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Abstract

Data augmentation is a powerful technique to im-
prove performance in applications such as image
and text classification tasks. Yet, there is little rig-
orous understanding of why and how various aug-
mentations work. In this work, we consider a fam-
ily of linear transformations and study their effects
on the ridge estimator in an over-parametrized lin-
ear regression setting. First, we show that trans-
formations which preserve the labels of the data
can improve estimation by enlarging the span of
the training data. Second, we show that transfor-
mations which mix data can improve estimation
by playing a regularization effect. Finally, we val-
idate our theoretical insights on MNIST. Based on
the insights, we propose an augmentation scheme
that searches over the space of transformations by
how uncertain the model is about the transformed
data. We validate our proposed scheme on im-
age and text datasets. For example, our method
outperforms RandAugment by 1.24% on CIFAR-
100 using Wide-ResNet-28-10. Furthermore, we
achieve comparable accuracy to the SoTA Adver-
sarial AutoAugment on CIFAR-10, CIFAR-100,
SVHN, and ImageNet datasets.

1. Introduction

Data augmentation refers to the technique of enlarging the
training dataset through pre-defined transformation func-
tions. By searching over a (possibly large) space of transfor-
mations through reinforcement learning based techniques,
augmentation schemes including AutoAugment (Cubuk
etal., 2018) and TANDA (Ratner et al., 2017) have shown re-
markable gains over various models on image classification
tasks. Recent work has proposed random sampling (Cubuk
et al., 2019) and Bayesian optimization (Hataya et al., 2019)
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to reduce the search cost, since RL-based techniques are
computationally expensive. Despite the rapid progress of
these transformation search methods, precisely understand-
ing their benefits remains a mystery because of a lack of an-
alytic tools. In this work, we study when and why applying
a family of linear transformations helps from a theoretical
perspective. Building on the theory, we develop methods to
improve the efficiency of transformation search procedures.

A major challenge to understand the theory behind data
augmentation is how to model the large variety of transfor-
mations used in practice in an analytically tractable frame-
work. The folklore wisdom behind data augmentation is
that adding more labeled data improves generalization, i.e.
the performance of the trained model on test data (Shorten
& Khoshgoftaar, 2019). Clearly, the generalization effect
of an augmentation scheme depends on how it transforms
the data. Previous work has analyzed the effect of Gaussian
augmentation (Rajput et al., 2019) and feature averaging
effect of adding transformed data (Dao et al., 2019; Chen
et al., 2019). However, there is still a large gap between
the transformations studied in these works and the ones
commonly used in augmentation schemes.

In this work, we consider linear transformations which rep-
resent a large family of image transformations. We con-
sider three categories: (i) Label-invariant (base) transforma-
tions such as rotation and horizontal flip; (ii) Label-mixing
transformations including mixup (Zhang et al., 2017; Inoue,
2018), which produces new data by randomly mixing the
features of two data points (e.g. a cat and a dog) — the labels
are also mixed; (iii) Compositions of (label-invariant) trans-
formations such as random cropping and rotating followed
by horizontal flipping.

To gain insight into the effects of linear transformations, we
consider a conceptually simple over-parametrized model
proposed in Bartlett et al. (2019); Xie et al. (2020); Hastie
et al. (2019) that captures the need to add more data as in
image settings. Suppose we are given n training data points
T1,...,T, € RP as X € R" P with labels Y € R". In
this setting, the labels obey the linear model under ground
truth parameters 8 € RP,i.e. Y = X3 + ¢, where ¢ € R"
denotes i.i.d. random noise with mean zero and variance o2,

Importantly, we assume that p > n, hence the span of
the training data points does not include the entire space
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Transformations Example Improvement
Tpl 2
Label-invariant Rotate (F) W
2
Label-mixing Mixup H); l; Il
(B Py F\ Fyx)?

Composition Rotate and flip (F} F5)

n

Table 1. Illustrative examples of our theoretical results. For label-
invariant transformations and their compositions, they can reduce
the estimation error at a rate proportional to the added information.
Label-mixing reduces estimation error through a regularization effect.

of RP. We consider the ridge estimator B with a fixed /5
regularization parameter and measure the estimation error
of the ridge estimator by its distance to (3.

Our first insight is that label-invariant transformations can
add new information to the training data. We use our the-
oretical setup described above to present a precise state-
ment. For a data point (x, y), a label-invariant transforma-
tion F' € RP*P in the regression setting produces a new
data point F'z with label y. We show that by adding P Fx
which is outside the span of the training data, we reduce
the estimation error of the ridge estimator at a rate propor-
tional to (3T Ps F'z)?/n (see Theorem 3.1 for the result).
Here P5 denotes the projection to the orthogonal space of
X T X. In Section 4, we validate the insight for classifica-
tion settings on MNIST by showing that a label-invariant
transformation can indeed add new information by reducing
the bias (intrinsic error score) of the model.

Our second insight is that label-mixing transformations can
provide a regularization effect. In the theoretical setup,
given two data points (x1,y1) and (22, y2), the mixup trans-
formation with parameter o sampled from the Beta distribu-
tion produces auxy + (1 — @)z with label ayy + (1 — ) ys
(Zhang et al., 2017). Interestingly, mixup does not add new
information since the mixed data lies in the span of the
training data. However, we show that mixup plays a regu-
larization effect through shrinking the training data relative
to the /5 regularization. The final result is that adding the
mixup sample reduces estimation error by O (|| X 3]|?/n?)
(see Theorem 3.3 for the result). In Section 4, we validate
the insight on MNIST by showing that mixing same-class
digits can reduce the variance (instability) of the model.

Finally, for compositions of label-invariant transformations,
we can show their effect for adding new information as a
corollary of the base case (see Corollary 3.4 for details and
we provide the validation on MNIST in Section 4). We
provide an illustration of the results in Table 1.

Algorithmic results. Building on our theory, we propose an
uncertainty-based random sampling scheme which, among
the transformed data points, picks those with the highest
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Figure 1. Our method learns and reduces the frequencies of the
better performing transformations during training. Base model:

PyramidNet+ShakeDrop (Han et al., 2017; Yamada et al., 2018).
Dataset: CIFAR-10. See Section 5.3 for the details.

loss, i.e. “providing the most information”. We find that
there is a large variance among the performance of different
transformations and their compositions. Unlike RandAug-
ment (Cubuk et al., 2019), which averages the effect of all
transformations, the idea behind our sampling scheme is to
better select the transformations with strong performance.

We show that our proposed scheme applies to a wide range
of datasets and models. First, our sampling scheme achieves
higher accuracy by finding more useful transformations
compared to RandAugment on three different CNN architec-
tures. For example, our method outperforms RandAugment
by 0.59% on CIFAR-10 and 1.24% on CIFAR-100 using
Wide-ResNet-28-10, and 1.54% on ImageNet using ResNet-
50. Figure 1 shows the key insight behind our proposed
method. We compare the frequencies of transformations
(cf. Section 5 for their descriptions) sampled by our method.
As the training procedure progresses, our method gradually
learns transformations providing new information (e.g. Ro-
tate followed by ShearY) and reduces their frequencies. On
the other hand, the frequencies of transformations such as
Mixup followed by Equalize increase because they produce
samples with large errors that the model cannot learn.

Second, we achieve similar test accuracy on CIFAR-10 and
CIFAR-100 compared to the state-of-the-art Adversarial
AutoAugment (Zhang et al., 2020). By contrast, our scheme
is conceptually simpler and computationally more efficient;
Since our scheme does not require training an additional
adversarial network, the training cost reduces by at least
5x. By further enlarging number of augmented samples by
4 times, we achieve test accuracy 85.02% on CIFAR-100,
which is higher than Adversarial AutoAugment by 0.49%.
Finally, as an extension, we apply our scheme on a sentiment
analysis task and observe improved performance compared
to the previous work of Xie et al. (2019).

Notations. We use the big-O notation f(n) < O(g(n))
to indicate that f(n) < C - g(n) for a fixed constant C
and large enough n. We use f(n) < g(n) to denote that
f(n) < O(g(n)). For a matrix X € R4*% et XT denote
the Moore-Penrose psuedoinverse of X.
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2. Preliminaries

Recall that X = [2],...,z,]] € R"*P denotes the training
data, where z; € R? for 1 <14 < n. LetId, € RP*P denote
the identity matrix. Let Px denote the projection matrix
onto the row space of X. Let Py = Id, —Px denote the
projection operator which is orthogonal to Px. The ridge
estimator with parameter A < 1 is given by

B(X,Y)= (XX +nAId)1X Y,

which arises from solving the mean squared loss

1
— min || Xw - Y|

+ X u?
2N weRP 2 wir

We use 3% to denote the ridge estimator when we augment
(X,Y) using a transformation function F'. The estimation

error of /3 is given by e(3) := E. [||B — BHQ} . Next we
define the label-invariance property for regression settings.

Definition 2.1 (Label-invariance). For a matrix F' € RP*P,
we say that F' is label-invariant over X C RP for € R? if

' B = (Fx)' B, foranyz € X.

As an example, consider a 3-D setting where X =
{(a,b,0) : Va,b € R}. Let 8 = (1,—1/2,1/2)" and

1 0 0
F = 0 cosy sin 7
3 s T
0 —sing cosj

Then (Id —FT)3 = (0,0, 1) is orthogonal to X'. Hence F’
is a label-preserving rotation with degree 5 over &’ for 3.

In addition to rotations and mixup which we have described,
linear transformations are capable of modeling many image
transformations. We list several examples below.

Horizontal flip. The horizontal flip of a vector along its cen-
ter can be written as an orthonormal transformation where

0o ... 0 1
F= 0 ... 1 0
1 0 0

Additive composition. For two transformations F; and Fb,
their additive composition gives z*"¢ = Fix + Fsx. For
example, changing the color of an image and adding Gaus-
sian noise is an additive composition with F; x being a color
transformation and F>x being a Gaussian perturbation.

Multiplicative composition. In this case, x**¢ = I Fox. For
example, a rotation followed by a cutout of an image is a
multiplicative composition with F, being a rotation matrix
and F; being a matrix which zeros out certain regions of x.

3. Analyzing the Effects of Transformation
Functions in an Over-parametrized Model

How should we think about the effects of applying a trans-
formation? Suppose we have an estimator 3 for a linear
model 5 € RP. The bias-variance decomposition of 3 is

e(B) =

4o +

B o

bias variance

In the context of data augmentation, we show the following
two effects from applying a transformation.

Adding new information. The bias part measures the error
of 3 after taking the expectation of € in B. Intuitively, the
bias part measures the intrinsic error of the model after
taking into account the randomness which is present in B LA
transformation may improve the bias part if "¢ is outside
Px . We formalize the intuition in Section 3.1.

Regularization. Without adding new information, a trans-
formation may still reduce e(B) by playing a regularization
effect. For example with mixup, ¢ is in Px. Hence
adding z*¢ does not add new information to the training
data. However, the mixup sample reweights the training
data and the /5 regularization term in the ridge estimator.
We quantify the effect in Section 3.2.

3.1. Label-Invariant Transformations

We quantify the effect of label-invariant transformations
which add new information to the training data.

Example. Given a training data point (z, y), let (x®¢, y*¢)
denote the augmented data where y**¢ = y. Intuitively,
based on our training data (X,Y"), we can infer the label of
any data point within Px (e.g. when o is sufficiently small).
If x*¢ satisfies that Pxz®¢ = 0, then add (z™'¢,y*¢)
does not provide new information. On the other hand if
P)%a:a“g = 0, then adding z*"¢ expands the subspace over
which we can obtain accurate estimation. Moreover, the
added direction corresponds to P2, Meanwhile, since
y™¢ = y, it contains a noise part which is correlated with ¢.
Hence the variance of 3 may increase.

To derive the result, we require a technical twist: instead of
adding the transformed data F'z directly, we are going to
add its projection onto Pi. This is without loss of generality
since we can easily infer the label of Ps- Fz. Let ¥ denote
the ridge estimator after adding the augmented data to the
(X,Y). Our result is stated as follows.

Theorem 3.1. Suppose we are given a set of n covariates
X € R" P with labels Y = X + ¢, where 5 € RP and
€ € R" has mean 0 and variance o®. Let F € RP*P be a
label-invariant transformation over X for 3. Let (x,y) be
a data point from (X,Y).
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Algorithm 1 Uncertainty-based sampling of transformations

1: Imput. a batch of B data point (1, 1), (z2,y2), ...
Require. K transformations Fi, Fb, ...,

(zB,yB)
Fk, the current model 3 and the associated loss [ EE

Default transformations G1,...,GH.

Param. L: number of composition steps; C: number of augmented data per input data; .S: number of selected data points used for

F;, be L transformations sampled uniformly at random without replacement from F1, . ..
, ;. and the default ones Gy, . ..

, Fri.
, G sequentially on (z;, ;).

training.
Return: alist of B - S transformed data 7'.
2: fori=1,...,Bdo
3: fork=1,...,Cdo
4: Let Fy,,...,
5: Compute z3* and y; ¢ by applying Fj,, ...
6: Infer the loss of (z}, %, y}.¢) as * = lé(xfg7 Yt
7:  end for
8:  Choose the S data points from {x}'¢, 4" }$_; that have the highest losses /¥ and add them to 7.
9: end for

Let z = Py Fx and y™¢ = y — Diag [(XT)TFx] Y. Sup-
pose that we augment (X,Y") with (z,y*¢). Then, we have
that

2A(n+ 1) — (1 — 2X)||2[]?)

o() — e(p™) > UL VZLZRED (2 gy
- (2;3%) 211", @
Moreover, when |||* = o(n) and 320 > logn(1 +
%) %, (including o = 0), we have
0§e(,3)—e(BF)—(2+o(1))<Z7B> < POV g

An n2

In the above, fimin (X ) denotes the smallest singular value
of X. For a vector v, Diag [v] € R?*? denotes a diagonal
matrix with the ¢-th diagonal entry being the ¢-th entry of v.
poly(y/A) denotes a polynomial of v/A.

Theorem 3.1 shows that the reduction of estimation error
scales with (z, 3)2, the correlation between the new signal
and the true model. Intuitively, as long as n is large enough,
then equation (3) will hold. The proof is by carefully com-
paring the bias and variance of /3 and 3% after adding the
augmented data point. On the other hand, we remark that
adding Fz directly into X does not always reduce 6(3),
even when (2, )2 = O(1) (cf. (Xie et al., 2020)).

Another remark is that for augmenting a sequence of data
points, one can repeated apply Theorem 3.1 to get the result.
We leave the details to Appendix A.1.

Connection to augmentation sampling schemes. We de-
rive a corollary for the idea of random sampling used in
RandAugment. Let {F;}X | be a set of K label-invariant
transformations. We consider the effect of randomly sam-
pling a transformation from {F;} X, .

Corollary 3.2. In the setting of Theorem 3.1, let { F;} X |
be K label-invariant transformations. For a data point

(z,y) from (X, Y)andi=1,...,
y;"* =y — Diag [(X )T Fz] Y.

K, let z; = P)J(-Fix and

Suppose that (z,y™¢) is chosen uniformly at random from
{2i, y:" Y. Then we have that

B, [e(B) - e(3™ 5]

z,yue

24 0(1) [~ (21,8 ly(v/)
- K()<Z<M>>+p°y$”

i=1

The proof follows directly from Theorem 3.1. Corollary
3.2 implies that the effect of random sampling is simply an
average over all the transformations. However, if there is a
large variance among the effects of the K transformations,
random sampling could be sub-optimal.

QOur proposed scheme: uncertainty-based sampling.
Our idea is to use the sampled transformations more ef-
ficiently via an uncertainty-based sampling scheme. For
each data point, we randomly sample C' (compositions of)
transformations. We pick the ones with the highest losses
after applying the transformation. This is consistent with
the intuition of Theorem 3.1. The larger (2, 3)2, the higher
the loss of (22, 3¢) would be under §.

Algorithm 1 describes our procedure in detail. In Line
4-6, we compute the losses of C' augmented data points.
In Line 8, we select the S data points with the highest
losses for training. For each batch, the algorithm returns
SB augmented samples.

3.2. Label-Mixing Transformations: Mixup

We show that mixup plays a regularization effect through
reweighting the training data and the /5 regularization term.

Specifically, we analyze the following procedure. Let
a € [0,1] be sampled from a Beta distribution with fixed
parameters (Zhang et al., 2017). Let (z;, y;) and (z;,y;) be
two data points selected uniformly at random from the train-
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ing data. We add the mixup sample (*'¢, y*"8) into (X,Y),
with 2™ = az; + (1 — a)z; and ™ = ay; + (1 — a)y;.

We illustrate that adding the mixup sample is akin to shrink-
ing the training data relative to the regularization term. As-
suming that Y, z; = 0, we have

2
E [xaugl,aug—r} _ (1 — 2&) XTX

a;uug n
= E [XTX + e T 4 (n 4 1)Ald}
aug
(1-2a)?
n

=(1+ )XTX + (n+1)AId,
Hence the mixup sample shrinks the X T X term relative to
the /5 regularization term in 5*'¢! Below we describe our
result formally.
Theorem 3.3. Let v > 1 be a fixed constant which does
not grow with n. Let {xy}}_, be n training samples
which satisfy that Y ;_, xx = 0 and |zg|| < v, for
all 1 < k < n. Assume that n is large enough (e.g.
3
nz % max(||B]|?v%, 024?)). In expectation over the
randomness of o, x;, T j, we have that

>

> Ix B
n?

E_[e(B) - e8] 2

oL,T,T ;5

«Qw‘

We remark that the assumption that Z?:l x; = 0 is indeed
satisfied in image classification settings. This is because
a normalization step, which normalizes the mean of every
RGB channel to be zero, is applied on all the images. The
intuition behind the proof of Theorem 3.3 is that the mixup
sample shrinks the training data, which reduces the bias of
the estimator. The proof can be found in Appendix A.2.

3.3. Compositions of Label-Invariant Transformations

Our theory can also be applied to quantify the amount of new
information added by compositions of transformations. We
first describe an example to show that taking compositions
expands the search space of transformation functions.

Example. Consider two transformations F) and F5, e.g. a
rotation and a horizontal flip. Suppose we are interested in
finding a transformed sample ("¢, ™) such that adding
the sample reduces the estimation error of 3¢ the most.
With additive compositions, the search space for x*¢ be-
comes

{Fr:x e X, F e {F,F,F + F}},

which is strictly a superset compared to using F; and F5.

Based on Theorem 3.1, we can derive a simple corollary
which quantifies the incremental benefit of additively com-
posing a new transformation.

Corollary 3.4. In the setting of Theorem 3.1, let F, F>
be two label-invariant transformations. For a data point

(z,y) from (X,Y) and i € {1,2}, let z; = Py F;x and
y:"* =y — Diag [(XT)TFix] Y. The benefit of composing
F> with Fy is given as follows

Zl7ﬁ>2 — <Zl + 227[3)2
An

(A1) — (AT = (24 o(1)"

. poly(z/ A
n

Corollary 3.4 implies that the effect of composing F» with
F} may either be better or worse than applying F}. This is
consistent with our experimental observation (described in
Section 4). We defer the proof of Corollary 3.4 to Appendix
A.3. We remark that the example and the corollary also
apply to multiplicative compositions.

4. Measuring the Effects of Transformation
Functions

We validate the theoretical insights from Section 3 on
MNIST (LeCun et al., 1998). To extend our results from the
regression setting to the classification setting, we propose
two metrics that correspond to the bias and the variance
of a linear model. Our idea is to decompose the average
prediction accuracy (over all test samples) into two parts
similar to equation (1), including an intrinsic error score
which is deterministic and an instability score which varies
because of randomness.

We show three claims: i) Label-invariant transformations
such as rotations can add new information by reducing the
intrinsic error score. ii) As we increase the fraction of
same-class mixup digits, the instability score decreases. iii)
Composing multiple transformations can either increase the
accuracy (and intrinsic error score) or decrease it. Further,
we show how to select a core set of transformations.

Metrics. We train k£ independent samples of multi-layer
perceptron with hidden layer dimension 100. Let $3; denote
the predictor of the i-th sample, for 1 < ¢ < k. For each
data point x, let M (z) denote the majority label in {/3;}¥_,
(we break ties randomly). Clearly, the majority label is
the best estimator one could get, given the k independent
predictors, without extra information. Then, we define the
intrinsic error score as

NP>

(z,y)€(X,Y)

{M(z) #y} | - 4)

We define the instability score as

k
%. 3 (;-Zn{@m#ww}) NE)

(z,y)e(X,Y)
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Random

Cropping

ooV . =

Rotate «—— Cutout

Avg. Error  Instab.
Acc. Score  Score %
2 0.01
Baseline 98.08% 1.52% 0.95% %
Cutout  9831% 143% 0.86% 700
RandCrop 98.61% 1.01% 0.88% 0.009
Rotation 98.65% 1.08% 0.77%

N /\

Table 2. Measuring the intrinsic error and instability
scores of individual transformations on MNIST. The
three transformations all reduce the intrinsic error

score compared to the baseline. MNIST.

Compared to equation (1), the first score corresponds to
the bias of B , which can change if we add new information
to the training data. The second score corresponds to the
variance of 3, which measures the stability of the predicted
outcomes in the classification setting. For the experiments
we sample 9 random seeds, i.e. set k = 9.

Label-invariant transformations. Recall that Section 3.1
shows that label-invariant transformations can reduce the
bias of a linear model by adding new information to the
training data. Correspondingly, our hypothesis is that the
intrinsic error score should decrease after augmenting the
training dataset with suitable transformations.

Table 2 shows the result for applying rotation, random crop-
ping and the cutout (i.e. cutting out a piece of the image)
respectively. The baseline corresponds to using no trans-
formations. We observe that the three transformations all
reduce the model error score and the instability score, which
confirms our hypothesis. There are also two second-order
effects: 1) A higher instability score hurts the average predi-
cation accuracy of random cropping compared to rotation.
i) A higher intrinsic error score hurts the average prediction
accuracy of cutout compared to random cropping.

To further validate that rotated data “adds new information”,
we show that the intrinsic error score decreases by correcting
data points that are “mostly incorrectly” predicted by the
baseline model. Among the data points that are predicted
correctly after applying the rotation but are wrong on the
baseline model, the average accuracy of these data points
on the baseline model is 25%. In other words, for 75% of
the time, the baseline model makes the wrong prediction for
these data. We leave the details to Appendix B.

Label-mixing transformations. Section 3.2 shows that in
our regression setting, adding a mixup sample has a reg-
ularization effect. What does it imply for classification
problems? We note that our regression setting comprises
a single parameter class 5. For MNIST, there are 10 dif-
ferent classes of digits. Therefore, a plausible hypothesis

0.5 e
Same class mixing fraction

Figure 2. The instability score de-
creases as we increase the frac-
tion of same-class mixup digits on

TranslateX TranslateY

Figure 3. Visualizing which transformations
are beneficial for each other. On MNIST, the
translations do not provide additional benefit
beyond the rest three transformations.

following our result is that mixing same-class digits has a
regularization effect.

We conduct the following experiment to verify the hypothe-
sis. We vary the fraction of mixup data from mixing same-
class vs. different-class digits. We expect that as we in-
crease the same class mixing fraction, the instability score
decreases. The results of figure 2 confirm our hypothesis.
We also observe that mixing different class images behaves
differently compared to mixing same class images. The
details are left to Appendix D.

Compositions of transformations. Recall that Section 3.3
shows the effect of composing two transformations may be
positive or negative. We describe examples to confirm the
claim. By composing rotation with random cropping, we
observe an accuracy of 98.72% with intrinsic error score
0.86%, which are both lower than rotation and random crop-
ping individually. A negative example is that composing
translating the X and Y coordinate (acc. 98.0%) is worse
than translating X (acc. 98.38%) or Y (acc. 98.19%) indi-
vidually. Same for the other two scores.

Identifying core transformations. As an in-depth study, we
select five transformation including rotation, random crop-
ping, cutout, translation of the x-axis and the y-axis. These
transformations can all change the geometric position of the
digits in the image. Our goal is to identify a subset of core
transformations from the five transformations. For example,
since the rotation transformation implicitly changes the x
and the y axis of the image, a natural question is whether
composing translations with rotation helps or not.

To visualize the results, we construct a directed graph with
the five transformations. We compose two transformations
to measure their model error scores. An edge from transfor-
mation A to transformation B means that applying B after A
reduces the model error score by over 10%. Figure 3 shows
the results. We observe that rotation, random cropping and
cutout can all help some other transformations, whereas the
translations do not provide an additional benefit for the rest.
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5. Experiments

We test our uncertainty-based transformation sampling
scheme on both image and text classification tasks. First,
our sampling scheme achieves more accurate results by find-
ing more useful transformations compared to RandAugment.
Second, we achieve comparable test accuracy to the SOTA
Adversarial AutoAugment on CIFAR-10, CIFAR-100, and
ImageNet with less training cost because our method is con-
ceptually simpler. Finally, we evaluate our scheme in text
augmentations to help train a sentiment analysis model.

5.1. Experimental Setup

Datasets and models. We consider the following datasets
and models in our experiments.

CIFAR-10 and CIFAR-100: The two datasets are colored im-
ages with 10 and 100 classes, respectively. We evaluate our
proposed method for classifying images using the following
models : Wide-ResNet-28-10 (Zagoruyko & Komodakis,
2016), Shake-Shake (26 2x96d) (Gastaldi, 2017), and Pyra-
midNet+ShakeDrop (Han et al., 2017; Yamada et al., 2018).

Street view house numbers (SVHN): This dataset contains
color house-number images with 73,257 core images for
training and 26,032 digits for testing. We use Wide-ResNet-
28-10 model for classifying these images.

ImageNet Large-Scale Visual Recognition Challenge (Ima-
geNet): This dataset includes images of 1000 classes, and
has a training set with roughly 1.3M images, and a valida-
tion set with 50,000 images. We select ResNet-50 (He et al.,
2016) to evaluate our method.

Comparison methods. For image classification tasks, we
compare Algorithm 1 with AutoAugment (AA) (Cubuk
et al., 2018), Fast AutoAugment (Fast AA) (Lim et al.,
2019), Population Based Augmentation (PBA) (Ho et al.,
2019), RandAugment (RA) (Cubuk et al., 2019), and Ad-
versarial AutoAugment (Adv. AA) (Zhang et al., 2020). We
also include the baseline model with the following default
setting. For CIFAR-10 and CIFAR-100, we flip each image
horizontally with probability 0.5 and then randomly crop
a 32 x 32 sub-image from the padded image. For SVHN,
we apply the cutout to every image. For ImageNet, we
randomly resize and crop a 224 x 224 sub-image from the
original image and then flip the image horizontally with
probability 0.5.

Training procedures. Recall that Algorithm 1 contains
three parameters, how many composition steps (L) we take,
how many augmented data points (C') we generate and how
many (S) we select for training. Weset L = 2, C' = 4
and S = 1 for our experiments on CIFAR datasets and
SVHN. We set L = 2, C = 8 and S = 4 for our exper-
iments on ImageNet. We consider X = 16 transforma-

tions in Algorithm 1, including AutoContrast, Brightness,
Color, Contrast, Cutout, Equalize, Invert, Mixup, Posterize,
Rotate, Sharpness, ShearX, ShearY, Solarize, TranslateX,
TranslateY. See e.g. (Shorten & Khoshgoftaar, 2019) for
descriptions of these transformations.

As is common in previous work, we also include a parameter
to set the probability of applying a transformation in Line 4
of Algorithm 1. We set this parameter and the magnitude
of each transformation randomly in a suitable range. We
apply the augmentations over the entire training dataset. We
report the results averaged over four random seeds.

5.2. Experimental Results

We apply Algorithm 1 on three image classification tasks
(CIFAR10, CIFAR100, SVHN, and ImageNet) over several
models. Table 3 summarizes the result. We highlight the
comparisons to RandAugment and Adversarial AutoAug-
ment since they dominate the other benchmark methods.

Improving classification accuracy over RandAugment.
For Wide-ResNet-28-10, we find that our method outper-
forms RandAugment by 0.59% on CIFAR-10 and 1.24%
on CIFAR-100. If we do not use Mixup, our method still
outperforms RandAugment by 0.45% on CIFAR-10. For
Shake-Shake and PyramidNet+ShakeDrop, our method im-
proves the accuracy of RandAugment by 0.27% and 0.16%
on CIFAR-10, respectively. For ResNet-50 on ImageNet
dataset, our method achieves top-1 accuracy 79.14% which
outperforms RandAugment by 1.54%.

Improving training efficiency over Adversarial Au-
toAugment. Our method achieves comparable accuracy
to the current state-of-the-art on CIFAR-10, CIFAR-100,
and ImageNet. Algorithm 1 uses additional inference cost
to find the uncertain samples. And we estimate that the
additional cost equals half of the training cost. However,
the inference cost is 5x cheaper compared to training the
adversarial network of Adversarial AutoAugment, which
requires generating 8 times more samples for training.

Further improvement by increasing the number of aug-
mented samples. Recall that Algorithm 1 contains a pa-
rameter S which controls how many new labeled data we
generate per training data. The results in Table 3 use C' = 4
and S = 1, but we can further boost the prediction accuracy
by increasing C' and S. In Table 4, we find that by set-
ting C' = 8 and S = 4, our method improves the accuracy
of Adversarial AutoAugment on CIFAR-100 by 0.49% on
Wide-ResNet-28-10.

5.3. Ablation Studies

Histgram of selected transformations. We examine the
transformations selected by Algorithm 1 to better under-
stand its difference compared to RandAugment. For this
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Dataset Model \ Baseline AA Fast AA PBA RA Adv. AA \ Ours
Wide-ResNet-28-10 96.13 97.32 97.30 97.42  97.30 98.10 97.89%(40.03%)
CIFAR-10  Shake-Shake (26 2x96d) 97.14 98.01 98.00 97.97 98.00 98.15 98.27 % (+0.05 %)
PyramidNet+ShakeDrop 97.33 98.52 98.30 98.54 98.50 98.64 98.66 % (+£0.02 %)
CIFAR-100 Wide-ResNet-28-10 \ 81.20 82.91 82.70 83.27 83.30 84.51 \ 84.54% (+£0.09 %)
SVHN Wide-ResNet-28-10 \ 96.9 98.1 - - 98.3 - \ 98.3% (£0.03%)
ImageNet ResNet-50 | 76.31 77.63  77.60 - 77.60 79.40 | 79.14%

Table 3. Test accuracy (%) on CIFAR-10, CIFAR-100, and SVHN. We compare our method with default data augmentation (Baseline),
AutoAugment (AA), Fast AutoAugment (Fast AA), Population Based Augmentation (PBA), RandAugment (RA), and Adversarial
AutoAugment (Adv. AA). Our results are averaged over four random seeds except ImageNet experiments.

Dataset |  Adv. AA Ours (S = 4)
CIFAR-10 | 98.10(£0.15%) 98.16%(+0.05%)
CIFAR-100 | 84.51(4+0.18%) 85.02%(3-0.18%)

Figure 4. Increasing the number of augmented data points per
training sample can further improve accuracy.

purpose, we measure the frequency of transformations se-
lected by Algorithm 1 every 100 epoch. If a transformation
generates useful samples, then the model should learn from
these samples. And the loss of these transformed data will
decrease as a result. On the other hand, if a transformation
generates bad samples that are difficult to learn, then the
loss of these bad samples will remain large.

Figure 1 shows the sampling frequency of five compositions.
We test the five compositions on a vanilla Wide-ResNet
model. For transformations whose frequencies are decreas-
ing, we get: Rotate and ShearY, 93.41%; TranslateY and
Cutout, 93.88%. For transformations whose frequencies are
increasing, we get: Posterize and Color, 8§9.12% (the results
for other two are similar and we omit the details). Hence
the results confirm that Algorithm 1 learns and reduces the
frequencies of the better performing transformations.

5.4. Extension to Text Augmentations

While we have focused on image augmentations throughout
the paper, we can also our ideas to text augmentations. We
extend Algorithm 1 to a sentiment analysis task as follows.
We choose BERT] argE as the baseline model, which is a 24
layer transformer network from (Devlin et al., 2018). We ap-
ply our method to three augmentations: back-translation (Yu
et al., 2018), switchout (Wang et al., 2018), and word re-
place (Xie et al., 2019).

Dataset. We use the Internet movie database (IMDb) with
50,000 movie reviews. The goal is to predict whether the
sentiment of the review is positive or negative.

Comparison methods. ~ We compare with pre-BERT
SoTA, BERT aArGE, and unsupervised data augmentation

| RA Adv. AA Ours (S =1)
Training (x) ‘ 1.0 8.0 ~ 1.5

Figure 5. Comparing the training cost between our method,
RA and Adv. AA on CIFAR-10 relative to RA. The training
cost of Adv. AA is cited from the authors (Zhang et al., 2020).

(UDA) (Xie et al., 2019). UDA uses BERT| arGE initial-
ization and training on 20 supervised examples and DBPe-
dia (Lehmann et al., 2015) as an unsupervised source.

Results. We find that our method achieves test accuracy
95.96%, which outperforms all the other methods by at least
0.28%. For reference, the result of using Pre-BERT SoTA
is 95.68%. The result of using BERT| srgE is 95.22%. The
result of using UDA is 95.22%.

6. Related Work

Image augmentations. We describe a brief summary and
refer interested readers to the excellent survey by (Shorten
& Khoshgoftaar, 2019) for complete references.

Data augmentation has become a standard practice in com-
puter vision such as image classification tasks. First, indi-
vidual transformations such as horizontal flip and mixup
have shown improvement over strong vanilla models. Be-
yond individual transformations, one approach to search
for compositions of transformations is to train generative
adversarial networks to generate new images as a form of
data augmentation (Sixt et al., 2018; Laine & Aila, 2016;
Odena, 2016; Gao et al., 2018). Another approach is to
use reinforcement learning based search methods (Hu et al.,
2019). The work of Cubuk et al. (2018) searches for the
augmentation schemes on a small surrogate dataset. While
this idea reduces the search cost, it was shown that using a
small surrogate dataset results in sub-optimal augmentation
policies (Cubuk et al., 2019).

The work of Kuchnik & Smith (2018) is closely related to
ours since they also experiment with the idea of uncertainty-
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based sampling. Their goal is different from our work in
that they use this idea to find a representative sub-sample of
the training dataset that can still preserve the performance
of applying augmentation policies. Recently, the idea of
mixing data has been applied to semi-supervised learning
by mixing feature representations as opposed to the input
data (Berthelot et al., 2019).

Theoretical studies. Dao et al. (2019) propose a kernel
theory to show that label-invariant augmentations are equiv-
alent to transforming the kernel matrix in a way that incorpo-
rates the prior of the transformation. Chen et al. (2019) use
group theory to show that incorporating the label-invariant
property into an empirical risk minimization framework
reduces variance.

Our theoretical setup is related to Xie et al. (2020); Raghu-
nathan et al. (2020), with several major differences. First, in
our setting, we assume that the label of an augmented data
is generated from the training data, which is deterministic.
In their setting, the label of an augmented data includes
new information because the random noise is freshly drawn.
Second, we consider the ridge estimator as opposed to the
minimum norm estimator, since the ridge estimator includes
an {5 regularization which is commonly used in practice.
Finally, it would be interesting to extend our theoretical
setup beyond linear settings (e.g. (Li et al., 2018; Zhang
et al., 2019; Montanari et al., 2019)).

7. Conclusions and Future Work

In this work, we studied the theory of data augmentation
in a simplified over-parametrized linear setting that cap-
tures the need to add more labeled data as in image settings,
where there are more parameters than the number of data
points. Despite the simplicity of the setting, we have shown
three novel insights into three categories of transformations.
We verified our theoretical insights on MNIST. And we
proposed an uncertainty-based sampling scheme which out-
performs random sampling. We hope that our work can spur
more interest in developing a better understanding of data
augmentation methods. Below, we outline several questions
that our theory cannot yet explain.

First, one interesting future direction is to further uncover
the mysterious role of mixup (Zhang et al.17). Our work
has taken the first step by showing the connection between
mixup and regularization. Meanwhile, Table 7 (in Ap-
pendix) shows that mixup can reduce the model error score
(bias) on CIFAR-10. Our theory does not explain this phe-
nomenon because our setup implicit assumes a single class
(the linear model f3) for all data. We believe that extending
our work to a more sophisticated setting, e.g. mixed linear
regression model, is an interesting direction to explain the
working of mixup augmentation over multiple classes.

Second, it would be interesting to consider the theoretical
benefit of our proposed uncertainty-based sampling algo-
rithm compared to random sampling, which can help tighten
the connection between our theory and the proposed algo-
rithm. We would like to remark that addressing this ques-
tion likely requires extending the models and tools that we
have developed in this work. Specifically, one challenge
is how to come up with a data model that will satisfy the
label-invariance property for a large family of linear trans-
formations. We leave these questions for future work.
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