 11 ar41€68r+1
Sr41 brp1EA(St41) zeX

Next, we shall use short-hand notations R(u) to denote an a-vector, mapping from states x to rewards r(x, u), b**(y) x
> wex 0(x) - pif, of. (Shani et al., 2013), and P(z|b,u) = 37 >, cx b(x) - py:5. Using short-hand notations
zry1 = (224, 2%,1), R(u), b%, P(zr11]bs, u,) and Theorem 1, lead to

R(a, (b)) b
= max max St bT b‘r7 —) t+ P Zr b‘r;a'r b.,_ max bgT( 7)7ZT+1’QT
map 2 g el | CnTmm e 3 Plarslbeo®) mas )
2r41 T 214

Re-arranging terms we successively obtain:

= max Z max Z sr(br)

ar€A 72 Br41€A 41 .

2
ZT+1 T
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R(ar (b)) Py
7) + P(ZT 1|bT7aT(bT)) max Qr 1(9) .

‘Z2| e %1. * ar1€6-41 wyZeX - P<Z‘r+1|b‘ra a’T(bT))
T4+1 . ?

P(z.,.+1|b,.,a.,.(b7-))>0

(b, b ()

Removing factor P(z;1|b-, a,(b;)) results in:

R(a- (b, " _
SR I SACR) IR S PRI DI D DU DI
br €x

ar€A Br41€A 41 ar1€L8r41
A T

ZEJA Zi+1€Zl: yeX
P(zr41lbr,a-(br))>0

Ur,Zra1g \ - Ur,zri1 .

Ifwelet o 77" (2) = 37,y ary1(y)paly "', then we have that:
R(a-(b-)) ar(br),2
_ 7(br),2r 41
= max g max E $7(br) | (brs ——57—) +7 E max (br, o7y )
ar€A [57+1€AT+1 |Z ‘ ar(br),zrq41 | 8
z$+16Z2 [ 271,+1€Z1: Xrt1 Parp1€0r41

P(Z7—+1 ‘b-,—,tlr (bf))>0

T bT a z
= f}gﬁ Z max bz ST(bT) <bT, R(TZ(Q)) + 5 Z arg max <b.,., Oé‘rjr(fr)y r+1>>

Br+1€A- 11 ar(br),zrq1
2 2l ezt o T a1 €8y g

P(ZT+1 ‘b-,—,af(bq—))>0

2
Zr41

We can now express v (s, ) in the desired form

vr(sr) = max > s(b) max(b,a)
beA(s)

B = {aj [ Vb: s(b) > 0}

a - a-,Zz
Oéb = ab7ﬂ:2

z2e22

%, = arg max Z s(b)(b,ag"gz)
BEAT+1 pen(s) ’

=2 . R(a(b)) 3

BT 22 + argmax (b, a*)?)

ezl aa(b),z acpf
P(z]br,a(b))>0

which ends the proof of statement at time 7. As a consequence, statement holds for any arbitrary time. O

B.2. Linearity Property

Lemma 6. (originally stated on page 5) If we let ©* be an optimal joint policy of M with one-sidedness, then the optimal
value function (V);cqo,....—1}, solution of Equation (2), is a linear function of augmented belief occupancy states s,
visited under * = (7', %), i.e.

vr(sr) = ZbGA(s) s(b) - V2 (h(s7),b) = V(h(s;)) 4)

where V1 O2 x A(X) = Rand V2: O2 +— R denote Tth value functions under policies ' and 7>.

Proof. We construct the proof by induction. We prove the statement hold for any arbitrary (belief-dependent) joint policy,
thus it also holds for an optimal joint policy.
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Let m = ag.¢—1 be any arbitrary joint policy. Let (S;)r¢go,...,.—1} be any arbitrary trajectory of augmented belief-occupancy
states visited under 7. We show that at the last step 7 = £ — 1 of the process, the value function under 7, denoted vj_, ()=0
is a linear function of augmented belief-occupancy states sg_q if we let V| (+,-) = V2 ,(-) =0, i.e.

vii(see) = Y seea(0) - Vi (A(se-1),0) = V2 (R(se-1)-
bGA(Se—l)
Thus, the hypothesis holds for the last step.

As for the induction step, we can show that if value functions (v, ,,...,vj_) are linear functions of any arbitrary
augmented belief-occupancy states (s;41,. .., S¢—1) reachable under 7, respectively; then value function v7 at step 7 is
also a linear function of augmented occupancy state s,. We start with the Bellman equations

VI (s7) = R(sryar) +9 > P,y U (5r11)-
sr41€S

Using the induction hypothesis, i.e. U7, 1(8r+1) = 22 ca(s,,y) Sr+1(0r+1) - Vi (R(8741), br41) = V21 (B(8741)),
we obtain:

vr(sy) = R(ST7 a‘r) +7 Z P?:’STH Z 3‘r+1(b7+1) : V-r1+1(h(37'+1)»b7+1)-

Sr41€S bri1E€A(Sr41)

Expanding the expected immediate reward leads us to:

vr(sr) = Z sr(br) Z ar(urlbr) - p(br,ur) + Z Pl s Z Sr41(br41) - V-rl+1(h(5‘r+1)v brs1)-

breN(sr) ur €U $r+1€S br41E€A(Sr41)

a ; : 2 Sr41
Now, let replace pS7 . an equivalent expression (27 [sr, aT)(ST(sT,a.,.,z?_+l)’

vr(sr) = Z s7(br) Z ar(ur|br) - p(br,ur) + Z Q(z_,2_+1|3.r,a7-)

WINTS €U 22, eze
2 1 2
E T(sr,ar, Z7'+1)[b7'+1} : VT+1(h(T(sT, ar, Z~r+1))v bry1)-
b.,.+1€A(T(sT,a.,.,z72_+1))
Ybren(s) St(0r) X ey ar(urlbr) 30 1 1 Pargalbr,ug)
9 . . T st wr r41€ bri1
Next, we replace T'(s, ar, 22 1) [br+1] by an equivalent expression ) (5b1;7,zf+1 ,

vr(sr) = Z s7(br) Z ar(urlbr) - p(br,ur) + 7y Z 9(272—+1|87"a‘r)

b, €A (sr) u, €U 22, €22
Eb,eA(s,) s7(br) Eu,eU ar(ur|br) Zziﬂezl P(zr41]br,ur)

Q2744187 ar)

Vi ((h(sp) 02 22,)), berern).
Re-arranging terms, we successively get:

vl(s;) = Z s7(br) Z ar(urlbr) - p(bryur) +

breA(sy) ur €U
Z Z s7(br) Z ar(ur|br) - P(2r4a|br, ur) - Vrl+1((h(5'r)vu?rvzirl)vbgmz#l)
2r41€Z b €N(S7) ur €U
= Y s:(0)> ar(ulb) {p<b, u)+75 Y P(z[b,u) - v:+1<<h<s7>,u2,z2>,W)}
beA(s;) uelU z€Z
= Y se() Vih(so),b)
beA(s;)

= V2(h(s,))
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Which proves the statement for step 7. Therefore the property holds for any arbitrary joint policy at any time step.
In particular it holds for an optimal joint policy n*, which by definition achieves optimal values over all augmented
belief-occupancy states reachable when following that joint policy. O

Theorem 3. (originally stated on page 5) The point-based backup of the value functions (V1,V?) at point s satisfies

200, V200D 2 W)
V2 (h(s),b) = { "

T QL(h(s),b,a%(b)), otherwise,
VZ2(h(s)) = maX{VQ(h(S)) Z(h(s)}
where p(b,u) = (b,7(-,u)), and a*, W2, QL are given by:
W2(h(3)) = Ypen(s) 5(b)Q1(h(s), b, a>(b))
a® = argmax(,z2 q1) ZbeA(s) s(b) - Q7(h(s),b,a' (b),u?)
QL (h(5), b,0) = (b w) + AEL VL (h(s), 1%, 22), )}

Proof. The proof shows that each backup at any arbitrary augmented belief-occupancy state cannot make either agent
commits to a weaker value function, and thus policy. If we let a® be a greedy joint decision rule for a given augmented
belief-occupancy state s at time 7, then the following holds:

a® = arg max Z Z ub){ (b,u) +'yZP (z]b,u) - T+1((h(3)’u2’22)’bu,z)}

€A pEn(s) el ey
= arg max b h(s), b,
g Z b) Y a(ulb) - Q((h(s),b,u)
beA(s uelU
= arg max Z s(b) arg max QL ((h(s), b, u).
u2eU? bEA(5) b—uleU!

In order for greedy joint policy a® to meet the conditions of the policy improvement theorem, we need to ensure the value at
s after taking a® and then following the current joint policy is better or equal to the value under the current policy, i.e.

Y s(b)- Qi((h(s),b,a°(b)) = vr(s) = VE(h(s)).

beA(s)

It is worth noticing that we cannot make use of 37, 1 () s+(b) - V1 (h(s,),b) in place of V.?(h(s)), as the former does not
reflect the value under the current joint policy, thus explaining the need for value function V2. If the above condition is
satisfied, then the modified policy 7’ must be as good as, or better than previous one 7, and both agents can commit to their
new policies and update their value function accordingly, i.e.

1 _ [ VE(h(s),0), i VE(R(5)) 2 Fpen(s) 5(b) - @7 ((h(s),b,a% (D))
Ve (hls),6) = { QL(h(s),b,a®(b)), otherwise. et

V2 (h(s)) = max{V2(h(s)), Cpen(s) 5(b) - Qr((h(s), b,a*(b)) }-

It is interesting to notice that greedy joint decision rule a® at augmented belief-occupancy state s is not guaranteed to meet
the policy improvement requirement as value function V2 maintains values about augmented belief states only through
histories of agent 2. Which ends the proof. O

Lemma 7. The full complexity of a point-based backup using the linear representation is about O(|A(s)||U||Z]).

Proof. The complexity of computing QL (h(s), ) is O(|A(s)||U||Z]). Computing W2(h(s)) requires the computation of
QL(h(s), ), but then the summation requires O(|A(s)|). Computing a® requires the computation of Q1 (h(s), -), but then the
summation and the inner arg max require O(|A(s)||U*|), for every u? € U?, hence computing a® required O(|A(s)||U]).
Computing either V.2(h(s)) or V.}(h(s),b) is constant-time, but computing all V! (h(s), b) required O(]A(s)]|). Finally,
computing the point-based backup of a given augmented belief occupancy state s, i.e. computation of a®, is about
o(AIUl1Z]). O
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B.3. Lower-Bound Representations

Corollary 1. (originally stated on page 6) The backup operator of the lower bound v, represented as a family of sets,
generates a new set B of a-vectors for a given belief occupancy state s, i.e. backup(iT7 s) = A U{BE}, where

By = argmax Z s(b) max (b, o)

s
a. €epg
Be: acA bEA(s) a€fyg

Bs =A{aj | Vb e A(s)}
a - a(b),z2
ap = > X,
22€2?
B2 = arg max Z s(b) (b, ab(g) s )
BEAT 11 pen(s)

u22 . R(u
ey |Z(2|) + Z argmax (b, a"?)

ezt av:z: aef
where o*(-) = 37 v a(y)pty, and R(u) = r(-,u), foranyu € U and z € Z.
Proof. See proof of Lemma 5. O

Corollary 2 describes a mixed-integer linear programming subroutine used to search a greedy joint decision rule necessary
to update the family of sets representation of the optimal value function. Alternatively, one can use constraint optimization
programming as well to complete the exact same task since all variables involved can be made boolean. To handle greater-
than constraints we rely on the big-M method. This method add a large positive constant, denoted below M, to discard
some constraints—so they are not part of any solution. In practice, within CPLEX, we are using If ... Then routines, instead.

Corollary 2. The backup operator of the family of sets representation generates a new collection as discussed in
Corollary 1 induced by a given belief occupancy state s and its greedy joint decision rule a* obtain as follows:
a* = argmax,. ,2cp2 giear U where v®% is given by:

Mixed-Integer Linear Program 1 (for a fixed u? € U?).

maxgie Al {R(Sv 0,) + 72z26Z2 ’U)(ZQ)}

st: Y gen.,, 0(z%8) =1, V22 e 72
S uregn al(ulfp) = 1, Vb € {¥b € A(X): s(b) > 0}
w(z?) < D ben(s) T(s,a,z?)[b](b, ab) +(1-60(z%05)) - M, VB € Ary1,2% € Z2
where variables are a' (u*|b) € [0,1], 6(z2, 8) € {0,1}, and w(z*) € R; constants are M an arbitrary large value, i.e. big

M, and a% = argmax,cg (b, ), and T(s, a,2?)[V] = ZbEA(X): s(b)>0 s(b) ZuleUl at (ut|b) Zzlezl P(z|b, u)5£:,,z
forany V.

Proof. From Lemma 5, we have that

a® = arg max Z s Z < (2b|)) + Z arg max <b,a“(b)7z>>

acA 2€Z2 bEA( ) ZIGZ(I: aa(d),z . aEpB
P(z|b,a(b))>0

=argmax | R(s,a)+"y Z max Z < Z arg max (b,a“(b)’z>>

a(b),z .
a€A 22622 bGA (s) zlezt: @ ®)=: aep
P(z]b,a(b))>0

= argmax (R(S,a)-i-’)’ Z w(22)>

a€A z2€Z2
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subject to: w(z*) = max s(b) ( b, g argmax (b, a®®)»#) ) | V22 e 72
BeEA b N . aa®),z: ocp
EA(s) zlez1:

P(z]b,a(b))>0

= argmax (R(S,a)—FW Z w(z2)>

a€A 2cz2

subject to: Z 0(z%,B) =1, V22 e 72
BeEA

w(z2) < Z s(b) <b, Z argmax (b, aa(b)7z>> +(1- 0(7«’276)) ‘M, Vo2 € Zz,ﬂ cA
beA(s) 2lezt: aa(®).z: aep
P(z|b,a(b))>0

= argmax (R(S,a)-i-’)’ Z w(22)>

a€A

z2e€Z?
subject to: Z 0(z%,B) =1, V22 e 72
BeEA
T(s,a, )] = Y s(b) Y. Plzlb,a(h))dhmc - vzt e 220 € A(X)
bEA(s)  zlezt
w(z?) < Zf(s,a, 22)[V] max M, a)+(1—-0(z20)) M, Vele Z2 B e A
(¢S
b/

= argmax (R(S,a) +7 Z w(z2)>

a: u2eU?alec Al

z2€272
subject to: Z 0(z2,8) =1, V2% e 72
BEA
> d'wlfp) =1, Vb e A(X),s(b) >0
uleU?!
T(s,a, 220 = > s(b) D P(z[b,a(h))dhuc. V22 e 220 € A(X)
beA(s) ztezl
w(z?) <> T(s,a,2%) ] max ' a)+(1—6(z%8))- M, V22ez?Bel
ac
b/
where a! and @ are boolean vectors, w is a real vector. Which ends the proof. O

Lemma 8. (originally stated on page 20) The point-based backup of family of sets is about O(|A||A(s)||X ||| 22| +
UIIX 21 Z[|A(s)]|B*]|A]), where | 8] > maxgen || and A(s) = {Vb € A(X): s(b) > 0}.

Proof. The complexity of computing ozg”;z is O(|X|?|Z|8]), and it is done for every u € U, 22 € Z%,b € /\(s),8 € A.
Hence computing all a;’gz required O(|U||X 2| Z]|A(s)]|8*||A]), with |3*| > maxgen |8 and A(s) = {Vb €

A(X): s(b) > 0}. Computing 3¢, requires the computation of some a}f”EQ, but then the summation and the inner products re-
quire O(JA[|A(s)||X ), and it is done for every 22 € Z?, a € A. Thus computing all 3% required O(|A||Z2[|A]|A(s)]| X ).
Computing o requires the computation of all 3%, but then the summation require O(|X || Z?|), for every a € A,b € A(s),
hence computing all o required O(|A||A(s)||X|?||Z?]). Finally, computing 3; requires the computation of 3%, which
consists of af, but then the arg max and inner products require O(|A||X||A(s)]). Hence the full complexity of the
point-based backup of the family of sets is about O(|A||A(s)|| X |?]|Z2] + |U|| X|?|Z|| A(s)]|5%]|A])- O

Theorem 3 describes a mixed-integer linear programming subroutine used to search the greedy joint decision rule necessary to
update the upper-bound representation of the piecewise-linear and convex function of belief occupancy states. Alternatively,
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one could use constraint optimization programming as well to complete the exact same task since all variables involved can
be made boolean.

Corollary 3. (originally stated on page 21) The backup operator of the upper-bound value function generates a new point

s,u?,at

for a given belief occupancy state s as follows: backup(0,s) = ¥ U {(s +— v®)} where v° = max,2¢y2 v® and

s,u”,a

v is given by:

Mixed-Integer Linear Program 2 (for a fixed u? € U?).

;Peaj(l { s,a)+y Z (UMDP s,a,2 ))+w(z2)>}

22€72

sty al(u']b) =1, Vb e A(s)

uleU?
Z 0(2%,b,5) =1,V € W, 2% € Z?
beA(s(®)
T 2)[b
w(z?) < Ts,a, 270 | (1-0(2,b,5))- M, V22 € 22,k € U, b € A(s")

credit(k,b)

where variables are a'(u'|b) € [0,1], 0(22,b,k) € {0,1}, w(2?) € R and constants are M the big M. In addition, the

.. .. . . 2 1
greedy joint decision rule is given by a® = argmaXqi1¢c g1 ,2cpz V500

Proof. From the Bellman optimality equation, we have that

asiargmax< (s,a) +72 T(s,a,z* ) (27)

acA z2€22
min T(S,G’ZQ)[b]] (v™ — UMDP(SK))}> (28)

beA(s") s%(b)

= arg max ( (s,a) +~ Z {’UMDP (s,a,z ))+min

aCA ey KEW

= arg max ( (s,a) + 7 Z {’UMDP s,a,2?)) + min max W(v“—vmp(s”))}> (29)

e K
acA et KEW beA(s") s%(b)

= arg max ( (s,a) + 7 Z {’UMDP (s,a,z ))+w(32)}> (30)

a€cA 2ez2

T(s,a,z2)b
subject to: w(z?) = min max I(s,a,2%)[b]
KEW beA(s") S/{(b)

= arg max ( (s,a) + Z (’UMDp s,a,z ))+w(22))} (32)

a€A

(V"™ — vipp(8™)) 31

z2€Z?
n 2
subject to: w(z?) < T(S;Z’(;)[b](v" — vpp(8™)) + (1 — 0(2%,b,K)) - M (33)
> 0% bk) =1 (34)
beA(s7)
= arg max arg max { (s,a) +7 Z (’UMDp s,a,2%)) +w(22))} (35)
u?2eU? aleAl 2ez2
: 2 T(S,G,ZQ)[I)} K K 2
Sub_]eCt to: U}(Z ) S T(b)(v - ’UMDP(S )) + (1 — 9(2 7b, K‘,)) M (36)
Z 0(2%,b,k) =1 (37)

beA(s")

3 alulp) =1 (38)

uleUt
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which ends the proof.

C. Experiments

This section presents supplementary experimental results. It is worth noticing that none of these results alters the conclusions
of the main body of the paper. We start in Table 2 with the complete set of experiments by adding results we obtain for various
memory parameters m ranging from 1 up to 9. These experiments allow us to assess the sufficiency of short-length histories
in many different domains we tested. It also confirms that using longer-length histories incurs significant computational
costs, e.g. using m = 8 for the Grid3x3corners incurs a computational time that is 4 orders of magnitude higher than
the ones using m = 1. Figure 2 shows that not only it increases exponentially the computational time but also the memory
usage. As a consequence, the rates of convergence increase exponentially as the lengths of histories increases. Figure 3
confirms that the rates of convergence of both HSVI; and HSVI; are faster than one for in HSVI; even when the memory
parameter is high, e.g. for the t iger we used m = 7, otherwise we used m = 1.

Algorithm t #it)  0o(s0)  vg(s0)  gap(se) size(v) size(v)
mabc [X| =4, [U][ =16, [Z] = 16, [O] ~ 210"
HSVL; (1) 004 (10)  9.2001  9.2901 0.0 20 20
HSVI, (2) 0.008 (18)  9.2901  9.2901 0.0 37 37
HSVI, (3) 0.014 (28)  9.2901  9.2901 0.0 65 65
HSVI, (4) 0.026 (49) 9.2901 9.2901 0.0 113 113
HSVI, (5) 0.047 (85) 9.2901 9.2901 0.0 193 193
HSVI, (6) 0.090 (147)  9.2901 9.2901 0.0 321 321
HSVI, (7) 0.141 (241)  9.2901 9.2901 0.0 510 510
HSVI, (8) 0.220 (365)  9.2901 9.2901 0.0 755 755
HSVI, (9) 0.304 (472)  9.2901 9.2901 0.0 982 982
HSVI, 0.02 1) 9.2901 9.29 0.0001 10 11
HSVI3 0.8 1) 9.2901 9.29 0.0001 10 11
MDP 0.0 - 9.7856  9.7856 0.0 1 1
Dec-POMDP 0.78 — 9.30 9.29 0.1 — -
tiger [X] =2, [U]| =9, [Z] =4, [O] ~2.3-10°*
HSVI, (1) 0.04627 34) 35.0464  35.185 -0.139 117 117
HSVI; (2) 0.08167 (55) 36.7758 36.8574  —0.082 269 269
HSVI; (3) 0.18503 (123)  38.1152 36.4025  1.7127 622 622
HSVI; (4) 0.32220  (217) 38.1582 35.6555  2.5027 1159 1159
HSVI, (5) 0.85365  (570) 37.6476 35.8861  1.7615 2684 2684
HSVI, (6) 1.53857  (987) 37.4912 37.5 —0.0088 4909 4909
HSVI, (7) 23 (1477) 37.5 37.5 0.0 8061 8061
HSVI, (8) 3.12085  (2022) 37.5 37.5 0.0 11171 11171
HSVI, (9) 3.57568  (2333) 37.5 37.5 0.0 12283 12283
HSVI, 491.5 (274) 37.5 37.5 0.0 1090 653
HSVI3 17916 (88) 39.42 37.5 1.9 432 354
MDP 0.0 - 200.0 200.0 0.0 1 1
Dec-POMDP 65.57 — 15.194 15.184 0.01 — —
Grid3x3corners | X| =81, [U| =25, |Z] =81, |O] ~ 1.3 - 101°1°

HSVI, (1) 16.8 (71) 4.779 4.751 0.028 1769 1769
HSVI, (2) 50.5533 (218)  4.78459 4.75261 0.03198 5593 5593
HSVI, (3) 115.020 (460)  4.7821 4.7642 0.0179 12912 12912
HSVI, (4) 528320 (1964) 4.7810  4.7763 0.0047 46325 46325
HSVI; (5) 1553.950 (5331) 4.7810  4.7758 0.0052 129224 129224
HSVI; (6) 3181.870 (9974) 4.7811 4.7728 0.0083 275852 275852
HSVI, (7) 2994.620 (9289) 4.7817  4.7630  0.0187 287135 287135
HSVI, (8) 3065.500 (9224) 4.7819  4.7616  0.0203 304793 304793
HSVI, — out of memory —

HSVI3 20806 (11) 4.831 4.588 0.243 75 99
MDP 0.02 - 4.8819  4.8819 0.0 1 1
Dec-POMDP 34.42 - 4.69 4.68 0.01 - -

Table 2. Running time ¢ (in seconds), number of iterations #it, upper and lower bound values at the initial state, the gap between bounds,

and sizes of upper and lower bounds.

Algorithm t (#it)  vo(s0) vo(so)  gap(so) size(v) size(v)
Recycling [X| =4, [U[=09, [Z] =4, [O] ~ 10*
HSVI; (1) 0.016 14) 32.1953 32.0743 0.13 83 83
HSVI, (2) 0.056 (36) 32.2636 31.9072  0.3564 273 273
HSVI, (3) 0.090 (55) 322688  32.1256  0.1432 453 453
HSVI, (4) 0.171 (106) 322517  32.0814  0.1703 857 857
HSVI, (5) 0.237 (137)  32.3001 31.4165  0.8836 1181 1181
HSVI, (6) 0.342 (201)  32.2688 31.2314 1.0374 1679 1679
HSVI, (7) 0.449 (265)  32.2453 31.3168  0.9285 2125 2125
HSVI, (8) 0.528 (304)  32.2366 31.4492  0.7874 2327 2327
HSVI, (9) 0.533 (314)  32.2322 31.2614  0.9708 2375 2375
HSVI, 0.81 (49) 32.1893 32.1893 0.0 150 50
HSVI3 212 (20) 32.1893 32.1893 0.0 89 50
MDP 0.0 - 33.8208 33.8208 0.0 1 1
Dec-POMDP 0.52 - 31.873 31.863 0.01 - —
boxPushing | X| = 100, |[U| = 16, [Z] = 25, [O] =~ 1077T
HSVI, (1) 1.06659 (48) 228.035 228.035 0.0 367 367
HSVI, (2) 2.00303 (102) 228.032 228.031 0.001 677 677
HSVIL (3) 3.363 (176)  228.0310 228.0310 0.0 1110 1110
HSVI, (4) 5.59211  (298) 228.0320 228.0320 0.0 1691 1691
HSVI, (5) 7776483 (437) 228.0320 228.0320 0.0 2403 2403
HSVI, (6) 11.24110 (673) 228.0320 228.0320 0.0 3417 3417
HSVI,(7) 14.19540  (851) 228.0320 228.0320 0.0 4365 4365
HSVI, (8) 14.62040 (893) 228.0320 228.0320 0.0 4704 4704
HSVIL (9) 15.03850 (911) 228.0320 228.0320 0.0 4734 4734
HSVI, 4883.38 29) 228.303 228.067 0.236 165 248
HSVI3 18195.7 (7 228.696 210.155 18.54 52 67
MDP 0.019 - 244.849 244.849 0.0 1 1
Dec-POMDP 293.7 - 223.75 223.74 0.01 - —
Mars [X| = 256, [U] = 36, |Z] = 64, [O] ~ 2.6 - 10°%
HSVI, (1) 34.0906  (64) 26.5991 26.5983  0.0008 557 557
HSVI, (2) 27.8468 (62) 26.5482 26.5482 0.0 543 543
HSVI, (3) 26.065 (105)  26.6440 26.3987  0.2453 979 979
HSVI, (4) 29.973 (129)  26.6388 26.4226  0.2162 1272 1272
HSVI, (5) 37.239 (171)  26.6473 26.3900  0.2573 1554 1554
HSVI, (6) 60.564 (377)  26.5667  26.5417  0.0250 3075 3075
HSVI;(7) 62.682 (393)  26.5667  26.5415  0.0252 3144 3144
HSVI, (8) 61.664  (394) 26.5668  26.5362  0.0306 3166 3166
HSVI, (9) 63.425  (410) 26.5667  26.5362  0.0305 3237 3237
HSVI, 13196.4  (34) 27.4218 26.5723 0.85 135 204
HSVI; 19045.7 (30) 27.4295 26.5545 0.875 121 187
MDP 0.398 - 28.6133 28.6133 0.0 1 1
Dec-POMDP 62.7 - 26.32 26.31 0.01 - -
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Figure 2. Experiments conducted on the t i ger problem using the same experimental setup we used throughout the paper, except that we

now focussing on the impact of the memory parameters.
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Figure 3. Rates of convergence for all HSVI; (m), HSVI2 and HSVIs, where m = 7 if the domain is t iger and m = 1 otherwise.



