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Abstract

A longstanding goal in the theory of deep learn-
ing is to characterize the conditions under which
a given neural network architecture will be train-
able, and if so, how well it might generalize to
unseen data. In this work, we provide such a char-
acterization in the limit of very wide and very
deep networks, for which the analysis simplifies
considerably. For wide networks, the trajectory
under gradient descent is governed by the Neural
Tangent Kernel (NTK), and for deep networks the
NTK itself maintains only weak data dependence.
By analyzing the spectrum of the NTK, we formu-
late necessary conditions for trainability and gen-
eralization across a range of architectures, includ-
ing Fully Connected Networks (FCNs) and Con-
volutional Neural Networks (CNNs). We identify
large regions of hyperparameter space for which
networks can memorize the training set but com-
pletely fail to generalize. We find that CNNs with-
out global average pooling behave almost identi-
cally to FCNs, but that CNNs with pooling have
markedly different and often better generalization
performance. These theoretical results are corrob-
orated experimentally on CIFAR10 for a variety
of network architectures and we include a colab'
notebook that reproduces the essential results of
the paper.

1. Introduction

Machine learning models based on deep neural networks
have attained state-of-the-art performance across a dizzying
array of tasks including vision (Cubuk et al., 2019), speech
recognition (Park et al., 2019), machine translation (Bah-
danau et al., 2014), chemical property prediction (Gilmer
et al., 2017), diagnosing medical conditions (Raghu et al.,
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2019), and playing games (Silver et al., 2018). Histori-
cally, the rampant success of deep learning models has
lacked a sturdy theoretical foundation: architectures, hy-
perparameters, and learning algorithms are often selected
by brute force search (Bergstra & Bengio, 2012) and heuris-
tics (Glorot & Bengio, 2010). Recently, significant theo-
retical progress has been made on several fronts that have
shown promise in making neural network design more sys-
tematic. In particular, in the infinite width (or channel)
limit, the distribution of functions induced by neural net-
works with random weights and biases has been precisely
characterized before, during, and after training.

The study of infinite networks dates back to seminal work
by Neal (1994) who showed that the distribution of functions
given by single hidden-layer networks with random weights
and biases in the infinite-width limit are Gaussian Processes
(GPs). Recently, there has been renewed interest in studying
random, infinite, networks starting with concurrent work on
“conjugate kernels” (Daniely et al., 2016; Daniely, 2017) and
“mean-field theory” (Poole et al., 2016; Schoenholz et al.,
2017). Among numerous contributions, the pair of papers by
Daniely ef al. argued that the empirical covariance matrix of
pre-activations becomes deterministic in the infinite-width
limit and called this the conjugate kernel of the network.
Meanwhile, from a mean-field perspective, the latter two
papers studied the properties of these limiting kernels. In
particular, the spectrum of the conjugate kernel of wide,
fully-connected, networks approaches a well-defined and
data-independent limit when the depth exceeds a certain
scale, £. Networks with tanh-nonlinearities (among other
bounded activations) exhibit a phase transition between two
limiting spectral distributions of the conjugate kernel as a
function of their hyperparameters with ¢ diverging at the
transition. It was additionally hypothesized that networks
were un-trainable when the conjugate kernel was sufficiently
close to its limit.

Since then this analysis has been extended to include a wide
range for architectures such as convolutions (Xiao et al.,
2018), recurrent networks (Chen et al., 2018; Gilboa et al.,
2019), networks with residual connections (Yang & Schoen-
holz, 2017), networks with quantized activations (Blumen-
feld et al., 2019), the spectrum of the fisher (Karakida et al.,
2018), a range of activation functions (Hayou et al., 2018),
and batch normalization (Yang et al., 2019). In each case,
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it was observed that the spectra of the kernels correlated
strongly with whether or not the architectures were trainable.
While these papers studied the properties of the conjugate
kernels, especially the spectrum in the large-depth limit,
a branch of concurrent work took a Bayesian perspective:
that many networks converge to Gaussian Processes as their
width becomes large (Lee et al., 2018; Matthews et al.,
2018; Novak et al., 2019b; Garriga-Alonso et al., 2018;
Yang, 2019). In this case, the Conjugate Kernel was re-
ferred to as the Neural Network Gaussian Process (NNGP)
kernel, which is used to train neural networks in a fully
Bayesian fashion. As such, the NNGP kernel characterizes
performance of the corresponding NNGP.

Together this work offered a significant advance to our un-
derstanding of wide neural networks; however, this theo-
retical progress was limited to networks at initialization or
after Bayesian posterior estimation and provided no link to
gradient descent. Moreover, there was some preliminary
evidence that suggested the situation might be more nu-
anced than the qualitative link between the NNGP spectrum
and trainability might suggest. For example, Philipp et al.
(2017) showed that deep tanh FCNs could be trained after
the kernel reached its large-depth, data-independent, limit
but that these networks did not generalize to unseen data.

Recently, significant theoretical clarity has been reached
regarding the relationship between the GP prior and the
distribution following gradient descent. In particular, Jacot
et al. (2018) along with followup work (Lee et al., 2019;
Chizat et al., 2019) showed that the distribution of functions
induced by gradient descent for infinite-width networks is
a Gaussian Process with a particular compositional kernel
known as the Neural Tangent Kernel (NTK). In addition
to characterizing the distribution over functions following
gradient descent in the wide network limit, the learning dy-
namics can be solved analytically throughout optimization.

In this paper, we leverage these developments and revisit the
relationship between architecture, hyperparameters, train-
ability, and generalization in the large-depth limit for a vari-
ety of neural networks. In particular, we make the following
contributions:

e Trainability. We compute the large-depth asymptotics
of several quantities related to trainability, including
the largest/smallest eigenvalue of the NTK, Apax /min-
and the condition number £ = Apax /Amin; see Table 1.

e Generalization. We characterize the mean predictor
P(©), which is intimately related to the prediction of
wide neural networks on the test set following gradient
descent training. As such, the mean predictor is inti-
mately related to the model’s ability to generalize. In
particular, we argue that networks fail to generalize if
the mean predictor becomes data-independent.

NTK ©() of FC/CNN-F, CNN-P
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Table 1. Evolution of the NTK spectra and P(©(") as a func-
tion of depth [. The NTKs of FCN and CNN without pooling
(CNN-F) are essentially the same and the scaling of )\Srll)ax, )\gglk,
x, and A® for these networks is written in black. Corrections
to these quantities due to the addition of an average pooling layer
(CNN-P) with window size d is written in blue.

e We show that the ordered and chaotic phases identi-
fied in Poole et al. (2016) lead to markedly different
limiting spectra of the NTK. In the ordered phase the
trainability of neural networks degrades at large depths,
but their ability to generalize persists. By contrast, in
the chaotic phase we show that trainability improves
with depth, but generalization degrades and neural net-
works behave like hash functions.

A corollary of these differences in the spectra is that,
as a function of depth, the optimal learning rates ought
to decay exponentially in the chaotic phase, linearly on
the order-to-chase trainsition line, and remain roughly
a constant in the ordered phase.

e We examine the differences in the above quantities for
fully-connected networks (FCNs) and convolutional
networks (CNNs) with and without pooling and pre-
cisely characterize the effect of pooling on the interplay
between trainability, generalization, and depth.

In each case, we provide empirical evidence to support our
theoretical conclusions. Together these results provide a
complete, analytically tractable, and dataset-independent
theory for learning in very deep and wide networks. Philo-
sophically, we find that trainability and generalization are
distinct notions that are, at least in this case, at odds with
one another. Indeed, good conditioning of the NTK (which
is a necessary condition for training) seems necessarily to
lead to poor generalization performance. It will be inter-
esting to see whether these results carry over in shallower
and narrower networks. The tractable nature of the wide
and deep regime leads us to conclude that these models will
be an interesting testbed to investigate various theories of
generalization in deep learning.
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2. Related Work

Recent work Jacot et al. (2018); Du et al. (2018b); Allen-
Zhu et al. (2018); Du et al. (2018a); Zou et al. (2018)
and many others proved global convergence of over-
parameterized deep networks by showing that the NTK
essentailly remains a constant over the course of training.
However, in a different scaling limit the NTK changes over
the course of training and global convergence is much more
difficult to obtain and is known for neural networks with one
hidden layer Mei et al. (2018); Chizat & Bach (2018); Sirig-
nano & Spiliopoulos (2018); Rotskoff & Vanden-Eijnden
(2018). Therefore, understanding the training and general-
ization properties in this scaling limit remains a very chal-
lenging open question.

Another two excellent recent works (Hayou et al., 2019;
Jacot et al., 2019) also study the dynamics of @1 (x, 2")
for FCNs (and deconvolutions in (Jacot et al., 2019)) as a
function of depth and variances of the weights and biases.
(Hayou et al., 2019) investigates role of activation functions
(smooth v.s. non-smooth) and skip-connection. (Jacot et al.,
2019) demonstrate that batch normalization helps remove
the “ordered phase” (as in (Yang et al., 2019)) and a layer-
dependent learning rate allows every layer in a network to
contribute to learning.

3. Background

We summarize recent developments in the study of wide
random networks. We will keep our discussion relatively
informal; see e.g. (Novak et al., 2019b) for a more rigorous
version of these arguments. To simplify this discussion and
as a warm-up for the main text, we will consider the case
of FCNs. Consider a fully-connected network of depth L
where each layer has a width N() and an activation function
¢ : R — R. In the main text we will restrict our discus-
sion to ¢ = erf or tanh for clarity, however we include
results for a range of architectures including ¢ = ReLU
with and without skip connections and layer normalization
in the supplementary material (see Sec. B). We find that the
high level picture described here applies to a wide range of
architectural components, though important specifics - such
as the phase diagram - can vary substantially. For simplic-
ity, we will take the width of the hidden layers to infinity
sequentially: NV — oo, ..., N(E=1) — 0. The network
is parameterized by weights and biases that we take to be
randomly initialized with W ") ~ A/(0,1) along with

ij 1V
hyperparameters, o, and oy, that set the scale of the weights

and biases respectively. Letting the i pre-activation in the
I™ layer due to an input  be given by zfl) (z), the network

is then described by the recursion, for 0 <[ < L — 1,

N®

NZ

(l+1)(

’L

W (2 (@) ol T (1)

Notice that as N — oo, the sum ends up being over a
large number of random variables and we can invoke the
central limit theorem to conclude that the {zglﬂ) Fiepvasn)
are i.i.d. Gaussian with zero mean. Given a dataset of
m points, the distribution over pre-activations can there-
fore be described completely by the covariance matrix,
i.e. the NNGP kernel, between neurons in different inputs
KO (z,2') = E[zi(l)(a:)zi(l)(x’)]. Inspecting Equation 1, we
see that K(“+1) can be computed in terms of () as

KD (@, 0') = o, TKO) (2,2 + 07 @)
T(K) = E.ono.0)[0(2)0(2)"] 3)

Equation 2 describes a dynamical system on positive semi-
definite matrices /C. It was shown in Poole et al. (2016)
that fixed points, K*(x, z’), of these dynamics exist such
that lim; oo KO (z,2) = K*(z,2') with £*(z,2') =
q*[0g,00 + ¢*(1 — 04 4)] independent of the inputs z and
z'. The values of ¢* and c* are determined by the hyperpa-
rameters, o, and 0,. However Equation 2 admits multiple
fixed points (e.g. ¢* = 0, 1) and the stability of these fixed
points plays a significant role in determining the properties
of the network. Generically, there are large regions of the
(0w, op) plane in which the fixed-point structure is constant
punctuated by curves, called phase transitions, where the
structure changes; see Fig 5 for tanh-networks.

The rate at which K(z, 2") approaches or departs K*(x, z’)
can be determined by expanding Equation 2 about its fixed
point, 6K (x, 2’) = K(z,2') — K*(x,2’) to find

5’C(l+1)(1’>$/) ~ anT(IC*(x,wl))éK(l)(x’x/) “4)

with T(’C) = E(Zl,ZQ)NN(O,K:) [¢(Z1)¢(22)] and ¢ is the
derivative of ¢. This expansion naturally exhibits expo-
nential convergence to - or divergence from - the fixed-
point as 0KV (z,2') ~ x(z,2')' where x(z,2') =
o2 T(K*(z,2')). Since K*(x,2’) does not depend on
or it follows that x (z, ') will take on a single value, Y=,
whenever x # x’. If x.~ < 1 then this K* fixed point is
stable, but if x.~ > 1 then the fixed point is unstable and,
as discussed above, the system will converge to a different
fixed point. If x.~ = 1 then the hyperparameters lie at a
phase transition and convergence is non-exponential. As
was shown in Poole et al. (2016), there is always a fixed-
point at ¢* = 1 whose stability is determined by x1. This
is the so-called ordered phase since any pair of inputs will
converge to identical outputs. The line defined by y; = 1
defines the order-to-chaos transition separating the ordered



Disentangling Trainability and Generalization in Deep Neural Networks

phase from the “chaotic” phase (where ¢* > 1). Note, that
X+ can be used to define a depth-scale, £« = —1/log(c+)
that describes the number of layers over which () ap-
proaches KC*.

This provides a precise characterization of the NNGP kernel
at large depths. As discussed above, recent work (Jacot et al.,
2018; Lee et al., 2019; Chizat et al., 2019) has connected the
prior described by the NNGP with the result of gradient de-
scent training using a quantity called the NTK. To construct
the NTK, suppose we enumerate all the parameters in the
fully-connected network described above by 6,,. The finite
width NTK is defined by ©(z, ') = J(z)J (/)T where
Jia(x) = Oy, 2F () is the Jacobian evaluated at a point x.
The main result in Jacot et al. (2018) was to show that in the
infinite-width limit, the NTK converges to a deterministic
kernel © and remains constant over the course of training.
As such, at a time ¢ during gradient descent training with
an MSE loss, the expected outputs of an infinitely wide

network, 11 (x) = E[zl(z)], evolve as

7

ot (Xtrain) - (Id - ein(amn’ lmint)}/train (5)
ot (Xtest) = ®test, train@;a}n, train (Id - e_nemn' lrcli"IL/)Y;rain
(6)

for train and test points respectively; see Section 2 in Lee
et al. (2019). Here Ocq, 1rain denotes the NTK between the
test inputs Xy and training inputs Xy, and Oain, rain 18
defined similarly. Since 6 converges to O as the network’s
width approaches infinity, the gradient flow dynamics of
real network also converge to the dynamics described by
Equation 5 and Equation 6 (Jacot et al., 2018; Lee et al.,
2019; Chizat et al., 2019; Yang, 2019; Arora et al., 2019;
Huang & Yau, 2019). As the training time, ¢, tends to infinity
we note that these equations reduce to p4(Xiain) = Yiain and
1( Xiest) = Orest, train@;a%n, wrain Yerain- Consequently we call

P(0) = Oy, rainOprg 7)

train, train

the “mean predictor”. We can also compute the mean pre-
dictor of the NNGP kernel, P(K), which analogously can
be used to find the mean of the posterior after Bayesian
inference. We will discuss the connection between the mean
predictor and generalization in the next section.

In addition to showing that the NTK describes networks
during gradient descent, Jacot et al. (2018) showed that the
NTK could be computed in closed form in terms of T, 7',
and the NNGP as,

Oz, ) = K (a.2') + o3 T(KO) . 2')0 0V . ).

®)
where ©() is the NTK for the pre-activations at layer-/.

4. Metrics for Trainability and Generalization
at Large Depth

We begin by discussing the interplay between the condition-
ing of Oyin, wain @and the trainability of wide networks. We
can write Equation 5 in terms of the spectrum of Oyin, rain-
To do this we write the eigendecomposition of Oyin, rain s
Otrain, train = U TDU with D a diagonal matrix of eigenval-
ues and U a unitary matrix. In this case Equation 5 can be
written as,

,[Lt (Xtrain)i = (Id - ein)\it)iftrain,i (9)

where )\; are the eigenvalues of Oin, train a0d fig (Xirain) =
U ot (Xirain ) Yiain = UYiain are the mean prediction and
the labels respectively written in the eigenbasis of O ain train-
If we order the eigenvalues such that A\y > --- > A, then
it has been hypothesized? in e.g. Lee et al. (2019) that the
maximum feasible learning rate scales as n ~ 2/)\g as
we verify empirically in section 4. Plugging this scaling
for 1 into Equation 9 we see that the smallest eigenvalue
will converge exponentially at a rate given by 1/x, where
Kk = Ao/Am is the condition number. It follows that if
the condition number of the NTK associated with a neural
network diverges then it will become untrainable and so we
use k as a metric for trainability.

We will see that at large depths, the spectrum of O in. train
typically features a single large eigenvalue, An,x, and then
a gap that is large compared with the rest of the spectrum.
We therefore will often refer to a typical eigenvalue in the
bulk as Apyx and approximate the condition number as
K = Amax/ Abulk-

We now turn our attention to generalization. At large depths,

we will see that @t(elzt wrain @nd @t(rla)in’ wrain CODverge their fixed
points independent of the data distribution. Consequently it
is often the case that P(©*) will be data-independent and
the network will fail to generalize. In this case, by sym-
metry, it is necessarily true that P(©*) will be a constant
matrix. Contracting this matrix with a vector of labels Yiin
that have been standardized to have zero mean it will follow
that P(©*)Yiin = 0 and the network will output zero in
expectation on all test points. Clearly, in this setting the
network will not be able to generalize. At large, but finite,
depths the generalization performance of the network can
be quantified by considering the rate at which P (6(1) )Yirain
decays to zero. There are cases, however, where despite the
data-independence of ©*, lim;_, ., P (6(5) )Yirain remains
nonzero and the network can continue to generalize even in
the asymptotic limit. In either case, we will show that pre-
cisely characterizing P(G(l))Ymm allows us to understand
exactly where networks can, and cannot, generalize.

2For finite width, the optimization problem is non-convex and
there are not rigorous bounds on the maximum learning rate.
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Our goal is therefore to characterize the evolution of the two
metrics k) and P(©1") in I. We follow the methodology
outlined in Schoenholz et al. (2017); Xiao et al. (2018) to
explore the spectrum of the NTK as a function of depth. We
will use this to make precise predictions relating trainability
and generalization to the hyperparameters (o, 0, 1). Our
main results are summarized in Table 1 which describes the
evolution of A'fh (the largest eigenvalue of ©(1)), )\gzlk (the
remaining eigenvalues), x(), and P(©®") as a function of
depth for three different network configurations (the ordered
phase, the chaotic phase, and the phase transition). We
study the dependence on: the size of the training set, m; the
choices of architecture including fully-connected networks
(FCN), convolutional networks with flattening (CNN-F),
and convolutions with pooling (CNN-P); and the size, d, of
the window in the pooling layer (which we always take to
be the penultimate layer).

Before discussing the methodology it is useful to first give a
qualitative overview of the phenomenology. We find iden-
tical phenomenology between FCNs and CNN-F architec-

tures. In the ordered phase, on p*llT, )\I(Ill)ax — mp*

and A\ = O(Ix}). At large depths since x; < 1 it
follows that x() > mp*/(Ix}) and so the condition num-
ber diverges exponentially quickly. Thus, in the ordered
phase we expect networks not to be trainable (or, specifi-
cally, the time they take to learn will grow exponentially in
their depth). Here P(©(")) converges to a data dependent
constant independent of depth; thus, in the ordered phase
networks fail to train but can generalize indefinitely.

By contrast, in the chaotic phase we see that there is no gap
between ALk and )\Efl)ﬂk and networks become perfectly
conditioned and are trainable everywhere. However, in this
regime we see that the mean predictor scales as [(x. /x1)".
Since in the chaotic phase x.~ < 1 and x; > 1 it follows
that P(©()) — 0 over a depth &, = —1/log(xe+/X1)-
Thus, in the chaotic phase, networks fail to generalize at a
finite depth but remain trainable indefinitely. Finally, intro-
ducing pooling modestly augments the depth over which
networks can generalize in the chaotic phase but reduces
the depth in the ordered phase. We will explore all of these
predictions in detail in section 7.

5. A Toy Example: RBF Kernel

To provide more intuition about our analysis, we present a
toy example using RBF kernels which already shares some
core observations for deep neural networks. Consider a
Gaussian process along with the RBF kernel given by,

12
Kp(z,2") = exp (—”xhx”2> (10)

where z, 2 € Xy, along with a bandwidth A > 0. Note
that K, (z, z) = 1 for all h and z. Considering the follow-

ing two cases.

If the bandwidth is given by h = 2! and | — oo, then
Kp(z,2') ~ 1 — 27|z — 2'||3 which converges to 1 ex-
ponentially fast. Thus, the largest eigenvalue of K}, is
Amax | Xiain| and the bulk is of order Apyx =~ 27%. Thus
the condition number x > 2! which diverges with . We
will see in the Ordered Phase ©() behaves qualitatively
similar to this setting.

On the other hand, if the bandwidth is given by h = 1/l and
[ — oo then the off-diagonals K}, (z,z") = exp(—l||z —
2'||3) — 0. For large I, K}, is very close to the identity
matrix and the condition number of it is almost 1. In the
Chaotic Phase, ©(!) is qualitatively similar to K.

6. Large-Depth Asymptotics of the NNGP
and NTK

We now give a brief derivation of the results in Table 1.
Details can be found in Sec.A, C in the appendix. To sim-
plify notation we will discuss fully-connected networks and
then extend the results to CNNs with pooling (CNN-P) and
without pooling (CNN-F).

As in Sec. 3, we will be concerned with the fixed points
of © as well as the linearization of Equation 8 about its
fixed point. Recall that the fixed point structure is invariant
within a phase so it suffices to consider the ordered phase,
the chaotic phase, and the critical line separately. In cases
where a stable fixed point exists, we will describe how ©
converges to the fixed point. We will see that in the chaotic
phase and on the critical line, © has no stable fixed point
and in that case we will describe its divergence. As above,
in each case the fixed points of © have a simple structure
with ©* = p*((1 — ¢*)Id + ¢*117).

To simplify the forthcoming analysis, without a loss of
generality, we assume the inputs are normalized to have
variance ¢* 3. As such, we can treat 7 and 7T, restricted on
{Kc(D},, as a point-wise functions. To see this note that with
this normalization K()(z, z) = ¢* for all / and . It follows
that both 7 (K(+1)(2,2') and T (K1) (2, 2') depend
only on K (z, z").
Since all of the off-diagonal elements approach the same
fixed point at the same rate, we use qé? = KW(z,2")
and pgg = 0W(z,2') to denote any off diagonal entry
of KU and O respectively. We will similarly use ¢, and
Dy, to denote the limits, lim;_, q((llb) = q, = c'q¢" and
limy_, o0 p") = p*, = ¢*p*. Finally, although the diagonal
entries of K are all ¢*, the diagonal entries of ©() can
31t has been observed in previous works (Poole et al., 2016;

Schoenholz et al., 2017) that the diagonals converge much faster
than the off-diagonals for tanh- or erf- networks.
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Figure 1. Condition number and mean predictor of NTKs and their rate of convergence for FCN, CNN-F and CNN-P. (a) In the
chaotic phase, k® converges to 1 for all architectures. (b) We plot Xllli<l), confirming that x explodes with rate 1/l in the ordered
phase. In (c) and (d), the solid lines are %" and dashed lines are the ratio between first and second eigenvalues. We see that, on the
order-to-chaos transition, these two numbers converge to mT“ and % (horizontal lines) for FC/CNN-F and CNN-P respectively,
where m = 12 or 20 is the batch size and d = 36 is the spatial dimension. (e) In the chaotic phase, the mean predictor decays to zero
exponentially fast. (f) In the ordered phase the mean predictor converges to a data dependent value.

vary and we denote them p(*).

In what follows, we split the discussion into three sections
according to the values of x; = 03)7.'((]*) recalling that in
Poole et al. (2016); Schoenholz et al. (2017) it was shown
that x; controls the fixed point structure. In each section,
we analyze the evolution of (1) the entries of O, i.e., p¥),
pglg, (2) the spectrum Al and Ag&lk, (3) the trainability
and generalization metrics (") and P(©"), and finally (4)
discuss the impact on finite width networks.

6.1. The Chaotic Phase y; > 1:

The chaotic phase is so-named because it has a stable fixed-
point ¢* < 1; as such similar inputs become increasingly
uncorrelated as they pass through the network. Our first
result is to show that (see Sec. A.1),

08 =g+ O(k) [P =P +OUN)
M — W) _ sxho1 QY
a4 q pr=9 5=
where
Py = op/ (1 = Xer) and X = UiT(qu) (12)

Note that x .~ controls the convergence of the ng) and is

always less than 1 in the chaotic phase (Poole et al., 2016;
Schoenholz et al., 2017; Xiao et al., 2018). Since x1 > 1,
p(® diverges with rate x} while p") remains finite. Tt follows
that (p®)~'@® — Id as | — oc. Thus, in the chaotic
phase, the spectrum of the NTK for very deep networks
approaches the diverging constant multiplying the identity.
This implies

1
A M =P +0(1) and £ =1+ 0 (pm )
Figure 1a plots the evolution of £(!) in this phase, confirming
() — 1 for all three different architectures (FCN, CNN-F
and CNN-P).

‘We now describe the asymptotic behavior of the mean pre-
dictor. Since Oy, iy has no diagonal elements, it follows
that it remains finite at large depths and so P(©*)Yin = 0.
It follows that in the chaotic phase, the predictions of asymp-
totically deep neural networks on unseen test points will

converge to zero exponentially quickly (see Sec. C.1),

P(©")Yin = O(l(xer /x1)") = 0. (13)
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Neglecting the relatively slowly varying polynomial term,
this implies that we expect chaotic networks to fail to gen-
eralize when their depth is much larger than a scale set by
&« = —1/1og(xex /x1)- We confirm this scaling in Fig le.

We confirm these predictions for finite-width neural net-
work training using SGD as well as gradient-flow on infinite
networks in the experimental results; see Fig 2.

6.2. The Ordered Phase x; = 027 (¢*) < 1

The ordered phase is defined by the stability of the ¢* = 1
fixed point. Here disparate inputs will end up converging
to the same output at the end of the network. We show in
Sec. A.2 that elements of the NNGP kernel and NTK have
asymptotic dynamics given by,

d =0 +O00) [y =pr o)
¢" =q* p =p* +O(x})

where p* = ¢*/(1 — x1). Here all of the entries of O
converge to the same value, p*, and the limiting kernel has
the form ©* = p*IHIE1 where 1,y is the all-ones vector of
dimension m (typically m will correspond to the number
of datapoints in the training set). The NNGP kernel has the
same structure with p* <> ¢*. Consequently both the NNGP
kernel and the NTK are highly singular and feature a single
non-zero eigenvalue, \y.x = mp*, with eigenvector 1,

For large-but-finite depths, ©() has (approximately) two
eigenspaces: the first eigenspace corresponds to finite-depth
corrections to Apax,

ALY — )P 4+ = mp* + 0. (15)

~ (
max

The second eigenspace comes from lifting the degenerate
zero-modes has dimension (m — 1) with eigenvalues that
scale like /\b 1 = O(p® — py = O(Ix}). Tt follows that
kB > (Ix})~" and so the conditioning number explodes
exponentially quickly. We confirm the presence of the 1/!
correction term in x(*) by plotting x4 () against [ in Fig-
ure 1b. Neglecting this correction, we expect networks in
the ordered phase to become untrainable when their depth
exceeds a scale given by &, = —1/log x1.

We now turn our discussion to the mean predictor. Equa-
tion 14 shows that we can write the finite-depth corrections
to the NTK as ©) = p*117 + AWyt . Here A is the
data-dependent piece that lifts the zero eigenvalues. In the
appendix, A() converges to A as | — oo; see Lemma 2. In
Sec. C.3 we show that despite the singular nature of ©*, the
mean has a well-defined limit as,

lgn;: P(G(Z))Krain = (Alest, lralnAt;dm tmm'f'A)Y;raim (16)
where A is some correction term. Thus, the mean predic-
tor remains well-behaved and data dependent even in the

infinite-depth limit. Thus, we suspect that networks in the
ordered phase should be able to generalize whenever they
can be trained. We confirm the asymptotic data-dependence
of the mean predictor in Fig 1f.

6.3. The Critical Line y; = 027 (¢*) = 1

On the critical line the ¢* = 1 fixed point is marginally
stable and dynamics become powerlaw. Here, both the diag-
onal and the off- diagonal elements of O diverge linearly
in the depth with 20 — (117 4 2Id). The condition
number ) converges toa ﬁmte value and the network is
always trainable. However, the mean predictor decreases
linearly with depth. In particular we show in Sec. A.3,

=g +0o) [P =1lp+00)
o) W _ a7
=q" p\) = Ip*

For large [ it follows that ©() essentially has two
eigenspaces: one has dimension one and the other has di-

mension (m — 1) with
2)q*1 2q*1
A, = % +O(1), Ay = “25+0(1). (8)

It follows that the condition number x() =
mO(lI~1) — ™2 as | — oco. Unlike in the chaotic and
ordered phases, here () converges with rate O(I~!). Fig-
ure Ic confirms the ) — "2 for both FCN and CNN-F
(the global average pooling in CNN introduces a correction
term that we will discuss below). A similar calculation gives
P(©W) = O(I~") on the critical line.

In summary, ) converges to a finite number and the net-
work ought to be trainable for arbitrary depth but the mean
predictor P(@m) decays as a powerlaw. Decay as [~! is
much slower than exponential and is slow on the scale of
neural networks. This explains why critically initialized net-
works with thousands of layers could still generalize (Xiao
et al., 2018).

m+42
5 T

6.4. The Effect of Convolutions

The above theory can be extended to CNNs. We will provide
an informal description here, with details in Sec. E. For
an input-images of size (m, k, k, 3) the NTK and NNGP
kernels will have shape (m, k, k, m, k, k) and will contain
information about the covariance between each pair of pixels
in each image. For convenience we will let d = k2. In the
large depth setting deviations of both kernels from their
fixed point decomposes via Fourier transform in the spatial
dimensions as,

068N ~ >~ ploe(g) (19)
q

where ¢ denotes the Fourier mode with ¢ = 0 being the zero-
frequency (uniform) mode and p, are eigenvalues of certain
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convolution operator. Here 60(")(q) are deviations from

the fixed-point for the ¢™ mode with 60 (¢) o 5@1(:ZC)N the
fully-connected deviation described above. We show that
pq=0 = 1 and |pg+0| < 1 which implies that asymptotically
the nonuniform modes become subleading as pfl — 0. Thus,
at large depths different pixels evolve identically as FCNs.

In Sec. E.2 we discuss the differences that arise when one
combines a CNN with a flattening layer compared with
an average pooling layer at the readout. In the case of
flattening, the pixel-pixel correlations are discarded and
@g%\INiF ~ Gg)CN. The plots in the first row of Figure 1
confirm that the k) of @g%\IN_F and of @gng evolve al-
most identically in all phases. Note that this clarifies an
empirical observation in Xiao et al. (2018) (Figure 3 of Xiao
et al. (2018)) that test performance of critically initialized
CNNs degrades towards that of FCNs as depth increases.
This is because (i) in the large width limit, the prediction
of neural networks is characterized by the NTK and (ii) the
NTKs of the two models are almost identical for large depth.
However, when CNNs are combined with global average
pooling a correction to the spectrum of the NTK (NNGP)
emerges oweing to pixel-pixel correlations; this alters the
dynamics of () and P(©1"). In particular, we find that
global average pooling increases () by a factor of d in
the ordered phase and on the critical line; see Table 1 for
the exact correction as well as Figures 1d for experimental
evidence of this correction.

6.5. Dropout, Relu and Skip-connection

Adding a dropout to the penultimate layer has a similar
effect to adding a diagonal regularization term to the NTK,
which significantly improves the conditioning of the NTK
in the ordered phase. In particular, adding a single dropout
layer can cause () to converge to a finite x* rather than
diverges exponentially; see Figure 4 and Sec. D.

For critically initialized Relu networks (aka, He’s initial-
ization (He et al., 2015)), the entries of the NTK also di-
verges linearly and () — 3 and POW) = O(1/1);
see Table 2 and Figure 3 in SM. In addition, adding skip-
connections makes all entries of the NTK to diverge expo-
nentially, resulting exploding of gradients. However, we
find that skip connections do not alter the dynamics of x(*).
Finally, layer normalization could help address the issue of
exploding of gradients; see Sec. B.

7. Experiments

Evolution of x(") (Figure 1). We randomly sample inputs
with shape (m, k, k, 3) where m € {12,20} and k = 6. We
compute the exact NTK with activation function Erf using
the Neural Tangents library (Novak et al., 2019a). We see
excellent agreement between the theoretical calculation of

£ in Sec. 6 (summarized in Table 1) and the experimental
results Figure 1.

Maximum Learning Rates (Figure 2 (c¢)). In practice,
given a set of hyper-parameters of a network, knowing the
range of feasible learning rates is extremely valuable. As
discussed above, in the infinite width setting, Equation 5
implies the maximal convergent learning rate is given by
Ntheory = 2 / )\Erll)ax. From our theoretical results above, vary-
ing the hyperparameters of our network allows us to vary
)\I(,ll)ax over a wide range and test this hypothesis. This is
shown for depth 10 networks varying o2 with 77 = pijeheory-
We see that networks become untrainable when p exceeds 2
as predicted.

Trainability vs Generalization (Figure 2 (a,b)). We con-
duct an experiment training finite-width CNN-F networks
with 1k training samples from CIFAR-10 with 20 x 20
different (02,1) configurations. We train each network
using SGD with batch size b = 256 and learning rate
17 = 0.17¢heory. We see in Figure 2 (a) that deep in the
chaotic phase we see that all configurations reach perfect
training accuracy, but the network completely fails to gener-
alize in the sense test accuracy is around 10%. As expected,
in the ordered phase we see that although the training ac-
curacy degrades generalization improves. As expected we
see that the depth-scales &; and &, control trainability in
the ordered phase and generalization in the chaotic phase
respectively. We also conduct extra experiments for FCN
with more training points (16k); see Figure 6.

CNN-P v.s. CNN-F: spatial correction (Figure 2 (d-f)).
We compute the test accuracy using the analytic equations
for gradient flow, Equation 6, which corresponds to the test
accuracy of ensemble of gradient descent trained neural
networks taking the width to infinity. As above, we use 1k
training points and consider a 20 x 20 grid of configurations
for (02,1). We plot the test performance of CNN-P and
CNN-F and the performance difference in Fig 2 (d-f). As
expected, we see that the performance of both CNN-P and
CNN-F are captured by £, = —1/1og(x1) in the ordered
phase and by £, = —1/(log &.—log &) in the chaotic phase.
We see that the test performance difference between CNN-P
and CNN-F exhibits a region in the ordered phase (a blue
strip) where CNN-F outperforms CNN-P by a large margin.
This performance difference is due to the correction term
d as predicted by the P(©("))-row of Table 1. We also
conduct extra experiments densely varying O'g; see Sec. F4.
Together these results provide an extremely stringent test of
our theory.

8. Conclusion and Future Work

In this work, we identify several quantities (Amax, Abulk,
x, and P(©M)) related to the spectrum of the NTK that
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Figure 2. Trainability and generalization are captured by x" and P(®<l) ) (a,b) The training and test accuracy of CNN-F trained
with SGD. The network is untrainable above the green line because w1 is too large and is ungeneralizable above the orange line because
P (@(l)) is too small. (c) The accuracy vs learning rate for FCNs trained with SGD sweeping over the weight variance. (d,e) The test
accuracy of CNN-P and CNN-F using kernel regression. (f) The difference in accuracy between CNN-P and CNN-F networks.

control trainability and generalization of deep networks. We
offer a precise characterization of these quantities and pro-
vide substantial experimental evidence supporting their role
in predicting the training and generalization performance of
deep neural networks. Future work might extend our frame-
work to other architectures (for example, residual networks
with batch-norm or attention architectures). Understanding
the role of the nonuniform Fourier modes in the NTK in de-
termining the test performance of CNNs is also an important
research direction.

In practice, the correspondence between the NTK and neural
networks is often broken due to, e.g., insufficient width,
using a large learning rate, or changing the parameterization.
Our theory does not directly apply to this setting. As such,
developing an understanding of training and generalization
away from the NTK regime remains an important research
direction.

Acknowledgements

We thank Jascha Sohl-dickstein, Greg Yang, Ben Adlam,
Jaehoon Lee, Roman Novak and Yasaman Bahri for use-
ful discussions and feedback. We also thank anonymous
reviewers for feedback that helped improve the manuscript.

References

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for
deep learning via over-parameterization. arXiv preprint
arXiv:1811.03962, 2018.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and
Wang, R. On exact computation with an infinitely wide
neural net. arXiv preprint arXiv:1904.11955, 2019.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13(Feb):281-305, 2012.

Blumenfeld, Y., Gilboa, D., and Soudry, D. A mean field
theory of quantized deep networks: The quantization-
depth trade-off. arXiv preprint arXiv:1906.00771, 2019.

Chen, M., Pennington, J., and Schoenholz, S. Dynamical
isometry and a mean field theory of RNNs: Gating en-
ables signal propagation in recurrent neural networks. In
International Conference on Machine Learning, 2018.

Chizat, L. and Bach, F. On the global convergence of gradi-
ent descent for over-parameterized models using optimal



Disentangling Trainability and Generalization in Deep Neural Networks

transport. In Advances in neural information processing
systems, pp. 3040-3050, 2018.

Chizat, L., Oyallon, E., and Bach, F. On lazy training in
differentiable programming. 2019.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation strategies
from data. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019.

Daniely, A. SGD learns the conjugate kernel class of the
network. In Advances in Neural Information Processing
Systems 30. 2017.

Daniely, A., Frostig, R., and Singer, Y. Toward deeper under-
standing of neural networks: The power of initialization
and a dual view on expressivity. In Advances In Neural
Information Processing Systems, 2016.

Du, S. S., Lee, J. D., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks.
arXiv preprint arXiv:1811.03804, 2018a.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks, 2018b.

Garriga-Alonso, A., Rasmussen, C. E., and Aitchison, L.
Deep convolutional networks as shallow gaussian pro-
cesses, 2018.

Gilboa, D., Chang, B., Chen, M., Yang, G., Schoenholz,
S. S., Chi, E. H., and Pennington, J. Dynamical isom-
etry and a mean field theory of Istms and grus. CoRR,
abs/1901.08987, 2019. URL http://arxiv.org/
abs/1901.08987.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, pp. 1263—
1272. IMLR.org, 2017. URL http://dl.acm.org/
citation.cfm?id=3305381.3305512.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In Interna-
tional Conference on Artificial Intelligence and Statistics,

pp. 249-256, 2010.

Hayou, S., Doucet, A., and Rousseau, J. On the selection
of initialization and activation function for deep neural
networks. arXiv preprint arXiv:1805.08266, 2018.

Hayou, S., Doucet, A., and Rousseau, J. Mean-field be-
haviour of neural tangent kernel for deep neural networks,
2019.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. CoRR, abs/1502.01852, 2015.
URL http://arxiv.org/abs/1502.01852.

Huang, J. and Yau, H.-T. Dynamics of deep neural net-
works and neural tangent hierarchy. arXiv preprint
arXiv:1909.08156, 2019.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in Neural Information Processing Systems 31.
2018.

Jacot, A., Gabriel, F., and Hongler, C. Freeze and chaos for
dnns: an ntk view of batch normalization, checkerboard
and boundary effects, 2019.

Karakida, R., Akaho, S., and Amari, S.-i. Universal statistics
of fisher information in deep neural networks: mean field
approach. arXiv preprint arXiv:1806.01316, 2018.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S., Pennington,
J., and Sohl-dickstein, J. Deep neural networks as gaus-
sian processes. In International Conference on Learning
Representations, 2018.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Sohl-
Dickstein, J., and Pennington, J. Wide neural networks of
any depth evolve as linear models under gradient descent.
arXiv preprint arXiv:1902.06720, 2019.

Matthews, A., Hron, J., Rowland, M., Turner, R. E., and
Ghahramani, Z. Gaussian process behaviour in wide
deep neural networks. In International Conference on
Learning Representations, 4 2018. URL https://
openreview.net/forum?id=H1-nGgWC-.

Mei, S., Montanari, A., and Nguyen, P.-M. A mean field
view of the landscape of two-layer neural networks. Pro-
ceedings of the National Academy of Sciences, 115(33):
E7665-E7671, 2018.

Neal, R. M. Priors for infinite networks (tech. rep. no. crg-
tr-94-1). University of Toronto, 1994.

Novak, R., Lee, L. X. J., Sohl-Dickstein, J., and Schoenholz,
S. S. Neural tangents: Fast and easy infinite neural net-
works in python, 2019a. URL http://github.com/
google/neural-tangents.

Novak, R., Xiao, L., Lee, J., Bahri, Y., Yang, G., Hron, J.,
Abolafia, D. A., Pennington, J., and Sohl-Dickstein, J.
Bayesian deep convolutional networks with many chan-
nels are gaussian processes. In International Conference
on Learning Representations, 2019b.



Disentangling Trainability and Generalization in Deep Neural Networks

Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B.,
Cubuk, E. D., and Le, Q. V. Specaugment: A simple data
augmentation method for automatic speech recognition.
arXiv preprint arXiv:1904.08779, 2019.

Pennington, J., Schoenholz, S. S., and Ganguli, S. The emer-
gence of spectral universality in deep networks. arXiv
preprint arXiv:1802.09979, 2018.

Philipp, G., Song, D., and Carbonell, J. G. The explod-
ing gradient problem demystified-definition, prevalence,
impact, origin, tradeoffs, and solutions. arXiv preprint
arXiv:1712.05577, 2017.

Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and
Ganguli, S. Exponential expressivity in deep neural net-
works through transient chaos. In Advances In Neural
Information Processing Systems, pp. 3360-3368, 2016.

Raghu, M., Zhang, C., Kleinberg, J., and Bengio, S. Trans-
fusion: Understanding transfer learning with applications
to medical imaging. arXiv preprint arXiv:1902.07208,
2019.

Rotskoff, G. M. and Vanden-Eijnden, E. Neural networks as
interacting particle systems: Asymptotic convexity of the
loss landscape and universal scaling of the approximation
error. arXiv preprint arXiv:1805.00915, 2018.

Schoenholz, S. S., Gilmer, J., Ganguli, S., and Sohl-
Dickstein, J. Deep information propagation. International
Conference on Learning Representations, 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, 1., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., Lillicrap, T., Simonyan, K., and Hassabis, D.
A general reinforcement learning algorithm that mas-
ters chess, shogi, and go through self-play. Science,
362(6419):1140-1144, 2018. ISSN 0036-8075. doi:

10.1126/science.aar6404. URL https://science.

sciencemag.org/content/362/6419/1140.

Sirignano, J. and Spiliopoulos, K. Mean field analysis of
neural networks. arXiv preprint arXiv:1805.01053, 2018.

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S., and
Pennington, J. Dynamical isometry and a mean field
theory of CNNs: How to train 10,000-layer vanilla con-
volutional neural networks. In International Conference
on Machine Learning, 2018.

Yang, G. Scaling limits of wide neural networks with
weight sharing: Gaussian process behavior, gradient in-
dependence, and neural tangent kernel derivation. arXiv
preprint arXiv:1902.04760, 2019.

Yang, G. and Schoenholz, S. Mean field residual networks:
On the edge of chaos. In Advances in Neural Information
Processing Systems. 2017.

Yang, G., Pennington, J., Rao, V., Sohl-Dickstein, J., and
Schoenholz, S. S. A mean field theory of batch normal-
ization. arXiv preprint arXiv:1902.08129, 2019.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. Stochastic gradient
descent optimizes over-parameterized deep relu networks.
arXiv preprint arXiv:1811.08888, 2018.



