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Abstract

Generative flows models enjoy the properties of
tractable exact likelihood and efficient sampling,
which are composed of a sequence of invertible
functions. In this paper, we incorporate matrix
exponential into generative flows. Matrix expo-
nential is a map from matrices to invertible matri-
ces, this property is suitable for generative flows.
Based on matrix exponential, we propose matrix
exponential coupling layers that are a general case
of affine coupling layers and matrix exponential
invertible 1 x 1 convolutions that do not collapse
during training. And we modify the networks ar-
chitecture to make training stable and significantly
speed up the training process. Our experiments
show that our model achieves great performance
on density estimation amongst generative flows
models.

1. Introduction

Generative models aim to learn a probability distribution
given data sampled from that distribution, in contrast with
discriminative models, which do not require a large amount
of annotations. A number of models have been proposed
including generative adversarial networks (GANs) (Goodfel-
low et al., 2014), variational autoencoders (VAEs) (Kingma
& Welling, 2013; Rezende et al., 2014), autoregressive mod-
els (Van Oord et al., 2016), and generative flows models
(Dinh et al., 2014; 2016; Rezende & Mohamed, 2015). Gen-
erative flows models transform a simple probability distri-
bution into a complex probability distribution through a
sequence of invertible functions. They gain popularity re-
cently due to exact density estimation and efficient sampling.
In applications, they have been used for density estimation
(Dinh et al., 2016), data generation (Kingma & Dhariwal,
2018) and reinforcement learning (Ward et al., 2019).

How to design invertible functions is the core of generative
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flows models. There are two principles that should be fol-
lowed. First, the Jacobian determinant should be computed
efficiently. Second, the inverse function should be tractable.
Dinh et al. (2014) proposed coupling layers, they first ap-
plied generative flows models into density estimation. Dinh
et al. (2016) extended the work with more expressive invert-
ible functions and improved the architecture of generative
flows models. Kingma & Dhariwal (2018) proposed Glow:
generative flow with invertible 1 x 1 convolutions, which
significantly improved the performance of generative flows
models on density estimation and showed that generative
flows models are capable of realistic synthesis. These flows
all have easy Jacobian determinant and inverse.

However, generative flows models have not achieved the
same performance on density estimation as state-of-the-art
autoregressive models. In order to ensure that the function is
invertible and effectively compute the Jacobian determinant,
generative flows models suffer from two issues. First, due to
the constraints of network, the network is not as expressive
as that of GANs. Most of the flows constrain the Jacobian
to a triangular matrix, which influences the effectiveness
of the network. They apply element-wise transformation,
parametrized by part of dimensions. Dinh et al. (2014)
proposed additive transformations, then Dinh et al. (2016)
presented affine transformations. These transformations are
very simple invertible transformations. In (Huang et al.,
2018; Ho et al., 2019), they used invertible networks instead
of affine transformations, but which still are univariate in-
vertible transformations. Using univariate transformations
also hurts the performance of generative flows models. De-
signing univariate invertible transformations is relatively
simple compared with multivariate invertible transforma-
tions. Second, the dimension of latent space of generative
flows models is same as the input space, which makes the
network pretty large for high-dimensional data. Dinh et al.
(2016) proposed a multiscale architecture to alleviate this
problem, which gradually factors out a part of the total
dimensions at regular intervals.

In this paper, we combine matrix exponential with genera-
tive flows to propose a new flow called matrix exponential
flows. Matrix exponential can be seen as a map from ma-
trices to invertible matrices, this property is suitable for
constructing invertible transformations. Meanwhile, matrix
exponential has other properties that are also helpful for
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generative flows. Based on matrix exponential, we propose
matrix exponential coupling layers to enhance the expres-
siveness of networks, which can be seen as multivariate
affine coupling layers. Training generative flows models of-
ten takes a long time to converge, especially for large-scale
datasets. One reason is that training generative flows models
is not stable, which prevents us from being able to use a
larger learning rate. As standard convolutions may collapse
during training, we propose a stable version of invertible
1 x 1 convolutions. And we also improve the coupling lay-
ers to make training stable and significantly accelerate the
training process. The code for our model is available at
https://github.com/changyi7231/MEF.

The main contributions of this paper are listed below:

1. We incorporate matrix exponential into neural networks

2. We propose matrix exponential coupling layers, which
are a generalization of affine coupling layers.

3. We propose matrix exponential invertible 1 x 1 convolu-
tions, which are more stable and efficient than standard
convolutions.

4. We modify the networks architecture to make training
stable and fast.

2. Background
2.1. Change of variables formula

Let X € R" be a random variable with an unknown
probability density function px(z) and Z € R™ be a
random variable with a known and tractable probability
density function pz(z), generative flows model is an
unsupervised model for density estimation defined as an
invertible function z = f(x) transforms X into Z. The
relationship between px (x) and pz(z) follows

of(x
logpx (x) =logpz(z) + log |det( ](;EE))‘ ()
where %(f) is the Jacobian of f evaluated at . Note that a

composition of invertible function remains invertible, let
the invertible functions f be composed of K invertible
functions: fx o fx_1 0--- o fi. The log-likelihood of x
can be written as

Oh;

det(3h4_1 )

)

K
logpx(x) =logpz(z) + Z log
i=1
where h; = fio fi_10---0 fi(hg),ho =
The choice of f should satisfy two conditions in order to be
practical. First, computing the Jacobian determinant should
be efficient. In general, the time complexity of computing

Jacobian determinant is O(n?). Many works design differ-
ent invertible functions such that the Jacobian determinant
is tractable. Most of them constrain the Jacobian to a trian-
gular matrix, which reduces the computation from O(n?3)
to O(n). Second, in order to draw samples from px (),
the inverse function of f :x = f~!(z) should be tractable.
Since the generative process is the reverse process of in-
ference process, generative flows models only use a single
network. Generative flows models attain the capabilities of
both efficient density estimation and sampling.

2.2. Generative Flows

Generative flows models are constructed by a sequence of
invertible functions, often parametrized by deep learning
layers. Based on the two conditions mentioned in Section
2.1, many generative flows have been proposed. We list
several of them that are related to our model. See Table 1
for an overview of these generative flows, and a description
is as follows:

Affine coupling layers (Dinh et al., 2016) partition the in-
put into two parts. The first part of dimensions remains
unchanged, and the second part of dimensions is mapped
with an affine transformation, parametrized by the first part.

Since coupling layers only change half of dimensions, we
need to shuffle the dimensions after every coupling layer.
Dinh et al. (2014) simply reversed the dimensions, Dinh et al.
(2016) suggested randomly shuffling the dimensions. Since
the operations are fixed during training, they may be limited
in flexibility. Kingma & Dhariwal (2018) generalized the
shuffle operations to invertible 1 x 1 convolutions, which
are more flexible and can be learned during training.

Actnorm layers (Kingma & Dhariwal, 2018) are layers to
improve training stability and performance. They perform
an affine transformation of the activations using a scale and
bias parameter per channel. They are data dependent, ini-
tialized such that the distribution of activations per-channel
has zero mean and unit variance given an initial mini-batch
of data.

3. Matrix Exponential

In generative flows models, the function f is imple-
mented as a sequence of invertible functions, which
can be parametrized by a neural network f =
an¢(Wm—1¢(an—2 e QS(Wl-’B)))’ where Wi? 1 S
i < m, is the weight matrix and ¢ is activation function. To
ensure that f is invertible, we can let W; be an invertible ma-
trix and ¢ be a strictly monotone function. But it is difficult
to ensure that W; is invertible during training, and comput-
ing the determinant of W is O(n?) in general. One method
is to enforce W to be a triangular matrix. Its determinant
is the product of its diagonal entries and it is invertible as
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Table 1. The definition of several related generative flows and our generative flows. These flows all have easy Jacobian determinant and
inverse. h, w, ¢ denote the height, width and number of channels. The symbols @, / denote element-wise multiplication and division.

x, y may denote the tensors with shape h X w X c.

Generative Flows  Function

Reverse Function

Log-determinant

Actnorm layers Vi, j: Y. =8Oxij;.+b Yi,7: @i = (Y, —b)/s h - w - sum(log |s])
Affine coupling [x1,z2] == [y1,y2] =y sum(s(z1))
layers Y1 =1 1= Y1

y2 = exp(s(z1)) @ @2 + b(w1) @2 = exp(—s(y1)) © (y2 — b(y1))

y = [y1,y2] z = [@1, X
Standard 1 x 1 Vi g Yij. = Wi . Vi,j:xij: =W Yij. h-w - log|det(W)]
convolutions
Matrix exp [X1, 2] = [y, ¥2] =y Tr(s(z1))
coupling layers Y1 = T1 1= Y1
See Section 4.1 yo = 5@ g, 4 b(x1) T2 = e_s(yl)(y2 —b(y1))

y = [y1,y2] z = [@1, X
Matrixexp 1 x 1 Vi, j:y; . =€ @i j. Vi,jidij. =€ Yy h-w-Tr(W)

convolutions
See Section 4.2

long as its diagonal entries are non-zero. But triangular
matrices are less expressive and computing the inverse of
triangular matrices is sequential, not parallel. We propose
to replace the weight matrix W; by the matrix exponential
of W;. It can make the networks invertible. And it is more
expressive than triangular matrices. Moreover, computing
the determinant needs only O(n) time and computing the in-
verse matrix is easy and parallel. Before introducing matrix
exponential, we first set up some notations. Let M, (R) be
the set of n x n real matrices, GL,,(R) be the set of n x n
real invertible matrices, GL,,(R)" be the set of n x n real
invertible matrices with positive determinant, GL,,(R)~
be the set of n x n real invertible matrices with negative
determinant.

3.1. Properties of Matrix Exponential

Matrix exponential is a matrix function whose definition is
similar to the exponential function. Matrix exponential has
many applications. It can be used to solve systems of linear
differential equations. And it plays an important role in the
theory of Lie groups, which gives the connection between a
matrix Lie algebra and the corresponding Lie group. Matrix
exponential of W € M,,(R) is defined as

W o_
eV =2 3)
i=0
Matrix exponential has four properties as follows:

1. For any matrix W € M, (R), eV is converge, and
e € GL,(R), meanwhile (e) ! =e~W.

2. logdet(eW) = Tr(W).

3. For any matrix X € GL,(R)" and X satisfies each
Jordan block of X corresponding to a negative eigen-

value occurs an even number of times, then there exists
a matrix W € M, (R) such that X = e"W.

4. For any matrix X € GL, (R)™, there exists some ma-

trices Wy, Wa, ..., W,, € M,(R) such that X =
ewl eW2 PP eWn'

See (Hall, 2015) for the proofs of property 1,2,4 and (Cul-
ver, 1966) for the proof of property 3. From property 1,
we see that matrix exponential of W is always converge
and invertible. Thus we implement the neural network
as f = eWmgp(eWn-14(eWr-2...¢(e"1x))), which
makes the neural network invertible. Matrix exponential
can be seen as a map from M,,(R) to GL, (R), so we have
no need to constrain the weight matrix W. The inverse of
matrix exponential is also matrix exponential, which can be
computed in the same way. From property 2, computing
the log-determinant of matrix exponential of W turns into
computing the trace of W. Computing the determinant of
an x n matrix is O(n?) in general, while computing the
trace is O(n). Property 3 demonstrates the image of matrix
exponential. Matrix exponential is not a surjective map from
M, (R) to GL,(R). Property 2 shows that the determinant
of matrix exponential is always positive. GL,,(R) has two
connected components: GL,(R)* and GL,(R)~. The
image of matrix exponential is a subset of GL,,(R)™. Itis
reasonable to ensure that the determinant is positive, because
once the sign of the determinant changes during training, it
may cause the matrix to be singular and numerically unsta-
ble. Although the matrix exponential is also not a surjective
map to G L, (R)", however, it only excludes a few matri-
ces. Property 4 demonstrates any matrix in GL,,(R)" is a
product of n matrix exponentials, so we can get a surjective
map to GL,(R)". In practice, using n matrix exponentials
may be redundant, since the image of matrix exponential is
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arich class of invertible matrices, one or two is enough.

3.2. Compute Matrix Exponential

Matrix exponential is an infinite matrix series. Dozens
of methods for computing matrix exponential have been
proposed. Moler & Van Loan (2003) showed nineteen ways
involving approximation theory, differential equations, the
matrix eigenvalues. We propose two methods to incorporate
matrix exponential into neural networks. The first method
is for low-dimensional data, and the second method is for
high-dimensional data.

The first method is to truncate the matrix series of Eq. (3) at
index k to approximate the matrix series. Define the finite
matrix series as

k

T (W) = Z

=0

Wi
7!

“4)

There are several papers that study the truncation error of
this series, Liou (1966) gave a bound of truncation error

k
W+ 1

(W) = e < (G

WL+
(5)

where || - ||1 is the matrix 1-norm. The error bound is
affected by |W |1, which decreases as ||W||; decrease.
When ||[W||; is small, we can choose a small k and need
less computation to approximate the infinite series. Fortu-
nately, the value of weight matrices of neural networks is
often small such that ||[W||; is also small. This is a good
property that makes incorporating matrix exponential into
neural networks practical. Since e" = (eW/27)?", we first
scale the weight matrix to a smaller value, then compute
the matrix exponential and the matrix power. This further
reduces the computation. Algorithm 1 shows the process of
computing matrix exponential, which is mentioned in Moler
& Van Loan (2003). This algorithm costs about (s+k—1)n3
FLOPs, which makes it unable to scale to high-dimensional
data.

We propose the second method that combines matrix ex-
ponential with neural networks for high-dimensional data.
Instead of directly parameterizing the weight matrix W,
we propose a low-rank parameterization method. Let
W = A A,, where A; € R"*, Ay € R™™, and A, A,

are the weight matrices. Substitute W into Eq. (3), then
w_ - (A14y)
e’ = —_—

i=0

(6)

7!

Let V = A5 A;. Considering the associative law of matrix
multiplication, we have

oo

6W:I+Alz

=0

%

mAQ (7)

Algorithm 1 Algorithm for computing matrix exponential
Input:
Weight matrix: W
Tolerable error: €
Output:
Matrix exponential of weight matrix: e
1: choose the smallest non-negative integer s such that
W /(2) < 2
W .= W/(2%)
X:=1
Y =W
k:=2
while ||[Y'||; > edo
X=X+Y
Y =W .Y/k
k=k+1
end while
for i =1to s do
Y =YY
: end for
: return: Y

w

—_ =
rE AN R A AR AN ol

e

We truncate matrix series of V' at index k to approximate
e" . Similar to the truncation error bound of eW, the error
bound of truncating matrix series of V' is given by

o) 41
1 LM
Ml G+ T EA2!IT— ||V /(k+3)

®)
Computing the matrix series of W turns into computing
the matrix series of V. Since V' € R'*!, computing the
matrix series of V' costs O(t®). The rank of matrix W is
less than or equal to ¢. We can choose a small ¢ to reduce
the computation, but which will hurt the expressiveness.
It is a balance between expressiveness and computation.
Computing the matrix series of V' is analogous to Algorithm

1, just set the scale coefficient s := 0 and modify the line 4
toY := W /2 and line 5 to k := 3.

4. Matrix Exponential Flows

We utilize matrix exponential to propose a new flow called
matrix exponential flows (MEF). In Section 4.1, we com-
bine matrix exponential with coupling layers to present our
matrix exponential coupling layers. In Section 4.2, we pro-
vide matrix exponential invertible 1 x 1 convolutions which
are stable during training. Figure 1 illustrates a detailed
overview of the architecture.

4.1. Coupling layers

Dinh et al. (2016) proposed affine coupling layers that split
the n dimensional input & into two parts (1.4, T4+1,,), the
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T z; j— split
invertible 1 x 1 conv T
T flow x D; |x (L-1)
actnorm layer squeeze

X

I 5
(a) One step of flow (b) Model architecture
Figure 1. Overview of the model architecture. Left describes each
step of flow, which consists of an actnorm layer that normalizes all
activations independently, followed by a matrix exponential invert-
ible 1 x 1 convolution, followed by a matrix exponential coupling
layer. Right shows the multiscale architecture. The squeeze opera-
tion rearranges the dimensions by reducing the spatial dimensions
by a half and increasing the channel number by four. The split
operation splits the dimensions into two parts along channel and
outputs a part of dimensions. The architecture has L levels and D;
flows for one level.

output y of affine coupling layers follows the equations

Y1:d = T1:d
Yd+1:n = eXp(S(iBl:d)) © Ld+1:n + b(wl:d)

9

where s and t stand for scale and bias, are functions from
R? — R" % exp(s(x.q)) is the element-wise exponen-
tial function of s(x1.4), and ® is the Hadamard product.
The first part remains unchanged and the second part is
mapped with an element-wise exponential transformation,
parametrized by the first part. Note that y44; is only the
function of x1.4 and x4, not the function of x4 ;, where
1 < j <n—d,j # i. Rewrite the affine coupling layers as

Yd+1 Td+1

= diag(exp(s(®1:4)) + b(z1:4)
Yn Tp
(10)
where diag(exp(s(x1.q4))) is the diagonal matrix whose
diagonal elements correspond to the vector exp(s(x1.4)).
As a diagonal matrix is less expressive, we replace the
diag(exp(s(x1.4))) by matrix exponential e5(®1:4) thus
Yd+1 Ld+1
: S(@1.a) :

=e +b(x1.q) (11)

Yn L

where e5(®1:4) is the matrix exponential of S(x.y) €
Rn—4xn=d_each element of S(x1.4) is a function of x;.4.

The first part is still unchanged. This form of layers is more
expressive than former affine coupling layers. If S(x1.4) =
diag(s(x1.q)), then e5@1:4) = diag(exp(s(x1.4))), thus
our coupling layers turn into affine coupling layers when the
matrix S(x1.4) is a diagonal matrix. Affine coupling layers
are a special kind of our coupling layers. Matrix exponential
of a1 x 1 matrix is equal to exponential function, thus our
coupling layers can be seen as multivariate affine coupling
layers. The Jacobian of our coupling layers is

oy Iq 0
S = OYatiim eS(®1.a)

0x1.4

12)

The Jacobian is a block triangular matrix. Compared with
affine coupling layers whose Jacobian is a triangular matrix,
our coupling layers extend the Jacobian from a triangular
matrix to a block triangular matrix. Its log-determinant is
log det(eS®1:4)) = Tr(S(x1.4)), which can be computed
fast. The inverse function of our layers is:

Li:d = Y1.d

13

Tat1n = € D (g1 — b(Y14)) 2
For 2D image data o with shape h X w x 2¢, where h, w, 2¢
denote the height, width and number of channels, split «
along channel into two parts (z*, £2). The corresponding
output is (y',y?). Eq. (11) shows that each element of
S(z') is a function of &!. So the output layer of S(x') has
(h-w - ¢)? units, which leads to too many units in the output
layer of S(x!). In order to reduce the number of units, we
propose a location-dependent type of coupling layers. The
output yf ;. is not the function of all elements of 2, but
the function of mf ;. With the same height and width index,
where 1 <[ < ¢. Our coupling layers turn into

voo 14

Vi, gyl = es(mlh”“*wig’,: +b(@'); . o
where S(z!) € RW*wxexe p(gl) € R wXe So the out-
put layer of S(x!) only has h-w-c-c units. For very large c,
the output layer may still have too many units. Thus for very
large ¢, let the output layer of S(x1) has h x w X ¢ x 2t
units, where ¢ can be chosen such that t < c. Split the
output layer into two parts: A, with shape h X w X ¢ X ¢
and A, with shape b x w x ¢t x ¢. Our coupling layers
follow

y! = a!
Vi, 7, yfj = eAl(ml)ivﬁ'”ﬂAz(wl)"J*f’acf,j7: + b(ml)i,j,:

15)

And use Eq. (7) to compute matrix exponential. This makes

the model scalable, we can select a proper ¢ to balance

the model complexity and computation. Since e® = I, we

initialize the output layer of S(x; ) with zeros such that each
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Table 2. Density estimation performance on CIFAR-10 and ImageNet 32x 32, ImageNet 64 x 64 datasets. Results are reported in bits/dim
(negative log, likelihood). In brackets are models that use variational dequantization (Ho et al., 2019).

Model CIFAR10 ImageNet32 x 32  ImageNet64 x 64
RealNVP (Dinh et al., 2016) 3.49 4.28 3.98

Glow (Kingma & Dhariwal, 2018) 3.35 4.09 3.81

Emerging (Hoogeboom et al., 2019)  3.34 4.09 3.81

Flow++ (Ho et al., 2019) 329(3.08) —(3.86) — (3.69)

MEF (Ours) 332 4.05 3.73

Table 3. Comparison of the number of parameters of Glow, Emerging, Flow++ and MEF

Model CIFAR10 ImageNet32 x 32 ImageNet64 x 64
Glow (Kingma & Dhariwal, 2018) 44.0M 66.1M 111.1M
Emerging (Hoogeboom et al., 2019)  44.7M 67.1M 67.1M
Flow++ (Ho et al., 2019) 31.4M 169.0M 73.5M
MEF (Ours) 37. M 37.M 46.6M

coupling layer initially performs an identity function, this 5. Related Work

helps training deep networks and reduces the computation
of matrix exponential.

4.2. Invertible 1x 1 convolutions

Standard 1x 1 convolutions are flexible since the weight
matrix W can become any matrix in M,, (R). But they may
be numerically unstable during training when the weight
matrix is singular. Kingma & Dhariwal (2018) proposed to
learn a PLU decomposition and constrained the diagonal
element of U non-zero, which makes the convolutions more
stable, but their flexibility is limited. In order to solve the
stability issues and retain the flexibility of the convolutions,
we propose to replace the weight matrix W by the matrix
exponential of W, the convolutions are implemented as :

Vi jiyij.=eVa ;. (16)

In Section 3.1, we demonstrate that eV ¢ GL,(R)",
which guarantees the determinant of e"positive. So
our matrix exponential convolutions are stable. The log-
determinant of Jacobian is h - w - Tr(W'), where h, w are
height and width. The inverse function is:

Vi, j i = e Yige amn
Suppose W is a skew-symmetric matrix, then
eV (eM)T = eWHW! — 0 1 (18)

thus matrix exponential of a skew-symmetric matrix is an
orthogonal matrix. And the determinant of eV is positive,
so eW is a rotation matrix. All n x n rotation matrices form
a special orthogonal group. Special orthogonal group is in
the image of matrix exponential (Hall, 2015). We initialize
W as a skew-symmetric matrix such that e" is a rotation
matrix.

This work mainly builds upon the ideas proposed in (Dinh
et al., 2016; Kingma & Dhariwal, 2018). Generative flows
models can roughly be divided into two categories according
to the Jacobian. One is the models whose Jacobian is a trian-
gular matrix, which are based on coupling layers proposed
in (Dinh et al., 2014; 2016) or autoregressive flows proposed
in (Kingma et al., 2016; Papamakarios et al., 2017). Ho et al.
(2019); Hoogeboom et al. (2019); Durkan et al. (2019) ex-
tended the models with more expressive invertible functions.
The other is the models with free-form Jacobian. Behrmann
et al. (2019) proposed invertible residual networks and uti-
lized it for density estimation. Chen et al. (2019) further
improved the model with a unbiased estimate of the log
density. Grathwohl et al. (2018) proposed a continuous-time
generative flow with unbiased density estimation.

6. Experiments

In this section, we run several experiments to demonstrate
the performance of our model. In Section 6.1, we compare
the performance on density estimation with other generative
flows models. In Section 6.2, we study the training stability
of generative flows models. In Section 6.3, we compare
three 1 x 1 convolutions. In Section 6.4, we analyze the
computation of matrix exponential. In Section 6.5 we show
samples from our trained models.

6.1. Density Estimation

We evaluate our MEF model on CIFAR10 (Krizhevsky
et al., 2009), ImageNet32 and ImageNet64 (Van Oord et al.,
2016) datasets and compare log-likelihood with other gen-
erative flows models. See Figure 1 for a detailed overview
of our architecture. We use a level L = 3 and depth
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D, = 8, Dy = 4,D3 = 2. Each coupling layer is com-
posed of 8 residual blocks (He et al., 2016) for CIFAR10
and ImageNet32 datasets and 10 residual blocks for Ima-
geNet64 dataset. Each residual block has three convolution
layers, where the first layer and the last layer are 3 x 3
convolution layers, the center layer is 1 x 1 convolution
layer, all with 128 channels. The activation function is
ELU (Clevert et al., 2015). The optimization method is
Adamax (Kingma & Ba, 2014). All models are trained for
50 epochs with batch size 64. Table 2 shows MEF achieves
great performance on the negative log-likelihood scores in
bits/dim. Our model performs better than Glow (Kingma &
Dhariwal, 2018) and Emerging (Hoogeboom et al., 2019),
only worse than Flow++(Ho et al., 2019) with variational
dequantization. Table 3 shows the comparison of the num-
ber of parameters of Glow, Emerging, Flow++ and MEF.
Our model uses a relatively small number of parameters on
ImageNet datasets.

6.2. Training Stability

Training generative flows models requires high computing
infrastructure due to large computation, especially for large-
scale datasets. One reason is that training generative flows
models often take a long time to converge. Glow (Kingma
& Dhariwal, 2018) was trained for 1800 epochs and Flow++
(Ho et al., 2019) had not fully converged after 400 epochs
on CIFAR10 dataset. One reason is that training generative
flows models is not stable, which prevents us from being
able to use a larger learning rate. In Section 4.2, we explain
why standard 1 x 1 convolutions may collapse during train-
ing. We replace the standard convolutions by our matrix
exponential convolutions, which makes the convolutions
stable. In our experiments, we find that training genera-
tive flows models often diverge when using coupling layers.
The reason is that the output of model may be pretty large
when using coupling layers. The log-likelihood in Eq. (2)
is composed of two terms. pyz(z) often chooses Gaussian
distribution. When the output is pretty large, pz(z) tends
to zero, then the log-likelihood tends to infinity. Coupling
layers can be written as:

Y =21

19
vz = g(wz; (1)) (1

where c is a function of «; and g is an invertible function
with respect to 2. Dinh et al. (2016) used hyperbolic
function to make the output of ¢ bounded. We further extend
the idea to control the value of the output of c to prevent
divergence during training. For matrix exponential coupling
layers, we modify Eq.(11) to:

ya2 = e(u1 tanh(uQS+v2)+v1)m2 +b (20)

where wuj,v1,us,ve are scalar parameter, which can be
learned during training, and tanh(-) is hyperbolic function.
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Figure 2. Bits per dimension curve on CIFAR10 test set with dif-
ferent coupling layers and learning rate.

Table 4. Comparison of models with different coupling layers and
learning rate. Performance is measured in bits per dimension. In
brackets are the learning rate. Results are obtained by running 3
times with different random seeds, + reports standard deviation.

Model CIFAR10

Affine (0.01) 3.336+ 0.002
Affine (0.001) 3.391+ 0.003
Matrix exp (0.01) 3.324+ 0.004
Matrix exp (0.001)  3.381+ 0.008

Initialize v; = 0,v9 = 0. We first initialize u; = 1 and
ug = 1. If the model diverges, then we initialize u; and
ug with smaller values. We repeat this operation until con-
vergence. Using this form of coupling layers can make
training more stable and allows us to use a larger learning
rate. Affine coupling layers have the similar form:

yo = exp(ug tanh(uss + vo) +v1) ®x2+ b (21)

We run models on CIFAR10 dataset with learning rate 0.01
and 0.001 to compare the convergence speed. Models with
learning rate 0.01 are trained for 50 epochs, and models
with learning rate 0.001 are trained for 150 epochs. We
also compare our matrix exponential coupling layers with
affine coupling layers. Figure 2 and table 4 show the results.
Using a learning rate 0.01 achieves better performance and
converges faster than using a learning rate 0.001. The results
also show that matrix exponential coupling layers perform
better than affine coupling layers.

6.3.1 x 1 Convolutions

We run models on CIFAR10 dataset to compare the perfor-
mance of standard 1 x 1 convolutions, PLU decomposition
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Figure 4. Samples from our trained CIFAR10 model

11 convolutions and matrix exponential 1 x 1 convolutions.
All models have the same parameter settings expect the 1 x 1
convolutions. We also record the running time per epoch to
compare the computation of convolutions. All models are
trained on one TITAN Xp GPU. Table 5 shows the result.
Our matrix exponential 1 X 1 convolutions achieve nearly
same performance on density estimation as standard con-
volutions and have nearly the same computation compared
with PLU decomposition 1 x 1 convolutions.

Table 5. Comparison of standard, P LU decomposition and matrix
exponential convolutions. Performance is measured in bits per
dimension. Computation is measured in running time per epoch.
Results are obtained by running 3 times with different random
seeds, =+ reports standard deviation.

Convolutions CIFAR10 Time
Standard 3.3244+ 0.001  844.3+ 2.6s
Decomposition  3.3304 0.007  668.3+ 19.6s
Matrix exp 3.32440.004 669.5+ 10.1s

Figure 5. Samples from our trained ImageNet32 model

6.4. Truncate Matrix Exponential

Matrix exponential is an infinite matrix series. We need
to truncate it at a finite term to approximate it. We use
Algorithm 1 to approximate it, which costs about (s + &k —
1)n3 FLOPs. In this section, we present the coefficient
m = s + k — 1 during our training. We set the tolerable
error of Algorithm 1 € = 10~8. We count 1 million times of
coefficient m when computing matrix exponential. In Table
6, we show the mean, standard deviation, maximum and
minimum of coefficient m. The coefficient m is no more
than 11 and is about 9 in average. Experiments show that
matrix exponential can converge fast.

Table 6. Mean, standard deviation, maximum and minimum of the
coefficient m.

Mean Std Max Min
Coefficient m  9.28 094 11 2

6.5. Samples

We show the samples from our trained models on CIFAR10,
ImageNet32 and ImageNet64 datasets in Figure 3 to 5. Our
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CIFAR10 model takes 1.67 seconds to generate a batch of
64 samples on one NVIDIA 1080 Ti GPU.

7. Conclusion

In this paper, we propose a new type of generative flows,
called matrix exponential flows, which utilizes the properties
of matrix exponential. We incorporate matrix exponential
into neural networks and combine it with generative flows.
We propose matrix exponential coupling layers which are
a generalization of affine coupling layers. In order to solve
the stability problem, we propose matrix exponential 1 x 1
convolutions and improve the coupling layers. Our model
significantly speeds up the training process. Based on matrix
exponential, we hope that more layers can be proposed or
incorporate it into other layers.
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