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Recall that three parameters of interest in our paper respectively are expected conditional covariance Ψ1(P ), expected
conditional correlation Ψ2(P ), and scaled expected conditional covarianceΨ3(P ),

Ψ1(P ) = EP [CovP (Y,Z|X)] =

∫
(y − µP,Y (x))(z − µP,Z(x))dP (x), (1)

Ψ2(P ) = EP [CorrP (Y,Z|X)] =

∫
CovP (Y, Z|X)√
σ2
P,Y (x)σ2

P,Z(x)
dP (X), (2)

Ψ3(P ) =
EP [CovP (Y,Z|X)]√

EP [σ2
P,Y (X)] EP [σ2

P,Z(X)]
=

Ψ1(P )√
VY (P )VZ(P )

. (3)

1. Proof of Theorem 1
A simple version of proof of theorem 1 is to directly calculate the discrepancy between Ψ̂1 and Ψ1(P ), which is

Pn [y − µ̂Y (x)] [z − µ̂Z(x)]−Ψ1(P )

= Pn
{

[y − µ̂Y (x)] [z − µ̂Z(x)]− Ψ̂1

}
+ Ψ̂1 −Ψ1(P )

= [Pn − P ]D̂(1) + PD̂(1) + Ψ̂1 −Ψ1(P )

= [Pn − P ]D
(1)
P + [Pn − P ][D̂(1) −D(1)

P ] + P [(µ̂Y − µP,Y )(µ̂Z − µP,Z)]

=
1

n

n∑
i=1

[yi − µP,Y (xi)][zi − µP,Z(xi)] + oP (n−1/2)

(4)

where Pnf = 1
n

∑n
i=1 f(xi) and Pf =

∫
fdP . The last equation in (4) holds when Assumption 1 holds. In this case,

we have the asymptotic linearity and normality. As an alternative route to prove the theorem we can apply standard
semi-parametric tools: We calculate the efficient influence function and then consider a first order asymptotic expansion to
show that the theoretically optimal plug-in estimator of Ψ1(P ) has exactly the same form as, so-called one-step estimator.
Thus, it will naturally enjoy the good properties including asymptotic consistency and normality.

For Ψ2(P ) however, our simple direct approach will not work, so instead we need to apply those semi-parametric tools.

2. Proof of Theorem 1 by Semi-parametric Theory
For a distribution P ∈M, let p denote the density with respect to a dominant measure ν. We define a parametric sub-model
pθ(u) := [1 + θh(u)]p(u) with h(u) ∈ L2(P ), where E{h(u)} = 0, supu |h(u)| < ∞, and θ is sufficiently small, such
that pθ ≥ 0 and

∫
pθ(u)dν(u) = 1. Upon inspection we see that this parametric sub-model is centered at P with score
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sθ(u)|θ=0 = ∂
∂θ log pθ(u)|θ=0 = h(u). In this framework, our statistical functional Ψ1(P ) is called pathwise differentiable

at P with efficient influence function D(1)
P (Bickel et al., 1993), if

∂

∂θ
Ψ1(Pθ)(u)

∣∣∣∣
θ=0

=

∫
D

(1)
P (u)h(u)dP (u) (5)

.

Consider observed data consisting of an independent and identically distributed sample of o = (y, z, x) ∈ Y × Z × X
drawn from distribution P . Then, the corresponding parametric submodel pθ can be conditionally decomposed into

pθ(o) = pθ,hy (y|z, x)pθ,hz (z|x)pθ,hx(x), (6)

with score at the origin
sθ(o)|θ=0 = sθ(y|z, x)|θ=0 + sθ(z|x)|θ=0 + sθ(x)|θ=0

= hy(y; z, x) + hz(z;x) + hx(x).
(7)

For simplicity, we use hy, hz , and hx to represent hy(y; z, x), hz(z;x), and hx(x) respectively. We first show how to
obtain the efficient influence function D(1)

P stated in Theorem 1. Let ψP (x), µP,Y (x), and σ2
P,Y (x) denote the conditional

covariance CovP (Y,Z|X), conditional mean EP (Y |X = x) , and conditional variance VarP (Y |X = x) evaluated under
true model P , while ψθ(x), µθ,Y (x), and σ2

θ,Y (x) are evaluated under sub-model Pθ. The expected conditional covariance
Ψ1(P ) in (1) evaluated on Pθ|θ=0 is

∂

∂θ
Ψ1(Pθ)

∣∣∣∣
θ=0

=
∂

∂θ

∫
X
ψθ(x)dPθ(x)

∣∣∣∣
θ=0

=

∫
X

(
∂

∂θ
ψθ(x)

)
dPθ(x)

∣∣∣∣
θ=0

+

∫
X
ψθ(x)

∂

∂θ
log pθ(x)dPθ(x)

∣∣∣∣
θ=0

=

∫
X

(
∂

∂θ
ψθ(x)

)
dPθ(x)

∣∣∣∣
θ=0

+

∫
X
ψ1(x)hxdP (x)

(8)

Also, we have ψθ(x) = µθ,Y Z(x)− µθ,Y (x)µθ,Z(x), where

µθ,Y Z(x) =

∫
Z

∫
Y
yzpθ(y|z, x)pθ(z|x)dydz

=

∫
Z

∫
Y
yzp(y|z, x)(1 + θhy)p(z|x)(1 + θhz)dydz

= µP,Y Z(x) + θ

∫
Z

∫
Y
yzp(y, z|x)(hy + hz)dydz

+ θ2
∫
Z

∫
Y
yzp(y, z|x)hyhzdydz

= µP,Y Z(x) + θE [Y Z(hy + hz)|X = x] + θ2 E [Y Zhyhz|X = x] .

(9)

and similarly,
µθ,Y (x) = µP,Y (x) + θE [Y (hy + hz)|X = x] + θ2 E [Y hyhz|X = x] ,

µθ,Z(x) = µP,Z(x) + θE [Z(hy + hz)|X = x] + θ2 E [Zhyhz|X = x] .

We then get that∫
X

∂

∂θ
ψθ(x)dPθ(x)

∣∣∣∣
θ=0

=

∫
X

∂

∂θ
µθ,Y Z(x)− µθ,Y (x)

∂

∂θ
µθ,Z(x)− µθ,Z(x)

∂

∂θ
µθ,Y (x)dPθ(x)

∣∣∣∣
θ=0

=

∫
X

E[Y Z(hy + hz)|X = x]− µP,Z(x) E[Y (hy + hz)|X = x]

− µP,Y (x) E[Z(hy + hz)|X = x]dP (x)

= E {[(Y − µP,Y (X))(Z − µP,Z(X))−Ψ1(P )] (hy + hz + hx)} .

(10)
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Therefore,

∂

∂θ
Ψ1(Pθ)

∣∣∣∣
θ=0

=

∫
X

(
∂

∂θ
ψθ(x)

)
dPθ(x)

∣∣∣∣
θ=0

+

∫
X

Ψ1(x)hxdP (x)

= E {[(Y − µP,Y (X))(Z − µP,Z(X))−Ψ1(X)] (hy + hz + hx)}+ E[Ψ1(X)hx]

= E {[(Y − µP,Y (X))(Z − µP,Z(X))] (hy + hz + hx)} .

(11)

which gives us the efficient influence function D(1)
P (o) = (y − µP,Y (x))(y − µP,Z(x))−Ψ1(P ) in Theorem 1. We note

that, in above equation, we use the fact that
∫
f(y, z)hxdP (o) = 0 and

∫
g(x)(hy + hz)dP (o) = 0 where f(y, z) is an

arbitrary function which does not depend on x and g(x) is an arbitrary function which depends only on x.

Now, we can use the efficient influence function to obtain the so-called “one-step estimator”. Consider an asymptotic
von-mises expansion of Ψ1 centered at the true P and evaluated at some P ∗ ∈M (Fernholz, 2012). Then we have that

Ψ1(P ∗)−Ψ1(P ) = (P ∗ − P )D
(1)
P∗ +R1(P ∗, P )

= −PD(1)
P∗ +R1(P ∗, P ),

(12)

where R(P ∗, P ) is a second order remainder term and we use the fact that PD(1)
P∗ = 0. We can now plug in an estimated

distribution P̂n, and use a bit of algebra to show

Ψ1(P̂n)−Ψ1(P ) = −PnD̂
(1) + (Pn − P )D̂(1) +R1(P̂n, P )

= −PnD̂
(1) + (Pn − P )D

(1)
P + (Pn − P )

(
D̂(1) −D(1)

P

)
+R1(P̂n, P ),

(13)

The second term above is the linear term evaluated at the truth, with mean zero. Ideally, we can find an estimator for Ψ1 such
that this term can dominate the asymptotic performance of Ψ1(P̂n). The third and fourth one are respectively an empirical
process term and second-order remainder term, which can be shown to be negligible under certain conditions on P̂n. That is,
they both converge to 0 faster than the linear term as n→∞. However, we see that the term PnD̂(1) is the source of the
irregular behavior of Ψ1(P̂n) and can often cause non-ignorable bias. Hence, this expansion motivates us to find a proper
way to cancel the effects of PnD̂(1) and give the proposed one-step estimator for Ψ1(P )

Ψ̂1,onestep = Ψ1(P̂n) + PnD̂
(1)

=
1

n

n∑
i=1

(yi − µ̂Y (xi))(yi − µ̂Z(xi)),
(14)

which is coincidentally the same as the proposed theoretically optimal plug-in estimator Ψ̂1 in our paper. Therefore,
according to (13), we can also obtain the asymptotic linearity of Ψ̂1:

Ψ̂1 −Ψ1(P ) =
1

n

n∑
i=1

D
(1)
P (oi) + oP (n−1/2),

as long as the empirical process (Pn−P )
(
D̂(1) −D(1)

P

)
and the second-order remainder termR1(P̂n, P ) are negligible. By

Assumption 1 we have that (Pn−P )
(
D̂(1) −D(1)

P

)
= oP (n−1/2). Thus, we only need to prove R1(P̂n, P ) = oP (n−1/2).

For any P ∗ ∈M, the remainder is

R1(P ∗, P ) = Ψ1(P ∗)−Ψ1(P ) + PD
(1)
P∗

= P {(Y − µP∗,Y (X))(Z − µP∗,Z(X))} − P {(Y − µP,Y (X))(Z − µP,Z(X))}
= P {(µP∗,Y (X)− µP,Y (X)) (µP∗,Z(X)− µP,Z(X))} .

(15)

Hence, as long as µP∗,Y (X) − µP,Y (X) and µP∗,Z(X) − µP,Z(X) both converge to zero at oP (n−1/4), we have
R1(P ∗, P ) = oP (n−1/2). That is to say, under Assumptions 1, the asymptotic linearity of Ψ̂1 holds. By the central limit
theorem, we can further derive the asymptotic normality of Ψ̂1, i.e.

√
n[Ψ̂1 −Ψ1(P )]→d N [0, σ2

1(P )], (16)

where σ2
1(P ) =

∫
[D

(1)
P (o)]2dP (o). This completes the proof of Theorem 1
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3. Proof of Theorem 3
As in (12), we can also show that the naive plug-in estimator Ψ̂2,naive is asymptotically biased, which can be corrected
by adding the irregular bias. Let φθ(x) = Cor(Y,Z|X) under Pθ and φ(x) = φθ|θ=0. Then, φθ(x) = ψθ(x)

gθ(x)
, where

gθ(x) =
√
σ2
θ,Y (x)σ2

θ,Z(x). The conditional variance under Pθ can be expanded as follows,

σ2
θ,Y (x) = µθ,Y 2(x)− µ2

θ,Y (x)

= µY 2(x) + θE
[
Y 2(hy + hz)|X = x

]
+ θ2 E

[
Y 2hyhz|X = x

]
−
{
µP,Y (x) + θE [Y (hy + hz)|X = x] + θ2 E [Y hyhz|X = x]

}2
= σ2

P,Y (x) + θCov(Y, Y (hy + hz)|X = x) + θ2 Cov(Y, Y hyhz|X = x)

− µP,Y (x)
{
θE[Y (hy + hz)|X = x] + θ2 E[Y hyhz|X = x]

}
−
{
θE[Y (hy + hz)|X = x] + θ2 E[Y hyhz|X = x]

}2
.

(17)

⇒ ∂

∂θ
σ2
θ,Y (x)

∣∣∣∣
θ=0

= Cov(Y, Y (hy + hz)|X = x)− µP,Y (x) E[Y (hy + hz)|X = x] (18)

⇒ ∂

∂θ
σ2
θ,Z(x)

∣∣∣∣
θ=0

= Cov(Z,Z(hy + hz)|X = x)− µP,Z(x) E[Z(hy + hz)|X = x]. (19)

Thus, the derivative of Ψ2(Pθ) with respect to θ at θ = 0 is

∂

∂θ
Ψ2(Pθ)

∣∣∣∣
θ=0

=

∫
X

(
∂

∂θ
φθ(x)

)
dPθ(x)

∣∣∣∣
θ=0

+

∫
X
φ(x)hxdP (x)

=

∫
X

ψ′θ(x)gθ(x)− ψθ(x)g′θ(x)

g2θ(x)
dPθ(x)

∣∣∣∣
θ=0

+ E[φ(X)hx],

(20)

where
ψ′θ(x)|θ=0 = E[Y Z(hy + hz)|X = x]− µP,Z(x) E[Y (hy + hz)|X = x]

− µP,Y (x) E[Z(hy + hz)|X = x],
(21)

and
g′θ(x) =

1

2g(x)

{
E[Y 2(hy + hz)|X]− 2µP,Y (x) E[Y (hy + hz)|X]

}
σ2
P,Z(x)

+
1

2g(x)

{
E[Z2(hy + hz)|X]− 2µP,Z(x) E[Z(hy + hz)|X]

}
σ2
P,Y (x).

(22)

Plugging in (21) and (22), (20) becomes∫
X

ψ′θ(x)gθ(x)− ψθ(x)g′θ(x)

g2θ(x)
dPθ(x)

∣∣∣∣
θ=0

+ E[φ(X)hx]

= E

{[
(Y − µP,Y (X))(Z − µP,Z(X))

g(X)
− φ(X)

]
(hy + hz + hx)

}
− E

{
φ(X)

[
(Z − µP,Z(X))2

2σ2
P,Z(X)

+
(Y − µP,Y (X))2

2σ2
P,Y (X)

− 1

]
(hy + hz + hx)

}
+ E[φ(X)hx]

= E

{[
(Y − µP,Y (X))(Z − µP,Z(X))

g(X)
− φ(X)

(
(Z − µP,Z(X))2

2σ2
P,Z(X)

+
(Y − µP,Y (X))2

2σ2
P,Y (X)

− 1

)
−Ψ2(P )

]
(hy + hz + hx)

}
.

(23)

Therefore, the efficient influence function of Ψ2(P ) is

D2
P (o) =

(y − µP,Y (x))(z − µP,Z(x))

g(x)
− φ(x)

(
(z − µP,Z(x))2

2σ2
P,Z(x)

+
(y − µP,Y (x))2

2σ2
P,Y (x)

− 1

)
−Ψ2(P ). (24)
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Thus, the one-step estimator of Ψ2(P ) according to (13) is

Ψ̂2 = Ψ2(P̂n) + PnD̂
(2)

=
1

n

n∑
i=1

{
(yi − µ̂Y (xi))(zi − µ̂Z(xi))√

σ̂2
Y (xi)σ̂2

Z(xi)

− µ̂Y Z(xi)− µ̂Y (xi)µ̂Z(xi)√
σ̂2
Y (xi)σ̂2

Z(xi)

[
(yi − µ̂Y (xi))

2

2σ̂2
Y (xi)

+
(zi − µ̂Z(xi))

2

2σ̂2
Z(xi)

− 1

]}
.

(25)

The second-order remainder of Ψ2(P ∗) is

R2(P ∗, P ) = Ψ2(P ∗)−Ψ2(P ) + PD
(2)
P

= P

{
(µP∗,Y (X)− µP,Y (X)) (µP∗,Z(X)− µP,Z(X))

gP∗(X)

}
− P

{
CorrP∗(Y, Z|X)

2σ2
P∗,Y (X)

(µP∗,Y (X)− µP,Y (X))
2

}

− P

{
CorrP∗(Y,Z|X)

2σ2
P∗,Z(X)

(µP∗,Z(X)− µP,Z(X))
2

}

+ P

{
CovP∗(Y,Z|X)− CovP (Y,Z|X)

gP∗(X)

(
σ2
P∗,Y (X)− σ2

P,Y (X)

2σ2
P∗,Y (X)

+
σ2
P∗,Z(X)− σ2

P,Z(X)

2σ2
P∗,Z(X)

)}
− P

{
f1(X)(σP∗,Z(X)− σP,Z(X))2 − f2(X)(σP∗,Y (X)− σP,Y (X))(σP∗,Z(X)− σP,Z(X))

+f3(X)(σP∗,Y (X)− σP,Y (X))2
}
,

(26)

where {fi}3i=1 are some functions depending only on X . Hence, to make R2(P̂n, P ) converges to
zero at oP (n−1/2), we have to guarantee that every item in (26) converges to zero at oP (n−1/2),
which includes

∫ (
CovP̂n(Y,Z|x)− CovP (Y, Z|x)

) (
σ2
P∗,Y (x)− σ2

P,Y (x)
)
dP (x),

∫
(σ̂Y (x)− σP,Y (x))

2
dP (x),∫

(σ̂Z(x)− σP,Z(x))
2
dP (x). Then, we have the asymptotic linearity of Ψ2(P ) by (13),

Ψ̂2 −Ψ2(P ) =
1

n

n∑
i=1

D
(2)
P (oi) + oP (n−1/2),

and the asymptotic normality √
n[Ψ̂2 −Ψ2(P )]→d N [0, σ2

2(P )], (27)

where σ2
2(P ) =

∫
[D

(2)
P (o)]2dP (o). This completes the proof of Theorem 3.

3.1. Proof of Theorem 2

Before proving Theorem 2, we first show that −1 ≤ Ψ3(P ) ≤ 1 for all P . By applying Cauchy-Schwartz and Jensen’s
inequality, we get that

Cov2(Y,Z|X) ≤ Var(Y |X) Var(Z|X)

|E[Cov(Y, Z|X)]| ≤ E
√

Var(Y |X) Var(Z|X) ≤
√

E[Var(Y |X) Var(Z|X)]

|Ψ3(P )| =

∣∣∣∣∣ E[Cov(Y,Z|X)]√
E[Var(Y |X) Var(Z|X)]

∣∣∣∣∣ ≤ 1,

which has the same range as the correlation.

The efficient influence function of Ψ3(P ) can be easily derived from what we have developed for Ψ1(P ) by delta method
(Sobel, 1982). Recall that expected conditional covariance has efficient influence function D(1)

P (o), So the efficient influence
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function for the expected conditional variance VY (P ) is DVY
P (o) = (y− µP,Y (x))2. Let g(u, v, w) = u√

vw
. Then we know

that Ψ3(P ) = g(Ψ1(P ), VY (P ), VZ(P )) has efficient influence function

D
(3)
P (o) = ∇g(Ψ1(P ), VY (P ), VZ(P ))× (D

(1)
P (o), DVY

P (o), DVZ
P (o))T

=
(y − µP,Y (x))(z − µP,Z(x))√

VY (P )VZ(P )
−Ψ3(P )

[
(y − µP,Y (x))2

2VY (P )
+

(z − µP,Z(x))2

2VZ(P )

]
.

(28)

Thus, the one-step estimator is exactly the same as our theoretically optimal plug-in estimator, becausel of PnD̂(3) =

Ψ3(P̂n)− Ψ3(P̂n)
[

1
n

∑
(yi−µY (xi))

2

2VY (P̂n)
+

1
n

∑
(zi−µZ(xi))

2

2VZ(P̂n)

]
= 0. Then the second order remainder of Ψ3(P ∗) is

R3(P ∗, P ) = Ψ3(P ∗)−Ψ3(P ) + PD
(3)
P

=
P [(µP∗,Y (X)− µP,Y (X)) (µP∗,Z(X)− µP,Z(X))√

VY (P ∗)VZ(P ∗)

− Ψ3(P ∗)

2

[
P (µP∗,Y (X)− µP,Y (X))2

VY (P ∗)
+
P (µP∗,Z(X)− µP,Z(X))2

VZ(P ∗)

]
+G(P ∗, P )

(29)

where

G(P ∗, P ) =
Ψ1(P ∗)−Ψ1(P )

2
√
VY (P ∗)VZ(P ∗)

[
(VY (P ∗)− VY (P ))2

VY (P ∗)
+

(VZ(P ∗)− VZ(P ))2

VZ(P ∗)

]

− Ψ1(P )√
VY (P ∗)VZ(P ∗)

[
[VY (P )VZ(P )− VY (P ∗)VZ(P ∗)]2√

VY (P ∗)VZ(P ∗)VY (P )VZ(P )

+
[
√
VZ(P ∗)−

√
VZ(P )]2

2VZ(P ∗)
+

[
√
VY (P ∗)−

√
VY (P )]2

2VY (P ∗)

−
[
√
VY (P ∗)−

√
VY (P )]

√
VZ(P ∗)−

√
VZ(P )]

2
√
VY (P ∗)VZ(P ∗)

]

Under Assumption 1, we have known that Ψ1(P ∗) − Ψ1(P ) = oP (n−1/2). Thus, G(P ∗, P ) = oP (n−1) and thus,
R3(P ∗, P ) = oP (n−1/2) is negligible. We can then obtain the asymptotical linearity and nonparametric efficiency of Ψ̂3 as
in Theorem 2.

4. Additional experiments for asymptotic performance
For Ψ1(P ), Ψ2(P ), Ψ3(P ), we compare the efficient estimators proposed in paper, with their corresponding naive estimators
(which should theoretically not be rate optimal):

Ψ̂1,naive =
1

n

n∑
i=1

[µ̂Y Z(x)− µ̂Y (x)µ̂Z(x)] (30)

Ψ̂2,naive =
1

n

n∑
i=1

µ̂Y Z(xi)− µ̂Y (xi)µ̂Z(xi)√
(µ̂Y 2(xi)− µ̂2

Y (xi)) (µ̂Z2(xi)− µ̂2
Z(xi))

(31)

Ψ̂3,naive

1
n

∑n
i=1 [µ̂Y Z(x)− µ̂Y (x)µ̂Z(x)]√

1
n

∑n
i=1 (µ̂Y 2(xi)− µ̂2

Y (xi))× 1
n

∑n
i=1 (µ̂Z2(xi)− µ̂2

Z(xi))
. (32)
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4.1. Low-dimensional cases

We modify the setting of low-dimensional example in our paper slightly, by changing the underlying covariance structure of
errors of Y and Z. In this case, we let

~e|X = (ey, ez)
T |X ∼ N

[(
0
0

)
,

(
1 −0.5 + x

4
−0.5 + x

4 1

)]
. (33)

The true value of Ψ1(P ) is 0.25. The results are shown in Figure 1: the naive estimator again does not have a bias
converging to zero at oP (n−1/2) and we cannot obtain a valid confidence interval by bootstrapping. In fact, we can notice
that bootstrap-based methods indeed fails quite spectacularly.

Figure 1. Low dimensional setting: Empirical
√
n−scaled bias (left), empirical n-scaled variance (center) and empirical coverage of

95% confidence interval (right) of the theoretically optimal plug-in estimator (blue) and the naive estimators (red) of the scaled expected
conditional covariance Ψ1(P ). Conditional mean is estimated by local polynomial regression.

We also use the same pattern in low-dimensional setting described in our paper to evaluate the theoretically optimal plug-in &
naive estimator of Ψ3(P ). Figure ?? shows the results. The empirical

√
n-scaled bias of our theoretically optimal estimator

Ψ̂3 goes toward zero which this is not the case for the naive estimator. The empirical variance of both methods stabilizes
when scaled by n and the confidence interval of our optimal plug-in estimators converges to the nominal 95% as sample size
increases. As expected, due to excess bias, the bootstrap interval based on the “naive” estimators performs poorly (with
coverage actually converging to 0)

Figure 2. Low dimensional setting: Empirical
√
n−scaled bias (left), empirical n-scaled variance (center) and empirical coverage of 95%

confidence interval (right) of the theoretically optimal estimator (blue) and the naive estimators (red) of the scaled expected conditional
covariance Ψ3(P ). Conditional mean is estimated by local polynomial regression.
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4.2. Moderate dimensional cases

In this setting, we generate the data from following mechanism.

Y = f1(x1, ..., x8) + ey, Z = f2(x1, ..., x8) + ez, (34)

where X ∼ N(0, I8) and ~e = (ey, ez)
T ∼ N

[(
0
0

)
,

(
1 −0.5
−0.5 1

)]
. Here the true value of expected conditional

covariance is also Ψ1(P ) = −0.5. For each sample size n ∈ {300, 500, 2000, 4000, 6000, 8000, 10000}, we generated
400 datasets. Gradient boosting were used to estimate the conditional means µY (x) and µZ(x) where hyper-parameters
(number of trees, minimal node size and fraction of observations to sample) are tuned by a 5-fold cross validation. Since
bootstrap-based approach fails to build the confidence interval and is computationally expensive. Here, we just include
the Wald-type confidence interval of the optimal plug-in estimator. The results look similar to low-dimensional cases, see
Figure 3. As n increases,

√
n-scaled bias of the optimal plug-in estimator tends to zero while that of the naive estimator

diverges. The variances go to a positive constant and the empirical coverage obtained from asymptotic normality also works.
In this setting, we may notice that bias of the optimal plug-in estimator converges to 0 more slowly but still gives reasonable
interval estimates.

Figure 3. Moderate dimensional setting: Empirical
√
n−scaled bias (left), empirical n-scaled variance (center) and empirical coverage of

95% confidence interval (right) of the theoretically optimal plug-in estimator (blue) and the naive estimators (red) of the scaled expected
conditional covariance Ψ1(P ). Conditional mean is estimated by gradient boosting.

4.3. High-dimensional cases

We use the same setting with high-dimensional features to evaluate the performance of the scaled expected conditional covari-
ance Ψ3. The true parameter is Ψ3(P ) = −0.5. We generate random datasets of size n ∈ {500, 1000, 2000, 3000, 4000}
and estimate Ψ3. The Lasso was used to estimating the conditional means µY (x) and µZ(x) where the regularization
parameter was tuned by a 5-fold cross validation. Again, the results are in-line with our theory: We see good performance
for Ψ̂3 and poor performance for the naive estimator.

5. Real Data Analysis: Network Recovery of Boston Housing Data
We evaluate our approach on the Boston housing data (Harrison Jr & Rubinfeld, 1978) by analyzing the network structure of
features that may potentially impact house price. This dataset contains information collected by the U.S Census Service
concerning housing in different areas of Boston Mass. There are 506 observations and each observation is based on a single
town, with information on median home value (MEDV). In addition, it provides the four types of attributes which may be
potential predictors to the price of house. The first type consists of neighborhood feature: % of lower socio-economic status
(LSTAT); % of residential land zoned for lots larger than 25,000 square feet (ZN); % of black residents in the population
(B); per capita crime rate by town (CRIM); % of non-retail business acres per town (INDUS); the full value property tax rate
(TAX); the pupil-teacher ratio by school district (PTRATIO); Charles River dummy variable (CHAS). The second type is
the house structural features: the average number of rooms per dwelling (RM) and % of owner-occupied units built prior
to 1940 (AGE); The third one consists of accessibility features: index of accessibility to radial highways (RAD) and the
weighted distances to five Boston employment centers (DIS). The final type is about air pollution, which only includes the
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Figure 4. Empirical
√
n−scaled bias (left), empirical n-scaled variance (center) and empirical coverage of 95% confidence interval (right)

of the plug-in estimator (blue) and the naive estimators (red) of the scaled expected conditional covariance Ψ3(P ). Conditional mean is
estimated by Lasso.

nitric oxides concentration (NOX).

Here, we consider Gaussian graphical model (GMM) and the scaled expected conditional covariance Ψ3 to build a network
of 14 attributes. For Ψ3, we estimate the conditional mean using random forests and we obtain p-values according to our
asymptotic Gaussian limits as discussed in Theorem 2. For GMM, we use the bootstrap to build confidence intervals. In
addition, we also use the value of Ψ̂3 and the corresponding entry of the estimated precision matrix to represent the strength
of association.

Figure 5. Network constructed using GGM (left) and Ψ3 (right). P-values are obtained to identify edges. Width of edges represents the
corresponding entry in the precision matrix (left) or the value of Ψ3 (right).

We display the results in Figure 5. The network constructed by the scaled expected conditional covariance Ψ3 shows that
median house value (MEDV) is strongly connected with neighborhood and structural characteristics, such as the number of
room (RM), weighted distances to employment centres (DIS), % of lower socio-economic status residents(LSTAT), crime
rate (CRIM) and property-tax rate(TAX). This is similar to the findings of (Bi et al., 2003) and (Williamson et al., 2017)
where these attributes were also marked as important. In particularly, average number of room and proportion of lower
socio-economic status, which were previously found as the most important feature, also have the strongest conditional
association with the price.

In this example, estimating the network using GGM gives very different results. The graph structure is much less
parsimonious. This is to be expected under model-misspecification: It is likely that the true precision matrix derived from
complicated non-Gaussian data is quite dense; it is unfortunately just a meaningless measure in such a case. In addition,
edges connected to median price (MEDV) do not agree with previous published studies.
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