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Abstract
Tokenization is the first step of many natural lan-
guage processing (NLP) tasks and plays an im-
portant role for neural NLP models. Tokenization
methods such as byte-pair encoding and Senten-
cePiece, which can greatly reduce the large vocab-
ulary size and deal with out-of-vocabulary words,
have shown to be effective and are widely adopted
for sequence generation tasks. While various to-
kenization methods exist, there is no common
acknowledgement which one is the best. In this
work, we propose to leverage the mixed repre-
sentations from different tokenizers for sequence
generation tasks, which can take the advantages of
each individual tokenization method. Specifically,
we introduce a new model architecture to incor-
porate mixed representations and a co-teaching
algorithm to better utilize the diversity of differ-
ent tokenization methods. Our approach achieves
significant improvements on neural machine trans-
lation tasks with six language pairs, as well as an
abstractive summarization task.

1. Introduction
Natural language processing (NLP) has achieved great suc-
cess with deep neural networks in recent years (Deng & Liu,
2018; Zhang et al., 2015; Deng et al., 2013; Wu et al., 2016;
Hassan et al., 2018). For neural based NLP models, tok-
enization, which chops raw sequence up into pieces, is the
first step and plays the most important role in the text pre-
processing. Previously, tokenization is always performed on
word level (Arppe et al., 2005; Bahdanau et al., 2014), which
splits a raw sentence by spaces and applies language-specific
rules to punctuation marks, or character level (Kim et al.,
2016; Lee et al., 2017), which directly segments words into
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Table 1. A German sentence example (Ori stands for original) of
tokenization results by BPE, WordPiece (WP), SentencePiece (SP)
tokenizers. Different subwords are highlighted in bold font. @@
and represent the boundaries of subwords.

Results

Ori und diese einfachen themen sind eigentlich keine
komplexen wissenschaftlichen zusammenhänge

BPE
und diese einfachen themen sind eigentlich keine
komplex@@ en wissenschaftlichen zusammen@@
hän@@ ge

WP und diese einfachen themen sind eigentlich keine
komplexe n wissenschaftlichen zusammen hä nge

SP und diese einfachen them en sind eigentlich keine
komplexen wissenschaft lichen zusammenhänge

individual characters. However, previous works revealed
that such tokenization methods have their own drawbacks
(Ling et al., 2015; Cherry et al., 2018; Luong & Manning,
2016) and often lead to inaccurate results.

Recently, there are several types of tokenization methods
shown to be very effective, which split sentences into sub-
word units according to the statistics of consequent charac-
ters. Byte-pair encoding (BPE) (Sennrich et al., 2015) con-
structs the vocabulary based on the subword frequency, and
word level tokenization should be applied first before using
BPE. SentencePiece (SP)1 (Kudo, 2018; Kudo & Richard-
son, 2018) and WordPiece (WP) (Schuster & Nakajima,
2012) tokenizers leverage language models to build the vo-
cabulary, which can be applied to the raw text data without
word tokenization. Table 1 shows the results of three tok-
enizers for one example of German sentence and they differ
a lot with each other. For example, BPE segments the word
“komplexen” into “komplex” and “en”, while WP segments
it into “komplexe” and “n” but SP keeps it as is. Despite
the effectiveness of various tokenizers, there is no common
acknowledgement about which approach is the best across
different tasks. Taking machine translation as an example,
preliminary experiments (see Table 2) show that no spe-
cific tokenizer can universally perform best across different
datasets. Considering each tokenization method has its own
strengths and unique characteristics, instead of inventing an-

1To be concrete, we refer the unigram language model in (Kudo,
2018) as SentencePiece.
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Table 2. Performance of BPE, WordPiece (WP), SentencePiece
(SP) tokenizers on different IWSLT translation tasks. Details of
experiment settings are left in Section 4.1.

Dataset BPE SP WP

German→English 34.84 34.77 34.91
English→German 28.80 28.45 28.71
English→Romanian 24.56 24.67 24.63

other tokenizer, can we leverage these different tokenization
methods to build better sequence learning models?

In this work, we leverage multiple tokenizers in a single
model. We focus on the sequence generation tasks in this
paper, whose backbone is the encoder-decoder network.
We propose a new model architecture and a co-teaching
algorithm: (1) The new architecture incorporates different
tokenizers into a unified model to get the mixed representa-
tions. Specifically, two encoders are leveraged to deal with
the different tokenized sequences as inputs. Each layer in
one encoder interacts with the previous layer of the other
encoder to generate the mixed representations. Correspond-
ingly, there are two decoders to generate sequences in two
tokenized ways, both of which take the mixed representa-
tions from the encoders as inputs. In this way, the model
can benefit from the enriched representations by combining
different tokenizers. (2) Besides the model structure, we
propose a co-teaching algorithm to further utilize the diver-
sity of outputs from different tokenizers. In the decoder
side, our model is able to generate sentences in different
tokenization ways. Thus, we let each decoder learn from
the other one with different tokenizers rounds by rounds
iteratively. Specially, our approach works well in the low-
resource setting since we have mixed representations from
different tokenizers instead of only one, which greatly in-
creases the data diversity. This is because the frequency
based methods and language model based methods have
their own limitation in the face of paucity of data.

We evaluate our model and training algorithm in two stan-
dard sequence generation tasks, machine translation and ab-
stractive summarization. On six translation language pairs
and totally 12 translation tasks, such as English↔German,
English↔Dutch and English↔Romanian, our approach out-
performs baselines by more than 1.0 BLEU points. For ab-
stractive summarization, experimental results also show con-
sistent improvements compared with only one tokenizer uti-
lized. Our code is provided in https://github.com/
apeterswu/fairseq_mix.

2. Related Work
In this section, we first introduce the background of several
tokenization approaches. Then we introduce some recent
works of leveraging different tokenizers.

2.1. Tokenization Approaches

We describe the details of different tokenization approaches
here. BPE (Sennrich et al., 2015) tokenizer initializes the
vocabulary with all the characters and builds the final vo-
cabulary by iteratively merging frequent n-gram characters.
Similarly, WordPiece (Schuster & Nakajima, 2012) also
constructs the vocabulary from characters. Different from
BPE, WordPiece forms a new subword according to the
n-gram likelihood on the training data instead of the next
highest frequency pair. SentencePiece (Kudo, 2018; Kudo
& Richardson, 2018) is based on the assumption that all sub-
word occurrences are independent and a tokenized sequence
is produced by the product of subword occurrence prob-
abilities. Therefore, SentencePiece selects and builds the
subword dictionary on the word occurrence and the loss of
each subword. Both WordPiece and SentencePiece leverage
language models to build their vocabularies.

2.2. Leveraging Tokenization Approaches

Besides inventing new tokenizers to handle rare and unseen
words for text-based sequence learning, there are several
pieces of works focusing on how to leverage existed tokeniz-
ers from different aspects recently. Srinivasan et al. (2019)
propose to use BPE with multiple merge operations to build
the vocabulary in the target side of a multitask learning
model. Pan et al. (2020) introduce a new morphological sub-
word tokenization method by using morpheme segmentation
and BPE together for morphological rich language, but only
in the source side. Moreover, Wang et al. (2019b) focus
on the multilingual machine translation setting. They de-
sign a multilingual lexicon encoding framework named soft
decoupled encoding, which is designed to present a word
by its spelling through character and its semantic mean-
ing by a shared latent embedding. Provilkov et al. (2019)
stochastically corrupt the segmentation procedure of BPE
and produce multiple segmentations in BPE framework. Our
work differs from above works in that we leverage existed
different subword tokenization methods effectively on both
source and target languages. Also, we propose a co-teaching
algorithm to better leverage different tokenization methods.

3. Architecture and Co-Teaching Algorithm
We first introduce our proposed architecture in Section 3.1
and the co-teaching algorithm in Section 3.2. In this work,
we mainly introduce mixed representations obtained from
BPE and SP tokenizers. It is easy to extend our algorithm
to any other two types of tokenizers.

3.1. Architecture

Our model is based on Transformer (Vaswani et al., 2017).
The overall architecture for our model is shown in Figure 1.

https://github.com/apeterswu/fairseq_mix
https://github.com/apeterswu/fairseq_mix
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Figure 1. The overall framework for our proposed model. The important components mix-attention (Mix-Attn in figure), SP-enc-attention
(SP-Attn in figure) and BPE-enc-attention (BPE-Attn in figure) are in bold font. For mix-attention, the input of query (Q) are red lines,
while the blue dash lines stand for the key (K) and value (V ) used in attention computation. For SP-enc-attention and BPE-enc-attention,
the K and V are also in blue dash lines. Here we only show one decoder since the other one has same components except the different
tokenized inputs. Note that the residual connections and the layer norm operation after each component are same as the standard
Transformer, we omit them here to save space.

Different from Transformer, there are two N -layer encoders
and two N -layer decoders in our model. The two encoders
are mixed through attention layers.

Encoder For each input sentence x, we first process it
by two tokenizers, BPE and SP, and then obtain xbpe and
xsp, respectively. There are two embeddings in our model,
one for BPE sequences (denoted as Ebpe) and one for SP
sequences (denoted as Esp). We leverage two encoders,
one starting with processing Ebpe (denoted as encbpe) and
the other with Esp (denoted as encsp). Two types of at-
tention layers are used in each encoder, one is the self-
attention layer, which also exists in the standard Trans-
former (Vaswani et al., 2017), and the other one is the mix-
attention layer we proposed, which is used to fuse the BPE
representations and SP representations. They are shown as
“Self-Attn” and “Mix-Attn” in the Figure 1, respectively.

Mathematically, let H l
bpe and H l

sp be the representations
in l-th layer of encbpe and encsp respectively, l ∈ [N ].
Specially, let H0

bpe and H0
sp denote the embedding represen-

tations of xbpe and xsp. For any l ∈ [N ], H l
bpe and H l

sp are
obtained as follows:

H l
bpe = attnbpe

s (H l−1
bpe , H

l−1
bpe , H

l−1
bpe )

+ attnbpe
m (H l−1

bpe , H
l−1
sp , H l−1

sp ); (1)

H l
sp = attnsp

s (H l−1
sp , H l−1

sp , H l−1
sp )

+ attnsp
m (H l−1

sp , H l−1
bpe , H

l−1
bpe ); (2)

where attnbpe
s and attnbpe

m represent the self-attention
layer and mix-attention layer in encbpe, attnsp

s and
attnsp

m represent the corresponding layers in encsp.

Each attention layer attn(Q,K, V ) is implemented as fol-
lows:

softmax
( (QWQ)(KWK)>√

d
(V QV )

)
, (3)

where Q, K, V denote query, key and value respectively,
d is the embedding dimension, and WQ, WK , WV are the
parameters to be learned.

Compared with standard Transformer, in each encoder (and
later, the decoder), we only revise the attention layers. For
simplicity, we do not include the formulations for feed-
forward layers, layer normalization (Ba et al., 2016) or
residual connection of our model in the main text. Details
can be found at our code in the code.

From Eqn.(1), we can see that H l
bpe is the sum of two com-

ponents, one is related to the output of previous layer only,
and the other is related to the (l − 1)’th layer of encsp. In
such a way, for each subword obtained by BPE, the repre-
sentation is enriched by that from SentencePiece. Similarly,
subwords obtained by SentencePiece are enriched by BPE
too. Therefore, H l

bpe and H l
sp are mixed representations for

each individual subword, which are enhanced to provide
more comprehensive contexts. The final representations for
the encoders are HN

bpe and HN
sp outputted by the last layer.
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Decoder The mixed representation outputted from the en-
coders is a benefit for the decoding process. There are two
decoders in our architecture, decbpe and decsp, which are
used to generate sequences with BPE and SP tokenizations
respectively. The way that we fuse the representations in the
decoder side is to let the encoder-decoder attention layers
attend to the output from both encbpe and encsp. That is,
for each decoder, we introduce another two attention lay-
ers: a BPE-enc-attention layer, which bridges the output of
encbpe to the decoder, and a SP-enc-attention layer, which
bridges encsp and decoder together.

Let Sl
bpe and Sl

sp be the representations in the l-th layer
of decbpe and decsp. S0

bpe and S0
sp are embeddings for

sentences ybpe and ysp. The two decoders work as follows:

S̃l
bpe = attnbpe

s (Sl−1
bpe , S

l−1
bpe , S

l−1
bpe ), (4)

S̃l
sp = attnsp

s (Sl−1
sp , Sl−1

sp , Sl−1
sp ), (5)

Sl
bpe = attnbpe

bpe(S̃
l
bpe, H

N
bpe, H

N
bpe)

+ attnbpe
sp (S̃l

bpe, H
N
sp, H

N
sp), (6)

Sl
sp = attnsp

sp(S̃
l
sp, H

N
sp, H

N
sp)

+ attnsp
bpe(S̃

l
sp, H

N
bpe, H

N
bpe), (7)

All attn’s in the above formulation are implemented as
Eqn.(3) with different parameters, where the superscripts
represent which decoder the attention layer belongs to, and
the subscripts s, bpe and sp represent self-attention, attend-
ing to outputs of encbpe and attending to outputs to encsp.

We can see that the two decoders first leverage self-attention
layers to preprocess the output Sl−1

bpe , Sl−1
sp from previous

layers, and obtain the results S̃l
bpe, S̃l

sp. Then, decbpe

and decsp leverage S̃l
bpe and S̃l

sp as queries respectively
to bridge the relation with both HN

bpe and HN
sp, which are

encoder representations of the input sequence tokenized
in different ways. In this way, Sl

bpe and Sl
sp can leverage

both HN
bpe outputted by the BPE encoder and HN

sp outputted
by the SP encoder, which can benefit the corresponding
decoder to have enriched representations during decoding
process. After the final layer outputs SN

bpe and SN
sp from

decbpe and decsp, they will be mapped via a linear trans-
formation and then the softmax operation. Based on the
output probability, the BPE decoder generates the sentence
tokenized in BPE format, and the SP decoder generates the
output sentence tokenized in SP format.

In our proposed method, we mix up the two tokenized se-
quences, one with BPE and the other with SP, by summing
their representations. In Section 5.1, we discuss an alterna-
tive way, stack representation, where the self-attention layer
and the mix-attention layer are sequentially stacked instead
of parallel adding. Experimental results show that adding up
the representations is better. For decoders, actually we can

also add mix-attention component as used in the encoder.
However, this will make the beam search decoding quite
complex when selecting the top-k beams so that we leave it
as future work.

3.2. Co-Teaching Algorithm

The two encoders interact through the mix-attention layers
to generate mix representations, while the two decoders
work independently. To better utilize the diversity brought
by different tokenizers, we further propose a co-teaching
algorithm, by which the two decoders can teach each other.

Denote the original bilingual data as D = {(xi, yi)}Mi=1,
where M is the number of training sentence pairs. For
simplicity, define [M ] = {1, 2, · · · ,M}. After applying
BPE and SP tokenizers to the data pairs in D, we ob-
tain a dataset made up of four-element tuples: Dmix =
{(xibpe, yibpe, xisp, yisp)}Mi=1, where xibpe, yibpe are the out-
puts of BPE tokenizer, and xisp, yisp are obtained by using
SP tokenizer.

Let θe denote the parameter of the encoders (including both
encbpe and encsp), θdbpe and θdsp are the parameters of the
decoder for BPE and that for SP respectively. Given any
(xibpe, y

i
bpe, x

i
sp, y

i
sp) inDmix, let P (yibpe|xibpe, xisp; θe, θdbpe)

denote the probability that yibpe is obtained by the de-
coder decbpe, with mixed representation provided by xibpe
and xisp. Similarly, P (yisp|xibpe, xisp; θe, θdsp) represents the
probability that yisp is obtained by the decoder decsp. No
matter for computation of each probability, both encoders
are involved.

In our proposed co-teaching algorithm, the loss function
consists of two parts:

(Part 1) Negative log-likelihood loss: Following the common
practice in sequence to sequence learning, we use negative
log-likelihood loss for our model training. Since we have
two decoders with different tokenizers, given Dmix, the loss
function is designed as follows:

`nll =−
1

M

M∑
i=1

logP (yibpe|xibpe, xisp; θe, θdbpe)

− 1

M

M∑
i=1

logP (yisp|xibpe, xisp; θe, θdsp). (8)

In Eqn.(8), we can see that no matter which decoder we
use, the two encoders are both updated, since their mixed
representations are used in each decoder.

(Part 2) Co-teaching loss: The co-teaching is implemented
in a distillation way (Kim et al., 2016; Hinton et al., 2015).
Let θet−1, θdbpe,t−1 and θdsp,t−1 denote the parameters ob-
tained at epoch t − 1, where t is a positive integer. With
these parameters, we first generate some samples as follows:
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(i) ∀i ∈ [M ], sample ŷibpe ∼ P (·|xibpe, xisp; θet−1, θdbpe,t−1);
detokenize ŷibpe to the raw sentence and re-tokenize it with
SP to get ŷibpe→sp;

(ii) ∀i ∈ [M ], sample ŷisp ∼ P (·|xibpe, xisp; θet−1, θdsp,t−1);
detokenize ŷisp to the raw sentence and re-tokenize it with
BPE to get ŷisp→bpe;

The co-teaching loss is defined upon the above data. Mathe-
matically,

`co =− 1

M

M∑
i=1

logP (ŷisp→bpe|xibpe, xisp; θe, θdbpe)

− 1

M

M∑
i=1

logP (ŷibpe→sp|xibpe, xisp; θe, θdsp).

(9)

Co-teaching is conducted by generating a new sample for
the other decoder to be taught. In this way, the two decoders
interact with each other through data and the diversity from
different tokenizers is leveraged.

The overall training loss is:

`all = `nll + `co. (10)

We can obtain θet , θ
e
bpe,t, θ

d
sp,t = argmin `all. Then we can

go back to (part 2), re-sample the data using the latest model,
and optimize Eqn.(10) until convergence. To stabilize the
training, we can first optimize Eqn.(8) until convergence,
and then introduce the co-teaching loss.

4. Experiments
To evaluate our proposed model and training algorithm, we
conduct experiments on two standard sequence generation
tasks: machine translation and abstractive summarization.
The machine translation task aims to translate the sentences
from source language to target language, while the goal for
abstractive summarization is to summarize a long document
with a few sentences.

4.1. Machine Translation

We introduce the detailed settings for the machine transla-
tion tasks and report the experimental results in this section.

4.1.1. EXPERIMENTAL SETTINGS

Data We conduct experiments on standard transla-
tion tasks with multiple language pairs, which are
English↔German (En↔De for short), English↔Dutch
(En↔Nl for short), English↔Polish (En↔Pl for
short), English↔Portuguese-Brazil (En↔Pt-br for
short), English↔Turkish (En↔Tr for short), and
English↔Romanian (En↔Ro for short) language pairs.
These benchmark datasets all come from the widely

acknowledged IWSLT-2014 machine translation (Cettolo
et al., 2014) competition2. Each of them only contains
100k ∼ 200k data pairs, which can be viewed of low
resource settings in some degree, since our approach
works well in low resource learning tasks as introduced
before. For each language pair, we work on bidirectional
translations, i.e., En→X and X→En where X is another
language, resulting in 12 machine translation tasks.
Following (Bahdanau et al., 2016; Wu et al., 2017; 2018;
Ott et al., 2019), we preprocess the datasets with some
common acknowledged operations using Moses toolkit3

(Koehn et al., 2007), such as lowercase words, length
filtration. The resulted datasets contains about 160k, 7k
and 7k pairs for training, valid and test sets for En↔De
task, 180k, 4.7k, 1.1k for En↔Ro task, 170k, 4.5k, 1.1k
for En↔Nl task, 175k, 4.5k, 1.2k for En↔Pt-br task, 181k,
4.7k, 1.2k for En↔Pl task and 160k, 4.5k, 1k for En↔Tr
task respectively.

Tokenization We adopt the BPE4 (Sennrich et al., 2015)
and SentencePiece5 (Kudo, 2018) tokenizers as previously
introduced. The number of merge operations for BPE is
10k, resulting a near 10k subword vocabulary for all lan-
guage pairs. For SentencePiece, we extract a 12k subword
vocabulary for all language pairs. These vocabularies are
built upon the joint source and target language sentences.

Model Since our model is based on the standard Trans-
former (Vaswani et al., 2017) architecture, we set the pa-
rameters for our model to be consistent with Transformer
configurations for most ones. To be specific, we adopt
transformer iwslt de en configuration for the stan-
dard Transformer baseline models. The embedding dimen-
sion is set as 512 and the size of feed-forward layer is 1024.
Each encoder and decoder contain 6 layers for each side.
We share the source and target embeddings since we have
a joint dictionary for each language pair. The dropout rate
(Srivastava et al., 2014) is 0.3 and weight decay is 0.0001
for all experiments. The model is optimized with Adam
(Kingma & Ba, 2014) optimizer and the learning rate sched-
ule is the same default setting used as in Vaswani et al.
(2017). Label smoothing (Pereyra et al., 2017) is also used
with weight 0.1. In order to control the model parameters,
we set 256 embedding size for our model instead of 512
used in the baseline model. We also share the parameters of
mix-attention and self-attention components, as well as the
BPE-enc-attention and SP-enc-attention components. That
is, in Eqn.(1&2) and from Eqn.(4) to Eqn.(7), all layers with

2https://wit3.fbk.eu/mt.php?release=
2014-01

3https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

4https://github.com/rsennrich/subword-nmt
5https://github.com/google/sentencepiece

https://wit3.fbk.eu/mt.php?release=2014-01
https://wit3.fbk.eu/mt.php?release=2014-01
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/rsennrich/subword-nmt
https://github.com/google/sentencepiece
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Table 3. Machine translation results of our model and the standard Transformer on various IWSLT-2014 translation datasets. “Trans-
former 512” and “Transformer 256” refer to the baseline models with embedding dimension 512 and 256. Our models is equipped with
embedding dimension 256. The numbers in bold font stand for results that are significantly better than Transformer 512 results with
p-value less than 0.05 (Koehn, 2004).

En→De De→En En→Ro Ro→En En→Nl Nl→En

BPE SP BPE SP BPE SP BPE SP BPE SP BPE SP

Transformer 512 28.80 28.45 34.84 34.77 24.56 24.67 32.07 31.72 29.23 29.48 33.33 33.08
Transformer 256 28.56 28.24 34.49 34.39 23.97 24.27 30.74 31.11 29.16 29.28 32.8 33.02

Our model 28.96 28.88 35.51 35.25 25.11 24.86 32.11 32.21 29.85 29.97 33.82 33.96
+ co-teaching 29.93 29.71 36.41 36.31 25.98 25.68 33.12 32.89 31.16 31.11 34.45 34.61

En→Pt-br Pt-br→En En→Pl Pl→En En→Tr Tr→En

BPE SP BPE SP BPE SP BPE SP BPE SP BPE SP

Transforme 512 38.72 38.86 43.52 43.78 13.08 12.77 17.85 17.86 16.32 16.07 25.06 25.49
Transformer 256 38.44 38.53 42.57 42.88 12.73 12.73 17.33 17.12 15.62 15.93 24.74 24.90

Our model 39.19 39.08 43.98 43.44 13.46 13.21 18.07 17.79 16.49 16.69 25.84 25.68
+ co-teaching 40.31 40.16 44.19 44.24 14.08 13.88 18.26 18.44 18.06 18.29 27.06 26.92

the same superscript are shared. As for other configurations,
we keep them to be same as the baseline settings. Since
the mixed representations are added by two attention layers,
to better balance the contribution of two inputs, following
Larsson et al. (2016); Zhu et al. (2020), we add drop-path
trick in both encoder and decoder, with drop value 0.2 and
0.3. The implementation is based on the Fairseq (Ott et al.,
2019) toolkit6.

Evaluation We use beam search (Sutskever et al., 2014;
Medress et al., 1977) algorithm to generate the transla-
tion results. The beam width is 5 and the length penalty
is 1.0. We report both BPE and SP results when test-
ing the effectiveness of our model architecture and co-
teaching algorithm. The evaluation metric is the commonly
used tokenized BLEU (Papineni et al., 2002) score with
multi-bleu.perl script7.

4.1.2. RESULTS

We report the BLEU results in Table 3. The Transformer
baseline models are trained with embedding size 512 (de-
noted as Transformer 512) and 256 (denoted as Trans-
former 256). Our model is equipped with embedding
size 256, which ensures that the model size does not ex-
ceed “Transformer 512”. For example, in En↔De tasks,
the number of parameters of the Transformer 512, Trans-
former 256, and our model are 37M, 13M and 27M re-
spectively. As shown in Table 3, Transformer 512 baseline

6https://github.com/pytorch/fairseq
7https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/generic/
multi-bleu.perl

model with more parameters can lead to better results than
Transformer 256 as expected.

With our proposed model, we can achieve consistent im-
provements across all the 12 translation tasks, no matter
for the BPE tokenizer or the SP tokenizer. Compared
with Transformer 256, our proposed model architecture out-
performs the baseline by a non-trivial margin. For exam-
ple, on De→En, En→Ro, Pt-br→En, we can obtain more
than 1.0 BLEU score improvement. Compared with Trans-
former 512, both our BPE decoded and SP decoded results
can outperform the corresponding baselines by 0.5 points
for most tasks. The improvements demonstrate the effec-
tiveness of mixed representations from two tokenizers, and
our model architecture.

We then apply co-teaching to our model. On En↔De, we
found that the generated sequences with BPE format or
SP format are of similar quality, and BPE tokenizer can
lead to slightly better results. We report both of the BPE
and SP results in the table. We can see that on 11 out
of 12 translation tasks, co-teaching makes more than 1.0
improvement. On En→Tr, we achieve additional more than
1.5 points improvement. That is, our model architecture is
further benefited from co-teaching.

Comparison with existing works We summarize the re-
cent results of several existing works on the widely acknowl-
edged benchmark IWSLT De→En translation in Table 4, in
order to give a clear comparison with our approach. These
works vary from multiple aspects, e.g., the training algo-
rithm design (Wang et al., 2019a), model architecture design
(Lu et al., 2019; Wu et al., 2019) and data augmentation
(Zhu et al., 2019). From the table, we can obverse that
our approach outperforms all the previous works, which can

https://github.com/pytorch/fairseq
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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again demonstrate our method is very effective. In particular,
our approach surpasses the BERT-fused NMT model (Zhu
et al., 2020), which incorporates the large-scale pretrained
BERT language model. Our method is complementary to
previous works and we will further explore how to combine
them together in the future.

Table 4. Comparison with existing works on IWSLT De→En trans-
lation tasks.

Approach BLEU

Transformer 512 (Vaswani et al., 2017) 34.84
Adversarial MLE (Wang et al., 2019a) 35.18
DynamicConv (Wu et al., 2019) 35.20
Macaron (Lu et al., 2019) 35.40
Multi-Agent Dual Learning (Wang et al., 2019c) 35.56
Joint Self-Attention (Fonollosa et al., 2019) 35.70
Soft Contextual Data Aug (Zhu et al., 2019) 35.78
BERT-fused NMT (Zhu et al., 2020) 36.11

Ours 36.41

4.2. Abstractive Summarization

Text summarization is another widely acknowledged se-
quence generation task. There are two types of summariza-
tion tasks: Extractive summarization, where the summary
is obtained by extracting sentences from the article; ab-
stractive summarzation, where the summary is generated
from scratch. In this work, we focus on the neural based
abstractive summarzation.

Data We conduct the summarization experiment on a bench-
mark dataset, the Gigaword summarization dataset. The cor-
pus is constructed from a subset of Gigaword corpus (Graff
& Cieri, 2003). As described in Rush et al. (2015), the first
sentence of an article serves as the source input, and the
headline as target output. The preprocessing is identical to
previous works (Shen et al., 2016; Rush et al., 2015). On av-
erage, each input article sentence contains about 31.4 words,
and the corresponding summarization/headline consists of
8.3 words. The standard split data of article-headline pairs
for training, validation and test set contain 3.8M, 190k and
1, 951 samples respectively.

Tokenization Similar to the machine translation task, we
also utilize the BPE and SP tokenizers to process the data.
The vocabulary sizes of BPE tokenized corpus and SP tok-
enized corpus are 29, 236 and 30, 020 respectively

Model We choose the base Transformer architecture
(transformer base configuration) as the baseline.
Each encoder and decoder are stacked by 6 blocks. We
set the embedding dimension of our model as 256, the base-
line models are also 512 and 256. The remaining hyper-
parameters are the same as those for machine translation

Table 5. Results of abstractive summarization.
BPE R-1 R-2 R-L

Transformer 256 35.1 17.4 32.5
Transformer 512 35.5 17.5 32.7

Our model 35.7 17.8 33.0
+ co-teaching 36.0 18.4 33.4

SP R-1 R-2 R-L

Transformer 256 34.2 17.2 32.1
Transformer 512 34.5 17.5 32.2

Ours 34.7 17.6 32.5
+ co-teaching 35.1 18.1 33.0

tasks (see Section 4.1).

Evaluation In decoding process, we use beam search with
width 4 and length penalty 1.0, where repeated trigrams are
blocked (Paulus et al., 2017). The generation quality is eval-
uated by ROUGE (Lin, 2004) F1 score with an open source
script8. Specifically, we report the unigram ROUGE-1 (R-1)
and bigram ROUGE-2 (R-2) overlap to assess the informa-
tiveness and the longest common subsequence ROUGE-L
(R-L) score to assess the fluency.

Results The results are shown in Table 5. When decoding
into BPE formats, our model can boost the Transformer 256
baseline by 0.6, 0.4 and 0.5 point in terms of R-1, R-2 and
R-L. After applying co-teaching, we can obtain more im-
provements, where the above three metrics can be further
improved by 0.3, 0.6 and 0.4 point. Our method also outper-
forms the Transformer 512 baseline. Similar improvements
are also observed when using SP tokenizer. These results
demonstrate that our method generally works across differ-
ent sequence generation tasks.

5. Ablation Study and Analysis
To better understand our model structure and training algo-
rithm, we give ablation studies and analyses towards differ-
ent aspects. The studies are conducted on the IWSLT-2014
En↔De machine translation tasks.

5.1. Stacked Representation

As discussed before, in the encoders of our proposed model,
the mixed representations are obtained by adding outputs
from mix-attention components and self-attention compo-
nents. Different methods can be adopted to mix the repre-
sentations of two tokenizers. Here we present an alternative
approach: the stacked representations.

8https://github.com/pltrdy/pyrouge

https://github.com/pltrdy/pyrouge
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The model structure to obtain stacked representations is
shown in Figure 2. The mix-attention components pro-
cess the output of self-attention components, instead of
processing the input with self-attention components in par-
allel. The decoder is revised accordingly, where in decbpe,
self-attention, SP-Enc-attention and BPE-Enc-attention are
sequentially used, and self-attention, BPE-Enc-attention and
SP-Enc-attention are sequentially leveraged in decsp

9.

𝐸!"#

Self-Attn

Mix-Attn

𝐸$"

Mix-Attn

Self-Attn

FeedForward FeedForward

𝐻!"#$ 𝐻%"$

N×

Encoder𝑥!"# 𝑥$"

𝐸!"#/𝐸$"

BPE-Attn

SP-Attn

FeedForward

Self-Attn

Linear

Softmax

𝐻!"#$

𝐻%"$

Decoder 𝑦!"#/𝑦$"

N×

Figure 2. The model framework for stacked representation. Dif-
ferent from the mixed representations, the important components
mix-attention (Mix-Attn in figure), SP-enc-attention (SP-Attn in
figure) and BPE-enc-attention (BPE-Attn in figure) are stacked
above the self-attention component instead of adding up. Note that
we do not show residual connection and layer norm operation after
each component in the figure, they are identical to the Transformer.

We evaluate the model performance of stacked representa-
tion without co-teaching. The results of En↔De translations
are reported in Table 6. The stacked representations bring
comparable results to Transformer baseline, both of which
are worse than our mixed representations. We suspect the se-
quentially stacked version may underrate the representations
from the self-attention itself and the overrated mix-attention
confuses the final representation.

Table 6. Results of stacked representations on En↔De translations.

En→De De→En

BPE SP BPE SP

Transformer 512 28.80 28.45 34.84 34.77
Transformer 256 28.56 28.24 34.49 34.39

Stacked 28.53 28.29 35.19 34.61
Ours 28.96 28.88 35.51 35.25

9We also evaluate the reversed order, mix-attention first and
then self-attention component, the result is similar.

5.2. Co-Teaching with One Tokenizer

Though our co-teaching algorithm interacts between the
two types of tokenized sequences, it can also be applied to
one type only. That is, given a pre-trained model (standard
Transformer), we use it to forward translate the data, then
continue tuning the model on the newly generated data as
well as the original data iteratively.

We conduct experiments on En↔De translations. The re-
sults are reported in Table 7. From the results, we can
observe that co-teaching achieves significant improvements
over the baseline models. This demonstrates that the co-
teaching generally works across different settings. For
En→De translation with SentencePiece, co-teaching with
one tokenized input can obtain 29.28 BLEU score, while
ours with two tokenized inputs can obtain 29.93 BLEU
score. Similar results can be found for other settings. This
shows the effectiveness of our interactive co-teaching be-
tween two tokenization ways.

Table 7. Results of co-teaching with only one type of tokenization
on En↔De translations.

En→De De→En

BPE SP BPE SP

Transformer 512 28.80 28.45 34.84 34.77
+ co-teaching 29.67 29.28 36.10 35.71

5.3. Other Tokenizations

Previous experiments are all conducted on BPE and SP sub-
word tokenizations. Besides these two tokenizers, we also
investigate the WordPiece (WP) tokenizer in this subsection.
We replace the SP tokenizer to be WP and set the subword
dictionary to be near 10k. Other configurations and training
details are all same as those used in Section 4.1.

Table 8. Results of our model with BPE and WP tokenizers on
En↔De translations.

En→De De→En

BPE WP BPE WP

Transformer 512 28.80 28.71 34.84 34.91

Our model 28.98 29.15 35.23 35.24

Results are presented in Table 8. We can observe our model
architecture also achieves better performance with BPE and
WP tokenizers over the baselines, which again demonstrates
that leveraging multiple tokenizers to build mixed represen-
tations is helpful to improve the translation quality.



Sequence Generation with Mixed Representations

6. Conclusion and Future Work
In this paper, we propose to generate sequences with mixed
representations by leveraging different subword tokeniza-
tion methods. Specifically, we introduce a new model struc-
ture to incorporate mixed representations from different
tokenization methods, and a co-teaching algorithm to bet-
ter utilize the diversity and advantage of each individual
tokenization method. The effectiveness of our approach is
verified on machine translation task and abstractive summa-
rization application.

For future work, there are many possible directions. First,
we will apply our algorithm to more sequence learning
applications, like text classification, natural language under-
standing, etc. Second, we will further improve our model
architecture, such as designing two interactive decoders,
and adaptively determine which decoder we should use for
inference when a sentence comes. Third, we will study to
extend our model with more subword tokenization methods.
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