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A. Signal propagation of NNGP and NTK

In this section, we assume that the activation function � has a continuous third derivative. Recall that the recursive formulas
for NNGP K

(l) and the NTK ⇥(l) are given by

K
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Note that we have normalized each input to have variance q
⇤ and the diagonals of K(l) are equal to q

⇤ for all l. The
off-diagonal terms of K(l) and ⇥(l) are denoted by q

(l)
ab and p

(l)
ab , resp. and the diagonal terms are q

(l) and p
(l), resp. The

above equations can be simplified to

q
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wṪ (q⇤) p

(l) (24)

In what follows, we compute the evolution of q
(l)
ab , p

(l)
ab , p

(l) and the spectrum and condition numbers of K(l) and ⇥(l). We
will use �max(⇥(l))/�max(K(l)), �bulk(⇥(l))/�bulk(K(l)) and (⇥(l))/(K(l)) to denote the maximum eigenvalues, the
bulk eigenvalues and the condition number of ⇥(l)

/K
(l), resp.

A.1. Chaotic Phase

A.1.1. CORRECTION OF THE OFF-DIAGONAL/DIAGONAL

The diagonal terms are relatively simple to compute. Equation 24 gives

p
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⇤ + �1p
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i.e.
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In the chaotic phase, �1 > 1 and p
(l)

⇡ �
l�1
1 q

⇤, i.e. diverges exponentially quickly.

Now we compute the off-diagonal terms. Since �c⇤ = �
2
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⇤
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l ! 1 in equation 23, we have
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To compute the finite depth correction, let
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NTK ⇥(l) of FC/CNN-F, CNN-P

Ordered �1 < 1 Critical �1 = 1 Chaotic �1 > 1
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NNGP K
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Table 2. Evolution of the NTK/NNGP spectrum and P (⇥(l))Ytrain/P (K(l))Ytrain as a function of depth l. The NTKs of FCN and
CNN without pooling (CNN-F) are essentially the same and the scaling of �(l)

max, �(l)
bulk, (l), and �(l) for these networks is written in

black. Corrections to these quantities due to the addition of an average pooling layer (CNN-P) with window size d is written in blue.

Applying Taylor’s expansion to the first equation of 23 gives
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!Ṫ (q⇤

ab)✏
(l)
ab + O((✏(l)ab )2) (34)

That is

✏
(l+1)
ab = �c⇤✏

(l)
ab + O((✏(l)ab )2) (35)

Thus q
(l)
ab converges to q

⇤
ab exponentially quickly with

✏
(l+1)
ab ⇡ �c⇤✏

(l)
ab ⇡ �

l+1
c⇤ ✏

(0)
ab (36)

Similarly, applying Taylor’s expansion to the second equation of 23 gives
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Note that �
(l)
ab contains a polynomial correction term and decays like l�

l
c⇤ .

Lemma 1. There exist a finite number ⇣ab such that
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We want to emphasize that the limits are data-dependent, which was verified in Fig. 1e and 1f empirically.
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Equation 37 gives
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A.1.2. THE SPECTRUM OF THE NNGP AND NTK

We consider the spectrum of K and ⇥ in this phase. For K
(l), we have q
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⇤ has two different eigenvalues: q
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Thus ⇥(l) is essentially a diverging constant multiplying the identity and
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A.2. Ordered Phase

A.2.1. THE CORRECTION OF THE DIAGONAL/OFF-DIAGONAL

In the ordered phase, q
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where �1,2 = �
2
!T̈ (q⇤). Note that �

(l)
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l
1.

Similar, in the ordered phase we have the following.
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Therefore the following limits exist
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Since the proof is almost identical to Lemma 1, we omit the details.

A.2.2. THE SPECTRUM OF THE NNGP AND NTK
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(a) NNGP Chaotic (b) NNGP Chaotic (c) NNGP Ordered

(d) NNGP Critical (e) NNGP RELU (f) NTK RELU

Figure 3. Condition numbers of NNGP and their rate of convergence. In the chaotic phase, (K(l)) converges to a constant (see
Table 2) for FCN, CNN-F (a) and CNN-P (b). However, it diverges exponentially in the ordered phase (c) and linearly on the critical
line (d). For critical RELU network, (K(l)) diverges quadratically (e) while (⇥(l)) converges to a fixed number with rate (l�1) (see
Equation 92) and we plot the value of ((⇥(l))� (⇥⇤)) of the NTK in (f).

A.3. The critical line.

A.3.1. CORRECTION OF THE DIAGONALS/OFF-DIAGONALS.

We have �1 = 1 on the critical line. Equation 24 implies p
(l) = lq

⇤, i.e. the diagonal terms diverge linearly. To capture the
linear divergence of p

(l)
ab , define

✏
(l)
ab = q

(l)
ab � q

⇤
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We need to expand the first equation of 23 to the second order
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Here we assume T has a continuous third derivative (which is sufficient to assume the activation � to have a continuous
third derivative.) The above equation implies
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⇤ + �
2
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(l)
ab ) � lq⇤ (75)

= ✏
(l+1)
ab + (1 + �1,2✏
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Plugging Equation 73 into the above equation gives

�
(l)
ab = �

2

3
lq

⇤ + O(1) . (77)

A.3.2. THE SPECTRUM OF NNGP AND NTK

For K(l), q
(l)
ab = q

⇤ + O(l�1) and q
(l) = q

⇤. Thus

�max(K
(l)) = mq

⇤ + O(1/l) (78)

�bulk(K
(l)) = O(1/l) (79)

(K(l)) & l (80)

For ⇥(l), p
(l)
ab = 1

3q
⇤
l + O(1) and p

(l) = lq
⇤. Thus
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B. NNGP and NTK of Relu networks.

B.1. Critical Relu.

We only consider the critical initialization (i.e. He’s initialization (He et al., 2015)) �
2
! = 2 and �

2
b = 0, which preserves the

norm of an input from layer to layer. We also normalize the inputs to have unit variance, i.e. q
⇤ = q

(l) = q
(0) = 1. Recall

that

K
(l+1) = 2T (K(l)) (84)

⇥(l+1) = K
(l+1) + 2Ṫ (K(l)) � ⇥(l) (85)

This implies

p
(l+1) = q

(l) + 2Ṫ (q(l))p(l) = 1 + 2Ṫ (1)p(l) = 1 + p
(l) (86)

which gives p
(l) = l. Using the equations in Appendix C of (Lee et al., 2019) gives

2T (1 � ✏) = 1 � ✏ +
2
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3⇡
✏
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and taking the derivative w.r.t. ✏

2Ṫ (1 � ✏) = 1 �

p
2

⇡
✏
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1 � ✏
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(l)
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2
p

2

3⇡
(✏(l)ab )3/2 + O((✏(l)ab )5/2) (89)

This is enough to conclude (similar to the above calculation)

✏
(l)
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3⇡
p

2
)2l�2 + o(l�2) (90)
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and

p
(l)
ab � p

(l) = �
3

4
l + O(1). (91)

Recall that the diagonals of K(l) and ⇥(l) are q
(l) = 1 and p

(l) = l, resp. Therefore the spectrum and the condition numbers
of K(l) and ⇥(l) for large l are

8
><

>:

�max(⇥(l)) = m+3
4 l + O(1)

�bulk(⇥(l)) = 3
4 l + O(1)

(⇥(l)) = m+3
3 + O(1/l)

8
><

>:

�max(K(l)) = m + O(l�2)

�bulk(K(l)) = O(l�2)

(K(l)) & O(l2)

(92)

B.2. Residual Relu

We consider the following “continuum” residual network

x
(t+dt) = x

(t) + (dt)1/2(W�(x(t)) + b) (93)

where t denotes the ‘depth’ and dt > 0 is sufficiently small and W and b are the weights and biases. We also set �
2
! = 2 (i.e.

E[WW
T ] = 2Id) and �

2
b = 0 (i.e. b = 0). The NNGP and NTK have the following form

K
(t+dt) = K

(t) + 2dtT (K(t)) (94)

⇥(t+dt) = ⇥(t) + 2dtT (K(t)) + 2dtṪ (K(t)) � ⇥(t) (95)

Taking the limit dt ! 0 gives

K̇
(t) = 2T (K(t)) (96)

⇥̇(t) = 2T (K(t)) + 2Ṫ (K(t)) � ⇥(t) (97)

Using the fact that q
(0) = 1 (i.e. the inputs have unit variance), we can compute the diagonal terms q

(t) = e
t and p

(t) = te
t.

Letting q
(t)
ab = e

t
c
(t)
ab and applying the above fractional Taylor expansion to T and Ṫ , we have

ċ
(t)
ab = �

2
p

2

3⇡
(1 � c

(t)
ab )

3
2 + O((1 � c

(t)
ab )

5
2 ) (98)

Ignoring the higher order term and set y(t) = (1 � c
(t)
ab ), we have

ẏ =
2
p

2

3⇡
y

3
2 . (99)

Solving this gives y(t) = 9⇡2

2 t
�2 (note that y(1) = 0), which implies

q
(t)
ab = (1 �

9⇡
2

2
t
�2 + o(t�2))et

. (100)

Applying this estimate to Equation 97 gives

p
(t)
ab = (

1

4
t + O(1))et

. (101)

Thus the limiting condition number of the NTK is m/3 + 1. This is the same as the above non-residual Relu case although
the entries of K(t) and ⇥(t) blow up exponentially with t.
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B.3. Residual Relu + Layer Norm

As we saw above, all the entries of K(l) and ⇥(l) of a residual Relu network blow up exponentially, so do its gradients. In
what follows, we show that normalization could help to avoid this issue. We consider the following “continuum” residual
network with “layer norm”

x
(t+dt) =

1
p

1 + dt

⇣
x
(t) + (dt)1/2

W�(x(t))
⌘

(102)

We also set �
2
! = 2 (i.e. E[WW

T ] = 2Id). The normalization term 1p
1+dt

makes sure x
(t+dt) has unit norm and removes

the exponentially factor e
t in both NNGP and NTK. To ses this, note that

K
(t+dt) =

1

1 + dt

⇣
K

(t) + 2dtT (K(t))
⌘

(103)

⇥(t+dt) =
1

1 + dt

⇣
⇥(t) + dtK

(t) + 2dtṪ (K(t))⇥(t)
⌘

(104)

Taking the limit dt ! 0 gives

K̇
(t) = �K

(t) + 2T (K(t)) (105)

⇥̇(t) = 2T (K(t)) + 2Ṫ (K(t)) � ⇥(t) (106)

Using the fact that q
(0) = 1 (i.e. the inputs have unit variance) and the mapping 2T is norm preserving, we see that q

(t) = 1
because

q̇
(t) = �q

(t) + 2T (q(t)) = 0. (107)

This implies p
(t) = t (note that ṗ

(t) = q
(t) = 1 and we assume the initial value p

(0) = 0.) The off-diagonal terms can be
computed similarly and

q
(t)
ab = 1 �

9⇡
2

2
t
�2 + o(t�2) (108)

p
(t)
ab =

1

4
t + O(1) . (109)

Thus the condition number of the NTK is m/3 + 1. This is the same as the non-residual Relu case discussed above.

C. Asymptotic of P (⇥(l))

To keep the notation simple, we denote Xd = Xtrain, Yd = Ytrain, ⇥td = ⇥test, train, ⇥dd = ⇥train, train. Recall that

P (⇥(l))Yd =

✓
⇥(l)

td

⇣
⇥(l)

dd

⌘�1
◆

Yd (110)

We split our calculation into three parts.

C.1. Chaotic phase

In this case the diagonal p
(l) diverges exponentially and the off-diagonals p

(l)
ab converges to a bounded constant p

⇤
ab. We

further assume the input labels are centered in the sense Yd contains the same number of positive (+1) and negative (-1)
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labels4. We expand ⇥(l) about its “fixed point”

P (⇥(l))Yd = ⇥(l)
td

⇣
⇥(l)

dd

⌘�1
Yd (111)

=
⇣
⇥⇤

td + O(�(l)ab )
⌘⇣

p
(l)

Id + p
⇤
ab(11

T
� Id) + O(�(l)ab )

⌘�1
Yd (112)

= (p(l))�1
⇣
⇥⇤

td + O(�(l)ab )
⌘✓

Id �
p

⇤
ab

p(l)
(11T

� Id) + O(�(l)ab /p
(l))

◆
Yd (113)

= (p(l))�1
⇣
⇥⇤

td + O(�(l)ab )
⌘✓

Id �
p

⇤
ab

p(l)
(11T

� Id) + O(�(l)ab /p
(l))

◆
Yd (114)

= (p(l))�1
⇣
O(�(l)ab ) + O(�(l)ab /p

(l))
⌘

Yd (115)

In the last equation, we have used the fact 11T
Yd = 0 and ⇥⇤

tdYd = 0 since Yd is balanced. Therefore

P (⇥(l))Yd = O((p(l))�1
�
(l)
ab ) = O(l(�c⇤/�1)

l) . (116)

Remark 1. Without centering the labels Yd and normalizing each input in Xd to have the same variance, we will get a �
l
1

decay for P (⇥(l))Yd instead of l(�c⇤/�1)l.

C.2. Critical line

Note that in this phase, both the diagonals and the off-diagonals diverge linearly. In this case

lim
l!1

1

lq⇤ ⇥(l)
td =

1

3
1t1

T
d lim

l!1

1

lq⇤ ⇥(l)
dd = B ⌘

2

3
Id +

1

3
1d1

T
d (117)

Here we use 1d to denote the all ‘1’ (column) vector with length equal to the number of training points in Xd and 1t is
defined similarly. Note that the constant matrix B is invertible. By Equation 77

P (⇥(l)) =
1

3

✓
3

lq⇤ ⇥(l)
td

◆✓
1

lq⇤ ⇥(l)
dd

◆�1

(118)

=
1

3

�
1t1

T
d + O(1/lq

⇤)
�
(B + O(1/lq

⇤))�1 (119)

=
1

3

�
1t1

T
d + O(1/lq

⇤)
� �

B
�1 + O(1/lq

⇤)
�

(120)

=
1

3
1t1

T
d B

�1 + O(1/lq
⇤) (121)

The term 1t1T
d B

�1 is independent of the inputs and 1t1T
d B

�1
Yd = 0 when Yd is centered. Thus

P (⇥(l))Yd = O(1/lq
⇤) (122)

C.3. Ordered Phase

In the ordered phase, we have that ⇥(l)
dd = p

⇤1d1T
d + l�

l
1A

(l)
dd where A(l)

dd , a symmetric matrix, represents the data-dependent
piece of ⇥(l)

dd . By Lemma 2, A(l)
dd ! Add as l ! 1. To simply the notation, in the calculation below we will replace A(l)

dd
by Add. We also assume Add is invertible. To compute the mean predictor, P (⇥(l)), asymptotically we begin by computing
(⇥(l)

dd)�1 via the Woodbury identity,

(⇥(l)
dd)�1 =

�
p

⇤1d1
T
d + l�

l
1Add

��1
(123)

= l
�1

�
�l
1

"
A�1

dd �A�1
dd 1d

✓
1

p⇤ +
1T

mA�1
dd 1d

l�l
1

◆�1

1T
d A

�1
dd l

�1
�

�1
1

#
(124)

= l
�1

�
�l
1

⇥
A�1

dd � p̂A�1
dd 1d1

T
d A

�1
dd

⇤
(125)

= l
�1

�
�l
1

⇥
A�1

dd � p̂aaT
⇤

(126)

4When the number of classes is greater than two, we require Yd to have mean zero along the batch dimension for each class.
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where we have set

a = A�1
dd 1d and p̂ =

p
⇤

l�l
1 + p⇤1T

d A
�1
dd 1d

=
p

⇤

l�l
1 + p⇤1T

d a
(127)

and ai = 1
m

P
j A

�1
ij . Noting that ⇥(l)

td = p
⇤1t1T

d + l�
l
1Atd we can compute the mean predictor,

P (⇥(l)) = ⇥l
td(⇥

l
dd)

�1 = (p⇤1t1
T
d + l�

l
1Atd)l

�1
�

�l
1

⇥
A�1

dd � p̂aaT
⇤

(128)

= AtdA
�1
dd � p̂Atdaa

T + l
�1

�
�l
1 p

⇤(1t1
T
d A

�1
dd � p̂1t1

T
d aa

T ) (129)

= AtdA
�1
dd � p̂Atdaa

T + l
�1

�
�l
1 p

⇤(1 � p̂1T
d a)1ta

T (130)

= AtdA
�1
dd � p̂Atdaa

T + p̂1ta
T (131)

Note that there is no divergence in P (⇥(l)) as l ! 1 and the limit is well-defined. The term p̂1taT is independent from
the input data.

lim
l!1

P (⇥(l))Ytrain = (AtdA
�1
dd � p̂Atdaa

T + p̂1ta
T )Ytrain ⌘ (AtdA

�1
dd + Â)Ytrain (132)

We therefore see that even in the infinite-depth limit the mean predictor retains its data-dependence and we expect these
networks to be able generalize indefinitely.

D. Dropout

In this section, we investigate the effect of adding a dropout layer to the penultimate layer. Let 0 < ⇢  1 and �
(L)
j (x) be iid

random variables

�
(L)
j (x) =

(
1, with probability ⇢

0, with probability 1 � ⇢.
(133)

For 0  l  L � 1,
z
(l+1)
i (x) =

�w
p

N (l)

X

j

W
(l+1)
ij �(z(l)j (x)) + �bb

(l+1)
i (134)

and for the output layer,

z
(L+1)
i (x) =

�w

⇢

p

N (L)

N(L)X

j=1

W
(L+1)
ij �(z(L)

j (x))�(L)
j (x) + �bb

(L+1)
i (135)

where W
(l)
ij and b

(l)
i are iid Gaussians N (0, 1). Since no dropout is applied in the first L layers, the NNGP kernel K(l)

and ⇥(l) can be computed using Equation 20 and Equation 8. Let K(L+1)
⇢ and ⇥(L+1)

⇢ denote the NNGP and NTK of the
(L + 1)-th layer. Note that when ⇢ = 1, K(L+1)

1 = K
(L+1) and ⇥(L+1)

1 = ⇥(L+1) . We will compute the correction induced
by ⇢ < 1. The fact

E[�(L)
j (x)�(L)

i (x0)] =

(
⇢
2
, if (j, x) 6= (i, x0)

⇢, if (j, x) = (i, x0)
(136)

implies that the NNGP kernel K(L+1)
⇢ (Schoenholz et al., 2017) is

K
(L+1)
⇢ (x, x

0) ⌘ E[z(L+1)
i (x)z(L+1)

i (x0)] =

8
><

>:

�
2
wT (K(L)(x, x

0)) + �
2
b , if x 6= x

0

1
⇢�

2
wT (K(L)(x, x)) + �

2
b if x = x

0
.

(137)
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Now we compute the NTK ⇥(L+1)
⇢ , which is a sum of two terms

⇥(L+1)
⇢ (x, x

0) = E

2

4@z
(L+1)
i (x)

@✓(L+1)

 
@z

(L+1)
i (x0)

@✓(L+1)

!T
3

5+ E

2

4@z
(L+1)
i (x)

@✓(L)

 
@z

(L+1)
i (x0)

@✓(L)

!T
3

5 . (138)

Here ✓
(L+1) denote the parameters in the (L + 1) layer, namely, W

(L+1)
ij and b

(L+1)
i and ✓

(L) the remaining parameters.
Note that the first term in Equation 138 is equal to K

(L+1)
⇢ (x, x

0). Using the chain rule, the second term is equal to

�
2
!

⇢2N (L)
E

2

4
N(L)X

j,k=1

W
(L+1)
ij W

(L+1)
ik �̇(z(L)

j (x))�(L)
j (x)�̇(z(L)

k (x0))�(L)
j (x0)

@z
(L)
j (x)

@✓(L)

 
@z

(L)
k (x0)

@✓(L)

!T
3

5 (139)

=
�
2
!

⇢2N (L)
E

2

4
N(L)X

j

�̇(z(L)
j (x))�(L)

j (x)�̇(z(L)
j (x0))�(L)

j (x0)
@z

(L)
j (x)

@✓(L)

 
@z

(L)
j (x0)

@✓(L)

!T
3

5 (140)

=
�
2
!

⇢2
E
h
�
(L)
j (x)�(L)

j (x0)
i
E[�̇(z(L)

j (x))�̇(z(L)
j (x0))]E

2

4@z
(L)
j (x)

@✓(L)

 
@z

(L)
j (x0)

@✓(L)

!T
3

5 (141)

=

8
><

>:

�
2
!Ṫ (K(L)(x, x

0))⇥(L)(x, x
0) if x 6= x

0

1
⇢�

2
!Ṫ (K(L)(x, x))⇥(L)(x, x) if x = x

0
.

(142)

In sum, we see that dropout only modifies the diagonal terms
8
><

>:

⇥(L+1)
⇢ (x, x

0) = ⇥(L+1)(x, x
0)

⇥(L+1)
⇢ (x, x) = 1

⇢⇥(L+1)(x, x) + (1 � 1/⇢)�2
b

(143)

In the ordered phase, we see

lim
L!1

⇥(L)
⇢ (x, x

0) = p
⇤
, lim

L!1
⇥(L)

⇢ (x, x) =
1

⇢
p

⇤ + (1 �
1

⇢
)�2

b (144)

and the condition number

lim
L!1


(L)
⇢ =

(m � 1)p⇤ + 1
⇢p

⇤ + (1 �
1
⇢ )�2

b

( 1⇢ � 1)(p⇤ � �2
b )

=
mp

⇤

( 1⇢ � 1)(p⇤ � �2
b )

+ 1 (145)

In Fig 4, we plot the evolution of 
(L)
⇢ for ⇢ = 0.8, 0.95, 0.99 and 1, confirming Equation 145.

E. Convolutions

In this section, we compute the evolution of ⇥(l) for CNNs.

General setup. For simplicity of presentation we consider 1D convolutional networks with circular padding as in Xiao
et al. (2018). We will see that this reduces to the fully-connected case introduced above if the image size is set to one and as
such we will see that many of the same concepts and equations carry over schematically from the fully-connected case. The
theory of two-or higher-dimensional convolutions proceeds identically but with more indices.

Random weights and biases. The parameters of the network are the convolutional filters and biases, !
(l)
ij,� and µ

(l)
i , respec-

tively, with outgoing (incoming) channel index i (j) and filter relative spatial location � 2 [±k] ⌘ {�k, . . . , 0, . . . , k}.5 As
5We will use Roman letters to index channels and Greek letters for spatial location. We use letters i, j, i0, j0, etc to denote channel

indices, ↵,↵0, etc to denote spatial indices and �,�0, etc for filter indices.
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Figure 4. Dropout improves conditioning of the NTK. In the ordered phase, the condition number (l) explodes exponentially (yellow)
as l ! 1. However, a dropout layer could significantly improves the conditioning, making (l) converge to a finite constant (horizontal
lines) Equation 145.

above, we will assume a Gaussian prior on both the filter weights and biases,

W
(l)
ij,� =

�!p
(2k + 1)N (l)

!
(l)
ij,� b

(l)
i = �bµ

(l)
i , !

(l)
ij,� , µ

(l)
i ⇠ N (0, 1) (146)

As above, �
2
! and �

2
b are hyperparameters that control the variance of the weights and biases respectively. N

(l) is the number
of channels (filters) in layer l, 2k + 1 is the filter size.

Inputs, pre-activations, and activations. Let X denote a set of input images. The network has activations y
(l)(x) and

pre-activations z
(l)(x) for each input image x 2 X ✓ RN(0)d, with input channel count N

(0)
2 N, number of pixels d 2 N,

where

y
(l)
i,↵(x) ⌘

(
xi,↵ l = 0

�

⇣
z
(l�1)
i,↵ (x)

⌘
l > 0

, z
(l)
i,↵(x) ⌘

N(l)X

j=1

kX

�=�k

W
(l)
ij,�y

(l)
j,↵+�(x) + b

(l)
i . (147)

� : R ! R is a point-wise activation function. Since we assume circular padding for all the convolutional layers, the spacial
size d remains constant throughout the networks until the readout layer.

For each l > 0, as min{N1
. . . , N

(l�1)
} ! 1, for each i 2 N, the pre-activation converges in distribution to d-dimensional

Gaussian with mean 0 and covariance matrix K
(l), which can be computed recursively (Novak et al., 2019b; Xiao et al.,

2018)

K
(l+1) = (�2

!A + �
2
b ) � T (K(l)) =

�
(�2

!A + �
2
b ) � T

�l+1
(K0) (148)

Here K
(l)

⌘ [K(l)
↵,↵0(x, x

0)]↵,↵02[d],x,x02X , T is a non-linear transformation related to its fully-connected counterpart, and
A a convolution acting on Xd ⇥ Xd PSD matrices

[T (K)]↵,↵0 (x, x
0) ⌘ u⇠N (0,K) [� (u↵(x)) � (u↵0(x0))] (149)

[A (K)]↵,↵0 (x, x
0) ⌘

1

2k + 1

X

�

[K]↵+�,↵0+� (x, x
0) . (150)

E.1. The Neural Tangent Kernel

To understand how the neural tangent kernel evolves with depth, we define the NTK of the l-th hidden layer to be ⇥̂(l)

⇥̂(l)
↵,↵0(x, x

0) = r✓lz
(l)
i,↵(x)

�
r✓lz

l
i,↵0(x0)

�T
(151)
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where ✓
l denotes all of the parameters in layers at-or-below the l’th layer. It does not matter which channel index i is used

because as the number of channels approach infinity, this kernel will also converge in distribution to a deterministic kernel
⇥(l+1) (Yang, 2019), which can also be computed recursively in a similar manner to the NTK for fully-connected networks
as (Yang, 2019; Arora et al., 2019),

⇥(l+1) = K
(l+1) + A � (�2

!Ṫ (K(l)) � ⇥(l)), (152)

where Ṫ is given by Equation 149 with � replaced by its derivative �
0. We will also normalize the variance of the inputs to

q
⇤ and hence treat T and Ṫ as pointwise functions. We will only present the treatment in the chaotic phase to showcase how

to deal with the operator A. The treatment of other phases are similar. Note that the diagonal entries of K(l) and ⇥(l) are
exactly the same as the fully-connected setting, which are q

⇤ and p
(l) = lq

⇤, respectively. We only need to consider the
off-diagonal terms. Letting l ! 1 in Equation 152 we see that all the off-diagonal terms also converge p

⇤
ab. Note that A

does not mix terms from different diagonals and it suffices to handle each off-diagonal separately. Let ✏
(l)
ab and �

(l)
ab denote

the correction of the j-th diagonal of K(l) and ⇥(l) to the fixed points. Linearizing Equation 148 and Equation 152 gives

✏
(l+1)
ab ⇡ �c⇤A✏

(l)
ab (153)

�
(l+1)
ab ⇡ �c⇤A(✏(l+1)

ab +
�c⇤,2

�c⇤
p

⇤
ab✏

(l)
ab + �

(l)
ab ) . (154)

Next let {⇢↵}↵ be the eigenvalues of A and ✏
(l)
ab,↵ and �

(l)
ab,↵ be the projection of ✏

(l)
ab and �

(l)
ab onto the ↵-th eigenvector of A,

respectively. Then for each ↵,

✏
(l+1)
ab,↵ ⇡ (⇢↵�c⇤)

(l+1)
✏
(0)
ab,↵ (155)

�
(l+1)
ab,↵ ⇡ ⇢↵�c⇤(✏

(l+1)
ab,↵ +

�c,2

�c⇤
p

⇤
ab✏

(l)
ab,↵ + �

(l)
ab,↵) (156)

which gives

✏
(l)
ab,↵ ⇡ (⇢↵�c⇤)

l
✏
(0)
ab,↵ , (157)

�
(l)
ab,↵ ⇡ (⇢↵�c⇤)

l


�
(0)
ab,↵ + l

✓
1 +

�c,2

�c⇤
p

⇤
ab

◆
✏
(0)
ab,↵

�
(158)

Therefore, the correction ⇥(l)
� ⇥⇤ propagates independently through different Fourier modes. In each mode, up to a

scaling factor ⇢
l
↵, the correction is the same as the correction of FCN. Since the subdominant modes (with |⇢↵| < 1) decay

exponentially faster than the dominant mode (with ⇢↵ = 1), for large depth, the NTK of CNN is essentially the same as that
of FCN.

E.2. The effect of pooling and flattening of CNNs

With the bulk of the theory in hand, we now turn our attention to CNN-F and CNN-P. We have shown that the dominant
mode in CNNs behaves exactly like the fully-connected case, however we will see that the readout can significantly
affect the spectrum. The NNGP and NTK of the l-th hidden layer CNN are 4D tensors K

(l)
↵,↵0(x, x

0) and ⇥(l)
↵,↵0(x, x

0),
where ↵, ↵

0
2 [d] ⌘ [0, 1, . . . , d � 1] denote the pixel locations. To perform tasks like image classification or regression,

“flattening” and “pooling” (more precisely, global average pooling) are two popular readout strategies that transform the
last convolution layer into the logits layer. The former strategy “flattens” an image of size (d, N) into a vector in RdN and
stacks a fully-connected layer on top. The latter projects the (d, N) image into a vector of dimension N via averaging
out the spatial dimension and then stacks a fully-connected layer on top. The actions of “flattening” and “pooling” on the
image correspond to computing the mean of the trace and the mean of the pixel-to-pixel covariance on the NNGP/NTK,
respectively, i.e.,

⇥(l)
flatten(x, x

0) =
1

d

X

↵2[d]

⇥(l)
↵,↵(x, x

0) , (159)

⇥(l)
pool(x, x

0) =
1

d2

X

↵,↵02[d]

⇥(l)
↵,↵0(x, x

0) , (160)
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where ⇥(l)
flatten (⇥(l)

pool) denotes the NTK right after flattening (pooling) the last convolution. We will also use ⇥(l)
fc to

denote the NTK of FC. K(l)
flatten, K(l)

pool and K
(l)
fc are defined similarly. As discussed above, in the large depth setting, all the

diagonals ⇥(l)
↵,↵(x, x) = p

(l) (since the inputs are normalized to have variance q
⇤ for each pixel) and similar to ⇥(l)

fc , all the
off-diagonals ⇥(l)

↵0,↵(x, x
0) are almost equal (in the sense they have the same order of correction to p

⇤
ab if exists.) Without

loss of generality, we assume all off-diagonals are the same and equal to p
(l)
ab (the leading correction of q

(l)
ab for CNN and

FCN are of the same order.) Applying flattening and pooling, the NTKs become

⇥(l)
flatten(x, x

0) =
1

d

X

↵

⇥(l)
↵,↵(x, x

0) = 1x=x0p
(l) + 1x 6=x0p

(l)
ab , (161)

⇥(l)
pool(x, x

0) =
1

d2

X

↵,↵0

⇥(l)
↵,↵0(x, x

0) =
1

d
1x=x0(p(l) � p

(l)
ab ) + p

(l)
ab , (162)

respectively. As we can see, ⇥(l)
flatten is essentially the same as its FCN counterpart ⇥(l)

fc up to sub-dominant Fourier modes
which decay exponentially faster than the dominant Fourier modes. Therefore the spectrum properties of ⇥(l)

flatten and ⇥(l)
fc

are essentially the same for large l; see Figure 1 (a - c).

However, pooling alters the NTK/NNGP spectrum in an interesting way. Noticeably, the contribution from p
(l) is discounted

by a factor of d. On the critical line, asymptotically, the on- and off-diagonal terms are

⇥(l)
pool(x, x) =

2 + d

3d
lq

⇤ + O(1) (163)

⇥(l)
pool(x, x

0) =
1

3
lq

⇤ + O(1) (164)

This implies

�
(l)
max = (md + 2)q⇤

l/(3d) + O(1) (165)

�
(l)
bulk = 2q

⇤
l/(3d) + O(1) (166)


(l) =

md + 2

2
+ mdO(l�1) (167)

Here we use blue color to indicate the changes of such quantities against their ⇥(l)
flatten counterpart. Alternatively, one can

consider ⇥(l)
flatten as a special version (with d = 1) of ⇥(l)

pool. Thus pooling decreases �
(l)
bulk roughly by a factor of d and

increases the condition number by a factor of d comparing to flattening. In the chaotic phase, pooling does not change
the off-diagonals q

(l)
ab = O(1) but does slow down the growth of the diagonals by a factor of d, i.e. p

(l) = O(�l
1/d). This

improves P (⇥(l)) by a factor of d. This suggests, in the chaotic phase, there exists a transient regime of depths, where
CNN-F hardly perform while CNN-P performs well. In the ordered phase, the pooling does not affect �

(l)
max much but

does decrease �
(l)
bulk by a factor of d and the condition number 

(l) grows approximately like dl�
�l
1 , d times bigger than its

flattening and fully-connected network counterparts. This suggests the existence of a transient regime of depths, in which
CNN-F outperforms CNN-P. This might be surprising because it is commonly believed CNN-P usually outperforms CNN-F.
These statements are supported empirically in Figure 2.

F. Figure Zoo

F.1. Phase Diagrams: Figure 5.

We plot the phase diagrams for the Erf function and the tanh function (adopted from (Pennington et al., 2018)).

F.2. SGD on FCN on Larger Dataset: Figure 6.

We report the training and test accuracy of FCN trained on a subset (16k training points) of CIFAR-10 using SGD with 20 ⇥

20 different (�2
!, l) configurations.
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(a) Phase Diagram for Erf .

Ordered

Chaotic

�(�w, �b) < 1

�(�w, �b) > 1

Vanishing Gradients

Exploding Gradients

q
⇤ = 1.5

0.0

0.5

1.0

1.5

(b) Phase Diagram for tanh.

Figure 5. Phase Diagram for tanh and Erf (right).

F.3. NNGP vs NTK prediction: Figure 7.

Here we compare the test performance of the NNGP and NTK with different (�2
!, l) configurations. In the chaotic phase,

the generalizable depth-scale of the NNGP is captured by ⇠c⇤ = �1/ log(�c⇤). In contrast, the generalizble depth-scale
of the NTK is captured by ⇠⇤ = �1/(log(�c⇤) � log(�1)). Since �1 > 1 in the chaotic phase, ⇠c⇤ > ⇠⇤. Thus for larger
depth, the NNGP kernel performs better than the NTK. Corrections due to an additional average pooling layer is plotted in
the third column of Figure .7

F.4. Densely Sweeping Over �
2
b : Figure 8

We demonstrate that our prediction for the generalizable depth-scales for the NTK (⇠⇤) and NNGP (⇠c) are robust across
a variety of hyperparameters. We densely sweep over 9 different values of �

2
b 2 [0.2, 1.8]. For each �

2
b we compute the

NTK/NNGP test accuracy for 20 * 50 different configurations of (l, �
2
!) with l 2 [1, 100] and �

2
! 2 [0.12, 4.92]. The training

set is a 8k subset of CIFAR-10.

Figure 6. Training and Test Accuracy for FCN for different (�2
!, l) configurations.
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Figure 7. Test Accuracy for NTK (top) and NNGP prediction for different (�2
!, l) configurations. First/second column: CNN with/without

pooling. Last column: difference between the first and second columns.

F.5. Densely Sweeping Over the Regularization Strength �: Figure 9

Similar to the above setup, we fixed �
2
b = 1.6 and densely vary � 2 {0, 10�6

, . . . , 100}.
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Figure 8. Generalization metrics for NTK/NNGP vs Test Accuracy vs �2
b .
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Figure 9. Generalization metrics for NTK/NNGP vs Test Accuracy vs �.


