
Stronger and Faster Wasserstein Adversarial Attacks

A. Projected Sinkhorn
Here, we give a brief description of the approximate projection method proposed by Wong et al. (2019). The projection of a
(normalized) vector w to the Wasserstein ball centered at (normalized) x of radius of ✏ = � can be written as:

minimize
z,⇧�0

1

2
kw � zk2

2

subject to ⇧1 = x, ⇧>1 = z, h⇧, Ci  ✏.

The above objective is not strongly convex in ⇧, but can be made strongly convex by adding an entropic regularization:

minimize
z,⇧�0

1

2
kw � zk2

2 + �
nX

i=1

nX

j=1

⇧ij log ⇧ij

subject to ⇧1 = x, ⇧>1 = z, h⇧, Ci  ✏.

(20)

The parameter � > 0 is the entropic regularization constant. Projected Sinkhorn solves (20) through block-coordinate
maximization on the dual problem of (20).

A.1. Analysis of Approximation Error in Projected Sinkhorn

To ensure small approximation error in (20), the scale of entropic regularization term should be at least much smaller than
the quadratic term:

�
nX

i=1

nX

j=1

⇧ij log ⇧ij ⌧ 1

2
kw � zk2

2 .

Otherwise, the objective (20) is dominated by the entropic regularization. However, in practice, it is not always guaranteed,
especially when w is an interior point of the constraint in (20).

Consider an simple example where w = x = ( 1
n
, 1
n
, · · · 1

n
)>. In that case, the quadratic term 1

2kx � zk2
2 should be as small

as zero, since we can let z = x. However, if z = w = x, then ⇧ could be a diagonal matrix diag
�

1
n
, 1
n
, · · · 1

n

�
(or more

generally, 1
n
P , where P is a permutation matrix). Thus, the entropic term becomes

nX

i=1

nX

j=1

⇧ij log ⇧ij = � log n, (21)

reaching its maximum. The entropic regularization somewhat conflicts with the the quadratic term. Notice that the scale of
(21) is much larger than 1

2kw � xk2
2 (which is supposed to be very close to zero), especially when the dimension n is large.

Thus, the objective (20) may be dominated by the entropic regularization and solving the projection step accurately requires
very small �.

We make two additional remarks. First, notice that the scale of (21) increases as n grows, which requires smaller � to
balance the quadratic term and entropic regularization. This gives the intuition that projected Sinkhorn needs smaller � in
higher dimensional spaces, which is observed in experiments.

Second, the key aspect of the above argument is that w is relatively close to x, e.g. W(w,x)  ✏, such that the quadratic
term is so small hence dominated by the entropic regularization. In the case where w is very far away from x, this argument
does not hold anymore. We believe this explains why large step sizes strengthen the attack when using PGD with projected
Sinkhorn in experiments. However, PGD with large step sizes tend to be unstable and may not converge to a good solution.

A.2. Toy Experiment in Table 2

Entries of a and b are sampled from a uniform distribution in [0, 1]400 independently. After sampling, both vectors are
normalized to ensure that the pixel mass summations are exactly 1. We reshape a and b to R20⇥20 and view them as images
in order to use the procedure of Wong et al. (2019). The cost matrix is induced by Euclidean norm between pixel indices
with 5 ⇥ 5 local transportation plan.
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We use projected gradient descent and Frank-Wolfe to compute the projection by solving the following “reparametrized”
projection problem w.r.t. the coupling matrix:

minimize
⇧

1

2
k⇧>1 � bk2

2

subject to ⇧ � 0,⇧1 = a, h⇧, Ci  ✏.

The problem is equivalent to the Euclidean projection in the image space and is convex in ⇧. For PGD, we use step size
0.05. For Frank-Wolfe, we use � = 10�3 and the default decay schedule 2

t+1 . We let both algorithms run for sufficiently
many iterations in order to converge to high precision solutions.

B. Recommended Stopping Criterion for Bisection Search
When the derivative of the dual objective approaches zero, i.e., h⇧, Ci � � ⇡ 0, the comparison between h⇧, Ci � � and 0
is getting numerically unstable. Thus, we recommend stopping the bisection method when either the derivative is close to
zero, or the gap between the lower bound l and the upper bound u is relatively small.

We recommend using an upper bound u to recover the coupling ⇧. Since an upper bound u always has a negative derivative,
thus the transportation cost constraint h⇧, Ci  � is always satisfied.

We highlight that the bisection method converges very fast in practice, since it shrinks the interval by a factor of 2 in every
iteration. Thus, it determines the next 3 digits of �? after the decimal point after every 10 iterations.

For a concrete stopping criterion in our experiment, please refer to Appendix F.2.
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C. Dykstra’s Projection

Algorithm 2: Dykstra’s Projection Algorithm
Input: G 2 Rn⇥n, two convex sets Cs and Ch

Output: The projection of G to Cs \ Ch

1 ⇧(0)
h

= G

2 I(0)
s = I(0)

h
= O

3 for t = 0, 1, . . . ,maxiter do
4 ⇧(t+1)

s = ProjCs

⇣
⇧(t)

h
� I(t)

s

⌘

5 I(t+1)
s = ⇧(t+1)

s � ⇧(t)
h

+ I(t)
s

6 ⇧(t+1)
h

= ProjCh

⇣
⇧(t+1)

s � I(t)
h

⌘

7 I(t+1)
h

= ⇧(t+1)
h

� ⇧(t+1)
s + I(t)

h

8 return ⇧(t+1)
s

Consider the projection of G 2 Rn⇥n to the intersection of Cs and Ch, where Cs = {⇧ 2 Rn⇥n : ⇧ � 0, ⇧1 = x} and
Ch = {⇧ 2 Rn⇥n : h⇧, Ci  �}. Dykstra’s algorithm, applying to these two convex sets, is presented in Algorithm 2.
Intuitively, Dykstra’s algorithm projects G alternatively to Cs and Ch in each iteration. Notice that before projecting to Cs

(or Ch), the increment of the last iteration I(t)
s (or I(t)

h
) is subtracted from ⇧(t)

h
(or ⇧(t+1)

s ). These increments play a crucial
role in the convergence of Dykstra’s algorithm. It has been shown that both ⇧(t)

s and ⇧(t)
h

converge to the projection of G
onto Cs \ Ch (Dykstra, 1983; Boyle & Dykstra, 1986).

In order to implement Dykstra’s algorithm, we need two subroutines to compute the projection onto Cs and Ch respectively.
The projection onto Ch admits a closed form expression:

ProjCh
(⇧) = ⇧ � max{h⇧, Ci � �, 0}

kCk2
F

C.

The projection onto Cs has an algorithm running in O(n2 log n) time, by projecting each row of G to a simplex. For the
simplex projection algorithm, we direct readers to (Duchi et al., 2008).

C.1. Toy Experiment for Dykstra’s Algorithm
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Figure 7: Convergence of Dykstra’s algorithm. The violation of simplex constraint and halfspace constraint of ⇧(t)
h

and ⇧(t)
s

(the iterates produced by Dykstra’s algorithm) gradually decrease to zero, but at a slow rate.

We randomly sample a vector x 2 R100 and a coupling ⇧ 2 R100⇥100 (both from a uniform distribution in a hypercube).
We normalize x and ⇧. We then project ⇧ to Cs \ Ch. We set � = 1 and the cost matrix C is the same as the one in §6 (we
reshape x into a 10 ⇥ 10 matrix and view it as an image). The convergence plots are shown in Figure 7. Dykstra’s algorithm
does converge, but at a slow rate.
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D. Toy Example: Failure of Dual Linear Minimization without Entropic Regularization
This section presents a simple example to demonstrate the failure of dual LMO without adding entropic regularization.

Let � = 0.5, x = (1, 0)>. Let

G =

✓
1 �1
0 0

◆
, C =

✓
0 1
1 0

◆
.

Let

⇧ =

✓
⇧11 ⇧12

⇧21 ⇧22

◆
.

Then the primal linear program is

minimize
⇧11,⇧12�0

⇧11 � ⇧12

subject to ⇧11 + ⇧12 = 1,⇧12  0.5

It is easy to check that the solution is

⇧? =

✓
0.5 0.5
0 0

◆
.

The dual linear program is

maximize
��0

�1

2
� + min {1,�1 + �}

It is easy to see that the dual problem has a unique solution �? = 2. Now we try to use the following condition to recover
the primal solution:

⇧? 2 argmin
⇧�0,⇧1=x

h⇧, G + �?Ci � �?�, (22)

which is equivalent to

⇧? 2 argmin
⇧�0,⇧1=x

⌧
⇧,

✓
1 1
2 0

◆�
. (23)

But it turns out that any ⇧ of the form

⇧(↵) =

✓
↵ 1 � ↵
0 0

◆
,

where 0  ↵  1, is a minimizer. By varying ↵, ⇧(↵) can be suboptimal (↵ = 0), optimal (↵ = 0.5) or even infeasible
(↵ = 1). Thus, ⇧? cannot be recovered by only considering the stationary condition.

Of course it is possible to combine (22) with other KKT conditions (specifically, complementary slackness and primal
feasibility) to obtain one of the primal solutions. Particularly, in the above example, (22) along with the complementary
slackness determines the unique primal solution ⇧?. However, there are still two issues. The first issue is that in more
general cases, doing so requires solving a linear system whose variables are from a subset of ⇧, which could be GPU
unfriendly. More critically, the above solution is numerically unstable. Suppose that there is a slight numerical inaccuracy
due to floating point precision, such that (23) becomes

⇧? 2 argmin
⇧�0,⇧1=x

⌧
⇧,

✓
1 + ⇠ 1 � ⇠

2 0

◆�
. (24)

for some small constant ⇠ > 0. Now solving (24) gives

⇧(1) =

✓
0 1
0 0

◆
,

which is infeasible.
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E. Proofs
This section presents all proofs in the paper. Recall that without loss of generality we assume that all entries in the cost
matrix C are nonnegative and only diagonal entries of C are zeros. All proofs below assume it implicitly.

E.1. Dual Projection

Proposition 1. The dual of (4) is

maximize
��0

g(�), where (5)

g(�) = min
⇧1=x,⇧�0

1
2k⇧ � Gk2

F + � (h⇧, Ci � �) . (6)

In addition, the derivative of g(�) at a point � = �̃ is

g0(�̃) = h⇧̃, Ci � �, where (7)

⇧̃ = argmin
⇧1=x,⇧�0

k⇧ � G + �̃Ck2
F. (8)

Both g(�) and g0(�) can be evaluated in O(n2 log n) time deterministically for any given �.

Proof. Introducing the Lagrange multiplier � � 0 for the constraint h⇧, Ci  �, we arrive at the following dual problem

maximize
��0

g(�),

where

g(�) = min
⇧1=x,⇧�0

1

2
k⇧ � Gk2

F + � (h⇧, Ci � �) .

We complete the square in the inner problem, which leads to

g(�) = min
⇧1=x,⇧�0

1

2
k⇧ � (G � �C) k2

F � 1

2
�2kCk2

F + �hG,Ci � ��.

Notice that the constraint in the minimization is independent for each row of ⇧. Thus, it can be reduced to a simplex
projection for each row of G � �C, which can be solved in O(n2 log n) time.

By Danskin’s theorem, g is differentiable and the derivative is

g0(�̃) = h⇧̃, Ci � �,

given the solution ⇧̃ to the minimization problem.

Before proving Proposition 2, we first prove Lemma 1, which characterizes the solution of simplex projection in a special
case. Intuitively, the projection of a vector to a simplex is very sparse if one of its entries is much larger than the others.

Lemma 1. Consider the following projection of a vector v to a simplex:

minimize
w2Rn

kw � vk2
2

subject to
nX

i=1

wi = z, wi � 0,

where z > 0. Suppose that there exists i such that vi � vj+z for all j 6= i. Then the solution is w? = (0, · · · 0, z, 0, · · · , 0)>
,

where the only nonzero entry is w?

i
= z.
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Proof. A careful analysis of the simplex projection algorithm (Duchi et al., 2008) would give a proof. Here, we give an
alternative simple proof that does not rely on the algorithm. Assume to the contrary that there exists j 6= i such that w?

j
> 0

hence also w?

i
< z. We construct another feasible point ŵ by

ŵi = w?

i
+ w?

j

ŵj = 0

ŵk = w?

k
8k 6= i, k 6= j.

Comparing the objective value of w? and ŵ, we have

kw? � vk2
2 � kŵ � vk2

2 = (w?

i
� vi)

2 + (w?

j
� vj)

2 � (w?

i
+ w?

j
� vi)

2 � (0 � vj)
2

= 2w?

j
(vi � vj � w?

i
)

> 2w?

j
(vi � vj � z)

� 0.

ŵ has even smaller objective value than w?, contradicting the optimality of w?. Thus all w?

j
= 0 for all j 6= i, which

finishes the proof.

Proposition 2. The dual solution �?
of (5) satisfies

0  �? 
2 kvec(G)k1 + kxk1

mini 6=j{Cij}
. (9)

Proof. By Danskin’s theorem the dual problem (5) is differentiable in �. Moreover, for any given �̃, suppose the solution to
the minimization is ⇧̃, then the gradient w.r.t. �̃ is h⇧̃, Ci � �.

Consider the i-th row of G � �C. Assume on the contrary that

� >
2 kvec(G)k1 + kxk1

mini 6=j{Cij}
.

Then, for all i 6= j we have (recall that Cii = 0)

Gii = Gii � �Cii > Gij � �Cij + xi.

The condition in Lemma 1 is satisfied. A projection of G � �C results in a diagonal matrix ⇧̃. Thus

g0(�̃) = h⇧̃, Ci � �

=
X

i=j

⇧̃ijCij +
X

i 6=j

⇧̃ijCij � �

= ��.

The derivative is strictly negative, hence �̃ is suboptimal, which finishes the proof.

Proposition 3. The primal solution ⇧?
and the dual solution �?

satisfies

⇧? = argmin
⇧1=x,⇧�0

k⇧ � G + �?Ck2
F,

thus ⇧?
can be computed in O(n2 log n) time given �?

.

Proof. This is a direct implication of KKT conditions.
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E.2. Dual Linear Minimization Oracle without Entropic Regularization

Proposition 4. The dual problem of (12) is

maximize
��0

� �� +
nX

i=1

xi min
1jn

⇣
Hij + �Cij

⌘
. (13)

Proof. Introducing the Lagrange multiplier � � 0 for the constraint h⇧, Ci  �, we arrive at the following dual problem

maximize
��0

g(�),

where

g(�) = min
⇧�0,⇧1=x

h⇧, Hi + � (h⇧, Ci � �)

= min
⇧�0,⇧1=x

h⇧, H + �Ci � ��

= ��� +
nX

i=1

xi min
1jn

⇣
Hij + �Cij

⌘
.

The last equality uses the fact that the constraints are independent for each row, thus the minimization is separable.

Proposition 5. The dual solution �?
of (13) satisfies

0  �? 
2 kvec(H)k1
mini 6=j {Cij}

. (14)

Proof. A key observation is that the dual objective is a piece-wise linear function w.r.t. �. We can roughly estimate the
range of the maximizer, by analyzing the slope of this function.

Suppose

� >
2 kvec(H)k1
mini 6=j {Cij}

. (25)

Then for all i 6= j, we have

�Cij > Hii � Hij ,

which implies Hii + �Cii < Hij + �Cij for all i 6= j (recall that Cii = 0). Thus

g(�) = ��� +
nX

i=1

xi min
1jn

⇣
Hij + �Cij

⌘

= ��� +
nX

i=1

xi (Hii + �Cii)

= ��� +
nX

i=1

xiHii

is a linear function with negative slope. Thus, any � satisfies (25) cannot be a dual solution, which completes the proof.

E.3. Dual Linear Minimization Oracle with Dual Entropic Regularization

Proposition 6. The dual problem of (16) is

maximize
��0

� �� + �
X

i:xi>0

xi log xi (17)

� �
nX

i=1

xi log
nX

j=1

exp

✓
�Hij + �Cij

�

◆
.
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Proof. Introducing the Lagrange multiplier � � 0 for the constraint h⇧, Ci  �, we arrive at the following dual problem

maximize
��0

g(�),

where

g(�) = min
⇧�0,⇧1=x

h⇧, Hi + �
nX

i=1

nX

j=1

⇧ij log ⇧ij + �(h⇧, Ci � �) (26)

= min
⇧�0,⇧1=x

��� + h⇧, H + �Ci + �
nX

i=1

nX

j=1

⇧ij log ⇧ij . (27)

Without loss of generality, we assume that xi is strictly positive for all i. Otherwise, xi = 0 implies ⇧ij = 0 for all j, thus
the i-th row of ⇧ does not even appear in the minimization.

Notice that the inner minimization in (27) is separable, since the constraint on ⇧ is independent for each row. For each row,
the minimization is equivalent to a Kullback–Leibler projection to a simplex, which admits a closed form. For the sake of
completeness, we give a derivation here. For the i-th row,

nX

j=1

⇧ij (Hij + �Cij) + �
nX

j=1

⇧ij log ⇧ij = �
nX

j=1

⇧ij log
⇧ij

exp
⇣
�Hij+�Cij

�

⌘

= �
nX

j=1

⇧ij

0

@log
⇧ij/xi

exp
⇣
�Hij+�Cij

�

⌘
/a

+ log xi � log a

1

A

= �
nX

j=1

⇧ij log
⇧ij/xi

exp
⇣
�Hij+�Cij

�

⌘
/a

+ �xi (log xi � log a)

� �xi (log xi � log a) ,

where a =
P

n

j=1 exp
⇣
�Hij+�Cij

�

⌘
is a normalization constant. The last inequality holds if and only if

⇧ij = xi

exp
⇣
�Hij+�Cij

�

⌘

P
n

j=1 exp
⇣
�Hij+�Cij

�

⌘ .

Plugging in the above expression finishes the proof.

Proposition 7. The primal solution ⇧?
and the dual solution �?

satisfy

⇧?

ij
= xi ·

exp
⇣
�Hij+�

?
Cij

�

⌘

P
n

j=1 exp
⇣
�Hij+�?Cij

�

⌘ . (18)

Proof. This is a direct implication of KKT conditions. See the KL projection derivation in the proof of Proposition 6 for a
detailed explanation.

Proposition 8. The dual solution �?
of (17) satisfies

0  �? 
⇥
2 kvec(H)k1 + � log

�
1
�
x>C1

�⇤
+

mini 6=j {Cij}
. (19)



Stronger and Faster Wasserstein Adversarial Attacks

Proof. To begin with, we have the following bound on the derivative:

g0(�) = �� +
nX

i=1

xi

P
n

j=1 exp
⇣
�Hij+�Cij

�

⌘
Cij

P
n

j=1 exp
⇣
�Hij+�Cij

�

⌘

= �� +
nX

i=1

xi

P
n

j=1 exp
⇣
�Hij+�Cij�Hii

�

⌘
Cij

P
n

j=1 exp
⇣
�Hij+�Cij�Hii

�

⌘

= �� +
nX

i=1

xi

P
j 6=i

exp
⇣
�Hij+�Cij�Hii

�

⌘
Cij

1 +
P

j 6=i
exp

⇣
�Hij+�Cij�Hii

�

⌘

 �� +
nX

i=1

X

j 6=i

xi exp

✓
�Hij + �Cij � Hii

�

◆
Cij .

The first equality uses translation invariance property of softmin function. The last inequality uses the fact that Cii = 0.
Notice that

� >

⇥
2 kvec(H)k1 + � log

�
1
�
x>C1

�⇤
+

mini 6=j {Cij}

implies

�Cij > 2 kvec(H)k1 + � log

✓
1

�
x>C1

◆

� Hii � Hij + � log

✓
1

�
x>C1

◆
,

for all i 6= j. Thus, we have

exp

✓
�Hij + �Cij � Hii

�

◆
<

�

x>C1

for all i 6= j. Plug it back to g0(�). We have

g0(�) < �� +
�

x>C1
·

nX

i=1

nX

j=1

xiCij

= �� +
�

x>C1
· x>C1

= 0.

The derivative is strictly negative hence � cannot be optimal, which concludes the proof.
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F. Further Experimental Details
In this section, we present further experimental details as well as some implementation details.

F.1. Models

Our MNIST and CIFAR-10, models are taken from (Wong et al., 2019). The MNIST model is a convolutional network with
ReLU activations which achieves 98.89% clean accuracy. The CIFAR-10 model is a residual network with 94.76% clean
accuracy. The ImageNet model is a ResNet-50 pretrained neural network, downloaded from PyTorch models subpackage,
which achieves 72.0% top-1 clean accuracy on the first 100 samples from the validation set. All experiments are run on a
single P100 GPU.

F.2. Stopping Criteria of Projection and Linear Minimization Step

Stopping criterion of projected Sinkhorn Denote obj(t) as the dual objective value of projected Sinkhorn in t-th iteration,
we stop the algorithm upon the following condition is satisfied:

|obj(t+1) � obj(t)|  10�4 + 10�4 · obj(t),

which is also used by Wong et al. (2019).

Stopping criterion of dual projection and dual LMO Both dual projection and dual LMO use the bisection method to
solve dual problems. Bisection is terminated upon either

u � l  10�4 or |g0(�̃)|  10�4

This condition lets us determine the 4-th digit after the decimal point of �?, or the violation of transportation cost constraint
is less than 10�4. Note that a violation of 10�4 is extremely small, compared with � = ✏

P
n

i=1 xi, which is much (usually
at least 105 times) larger than the tolerance since the pixel sum

P
n

i=1 xi is usually a large number.

In practice, the upper bound (9) and (19) are often between 2 and 3 thanks to gradient normalization. Thus, the bisection
method satisfies the stopping criterion in at most 15 iterations (2 ⇥ 2�15 ⇡ 10�4).

F.3. Step Sizes of PGD

PGD with projected Sinkhorn On MNIST, CIFAR-10 and ImageNet, the step sizes are set to 0.1. Notice that 0.1 is also
the step size used by Wong et al. (2019) on MNIST and CIFAR-10. The gradient is normalized using `1 norm:

argmax
kvk11

v>rx`(x, y) = sign (rx`(x, y)) .

Again, this is the same setting used by Wong et al. (2019). While ⌘ = 1.0 achieves lower adversarial accuracy on the first
batch of samples in Appendix F.5, we find this large step size causes numerical overflow easily on the remaining batches.
Thus we choose ⌘ = 0.1 to present the experimental results.

PGD with dual projection On MNIST, the step size is set to 0.1. On CIFAR-10 and ImageNet, the step size is set to 0.01.
The gradient is normalized in the following way:

r⇧`(⇧>1, y)

maxi,j |r⇧`(⇧>1, y)| .

F.4. Implementation of Local Transportation and Sparse Matrices Computation

The local transportation technique in §5.1 requires computation on a sparse matrix ⇧. However, a big challenge is that sparse
matrices computation is not easily parallelizable on GPUs. As such, current deep learning packages (PyTorch, TensorFlow)
do not support general sparse matrices well.

To fully utilize GPU acceleration, we explore the sparsity pattern in ⇧. Notice that each row of ⇧ has at most k2 nonzero
entries. We store ⇧ as a n ⇥ k2 dense matrix, with some possible dummy entries. The advantage is that now ⇧ is a dense
matrix. Any row operations on ⇧ (e.g. softmin along each row, sorting along each row) can be parallelized easily. The
downside, however, is that column operations (e.g. summation over each column) might take extra efforts. Nevertheless, this
is not a bottleneck of the speed of dual projection and dual LMO, since they only require efficient row operations.
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F.5. Further Results on Convergence of Outer Maximization
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(a) loss w.r.t. iterations on CIFAR-10
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(b) adversarial accuracy w.r.t. iterations on CIFAR-10
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(c) loss w.r.t. iterations on ImageNet
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(d) adversarial accuracy w.r.t. iterations on ImageNet

Figure 8: Convergence of outer maximization of different attacks.

We plot the loss and adversarial accuracy w.r.t. the number of iterations in Figure 8 (✏ = 0.005 on both CIFAR-10 and
ImageNet). Dual LMO uses � = 10�3. Projected Sinkhorn uses � = 5 · 10�5 on CIFAR-10 and � = 5 · 10�6 on ImageNet.

Frank-Wolfe with dual LMO FW uses the default decay schedule 2
t+1 . We observe that FW with dual LMO converges

very fast especially at the initial stage, even when using the simple default decay schedule.

PGD with Projected Sinkhorn We observe that when ⌘ is small (e.g. ⌘ = 0.01, 0.001), PGD with projected Sinkhorn
barely makes progress in the optimization. While aggressively large step sizes (e.g. 1.0 and 0.1) can make progress, the
curves are very noisy indicating the steps sizes are too large, and the loss is still much lower than the other two attacks.

PGD with Dual Projection In contrast, PGD with dual projection has more meaningful curves: small ⌘ (e.g. 0.001)
converges very slowly; large ⌘ (e.g. 1.0 and 0.1) makes the curves noisy, while appropriate choice of ⌘ (e.g. 0.01) always
achieves the highest loss and also the lowest adversarial accuracy. In these cases, PGD with dual projection converges
comparably and sometimes slightly faster than Frank-Wolfe.
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F.6. MNIST and CIFAR-10 Adversarial Examples
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Figure 9: Comparison of Wasserstein adversarial examples and Wasserstein perturbations generated by different attacks on
MNIST (✏ = 0.2) and CIFAR-10 (✏ = 0.002). Predicted labels are shown on the top of images. Perturbations are scaled
linearly to [0, 1] for visualization.

Wasserstein adversarial perturbations generated by PGD with dual projection and FW with dual LMO (� = 10�3) are very
sparse. Hence, they do not reflect the shapes in the clean images. Perturbations reflect the shapes only when the entropic
regularization introduces large approximation error (e.g. FW with dual LMO (� = 10) and PGD with projected Sinkhorn).

For the sake of visualization of the approximation error, we let PGD use smaller step sizes (⌘ = 0.01) and more iterations
(1000) when combined with projected Sinkhorn.2 We observe that using large step size, e.g., ⌘ = 0.1, often generates blurry
perturbations (not necessarily reflecting shapes clearly). But they are still much more dense compared with adversarial
perturbations generated dual projection and dual LMO (� = 10�3).

2This is the same case for Figure 6 in the main paper. Notice that our normalization method is slightly different from that of Wong
et al. (2019), which might account for the slight difference of the visualization results.
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F.7. ImageNet Adversarial Examples

(a) Dual projection (b) Dual LMO (� = 10�3)

(c) Dual LMO (� = 10) (d) Projected Sinkhorn (� = 10�4)

Figure 10: Comparison of Wasserstein adversarial examples generated by different attacks (✏ = 0.005). Notice that
adversarial pertubations reflect shapes in the images only when the entropic regularization is large (bottom two subfigures).



Stronger and Faster Wasserstein Adversarial Attacks

F.8. Why Does Entropic Regularization Reflect Shapes in Images?

A large entropic regularization term in the optimization objective (of projected Sinkhorn and dual LMO) encourages the
transportation to be uniform, thus each pixel tends to spread its mass evenly to its nearby pixels. In the region where pixel
intensities do not change much, the transportations cancel out; while in the region where pixel intensities change drastically
(e.g., edges in an image), pixel mass flows from the high pixel region to low pixel region. As a result, it reflects the edges in
the original image.

F.9. Analysis of Running Time of Projected Sinkhorn

One possible explanation for slow per iteration running speed of projected Sinkhorn is that, each iteration of projected
Sinkhorn requires solving n nonlinear univariate equations. In implementation, this step is done by calling Lambert function,
which eventually calls Halley’s method, a root-finding algorithm. While solving each nonlinear equation is counted as
O(1) in analysis, this operation is potentially much more expensive than other basic arithmetic operations (e.g. addition
and multiplication). In contrast, both dual projection and dual linear minimization only rely on more standard arithmetic
operations (e.g. multiplication, division and comparison, logarithm and exponential functions).

We test the running time of the nonlinear equation solvers in experiments. On a single RTX 2080 Ti GPU, for a batch of
100 samples on MNIST, we observe that Lambert function evaluation takes about 26% of the running time during each
iteration of projected Sinkhorn. For a batch of 100 samples on CIFAR-10, Lambert function evaluation takes about 28% of
the running time during each iteration of projected Sinkhorn. For a batch of 50 samples on ImageNet, Lambert function
evaluation takes about 32% of the running time of one iteration of projected Sinkhorn.

We note that GPU time recording is somewhat inconsistent on different machines. In our case, all experiments in the main
paper are run on a single P100 GPU on a cluster. However, on a 2080 Ti local GPU, we observe that projected Sinkhorn is
slightly faster than dual projection on ImageNet in terms of per iteration running time (but still at least twice slower than
dual LMO). While on MNIST and CIFAR-10, dual projection and dual LMO are consistently faster than projected Sinkhorn,
both on P100 cluster and 2080 Ti local machine.
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F.10. Case Study: Feasibility of Generated Wasserstein Adversarial Examples

In this section, we present a sanity check of feasibility of adversarial examples generated by different algorithms on MNIST.

Table 4: A sanity check of feasibility of Wasserstein adversarial examples generated by different algorithms on MNIST.
2nd column: The average Wasserstein distance between adversarial examples and clean images (the higher the better).
3rd column: The maximum pixel value in the generated adversarial examples (the lower the better). 4th column: The
percentage of pixel mass that exceeds 1 (the lower the better). The third and the forth columns are largest values over a
mini-batch, while the second column is the average over a mini-batch.

method W(x,xadv) maxi {xi}
Pn

i=1 max{xi�1,0}Pn
i=1 xi

PGD + Proj. Sink. (� = 1/1000) 0.109965 1.474048 3.646899%
PGD + Dual Proj. (w/o post-processing) 0.493146 4.118621 15.812986%
PGD + Dual Proj. 0.444885 1.000030 0.000034%
FW + Dual LMO (w/o post-processing) 0.428238 3.955514 10.406417%
FW + Dual LMO 0.399014 1.000015 0.000025%

Setup We test all attacks on the first 100 samples on the test set of MNIST with ✏ = 0.5. All parameter settings are the same
as the table in the main paper. Dual LMO uses � = 10�3 and projected Sinkhorn uses � = 1/1000.

Wasserstein Constraint The (exact) Wasserstein distances presented in Table 4 are calculated by a linear programming
solver. We observe that all adversarial examples strictly satisfy the the Wasserstein constraint W(x,xadv)  0.5. We also
observe that the Wasserstein adversarial examples generated by PGD with dual projection and FW with dual LMO have
much larger Wasserstein distance than those of projected Sinkhorn. This again hightlights that projected Sinkhorn is only an
approximate projection operator, thus PGD cannot fully explore the Wasserstein ball, resulting in a weak attack.

Hypercube Constraint Without post-processing, all attacks generate Wasserstein adversarial examples that violate the
hypercube constraint a lot. However, after applying our post-processing algorithm, the generated Wasserstein adversarial
examples roughly satisfy the hypercube constraint [0, 1]n up to a reasonable precision.
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F.11. Adversarially Trained Models

In this section, we present additional experiments on adversarial training and attacking adversarially trained models.

F.11.1. MNIST

We adversarially train a robust model using Frank-Wolfe with dual LMO and a fixed perturbation budget ✏ = 0.3. The
inner maximization is approximated with 40 iterations of Frank-Wolfe.3 This model achieves 95.83% clean accuracy. The
adversarial accuracy of this model is shown in Table 5.

For comparison, we also present results on attacking an adversarially trained model by PGD with projected Sinkhorn. We
use a pretrained model released by Wong et al. (2019), which is adversarially trained using an adaptive perturbation budget
✏ 2 [0.1, 2.1]. This model achieves 97.28% clean accuracy.

We notice that the model adversarially trained by PGD with projected Sinkhorn seems to overfit to the same attack. Compared
with the standard trained model in Table 3, the adversarially trained model has higher adversarial accuracy under projected
Sinkhorn, but has lower adversarial accuracy under our stronger attacks.

In Table 6, the post-processing algorithm does not work quite well with Frank-Wolfe. Normally, increasing the perturbation
budget ✏ should decrease the adversarial accuracy. Indeed, if we do not post-process the output, the adversarial accuracy
decreases monotonically for Frank-Wolfe. However, after post-processing, the adversarial accuracy increases a lot, and
even increases as the the perturbation budget increases. For this model, our post-processing algorithm does not seems to
be “compatible” with Frank-Wolfe. Doing a better job on optimizing the Wasserstein constrained problem ignoring the
hypercube constraint does not necessarily give a good solution to the problem with hypercube constraint.

Table 5: MNIST model adversarially trained by Frank-Wolfe with dual LMO (✏ = 0.3).

method ✏ = 0.1 ✏ = 0.2 ✏ = 0.3 ✏ = 0.4 ✏ = 0.5

PGD + Proj. Sink. (� = 1/1000) 94.9 94.0 93.0 91.9 90.5
PGD + Proj. Sink. (� = 1/1500) 94.5 93.2 91.5 89.3 86.8
PGD + Proj. Sink. (� = 1/2000) � � � � �
PGD + Dual Proj. 92.6 87.8 80.2 70.7 59.7
FW + Dual LMO 92.5 88.1 82.1 75.3 66.8

PGD + Dual Proj. (w/o post-processing) 91.1 82.9 71.3 58.4 44.6
FW + Dual LMO (w/o post-processing) 91.1 83.9 73.9 63.0 50.9

Table 6: MNIST model adversarially trained by PGD with projected Sinkhorn.

method ✏ = 0.1 ✏ = 0.2 ✏ = 0.3 ✏ = 0.4 ✏ = 0.5

PGD + Proj. Sink. (� = 1/1000) 95.0 92.4 90.5 88.5 86.5
PGD + Proj. Sink. (� = 1/1500) 93.8 90.0 82.7 85.2 90.5
PGD + Proj. Sink. (� = 1/2000) � � � � �
PGD + Dual Proj. 1.1 0.8 0.6 0.6 0.6
FW + Dual LMO 4.8 21.6 34.5 39.2 39.6

PGD + Dual Proj. (w/o post-processing) 1.0 0.4 0.3 0.3 0.3
FW + Dual LMO (w/o post-processing) 0.8 0.3 0.2 0.1 0.0

3We also have tried larger perturbation budgets ✏ = 0.4 and ✏ = 0.5, but the training collapses.
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F.11.2. CIFAR-10

We adversarially train a robust model using Frank-Wolfe with dual LMO and a fixed perturbation budget ✏ = 0.005. The
inner maximization is approximated with at most 30 iterations of Frank-Wolfe. This model achieves 82.57% clean accuracy.
The adversarial accuracy of this model is shown in Table 7.

For comparison, we also present results on attacking an adversarially trained model by PGD with projected Sinkhorn. We
use a pretrained model released by Wong et al. (2019), which is adversarially trained using an adaptive perturbation budget
✏ 2 [0.01, 0.38]. This model achieves 81.68% clean accuracy.

Table 7: CIFAR-10 model adversarially trained by Frank-Wolfe with dual LMO (✏ = 0.005)

method ✏ = 0.001 ✏ = 0.002 ✏ = 0.003 ✏ = 0.004 ✏ = 0.005

PGD + Proj. Sink. (� = 1/3000) 82.4 82.3 82.1 81.9 81.8
PGD + Proj. Sink. (� = 1/10000) 82.0 81.5 81.0 80.6 80.1
PGD + Proj. Sink. (� = 1/20000) � � � � �
PGD + Dual Proj. 76.8 71.8 67.0 62.0 56.8
FW + Dual LMO 77.4 73.7 70.2 66.8 62.6

PGD + Dual Proj. (w/o post-processing) 76.5 71.3 66.4 61.4 56.2
FW + Dual LMO (w/o post-processing) 77.2 73.7 70.4 67.3 63.9

Table 8: CIFAR-10 model adversarially trained by PGD with projected Sinkhorn.

method ✏ = 0.001 ✏ = 0.002 ✏ = 0.003 ✏ = 0.004 ✏ = 0.005

PGD + Proj. Sink. (� = 1/3000) 81.7 81.6 81.6 81.6 81.5
PGD + Proj. Sink. (� = 1/10000) 81.6 81.4 81.3 81.2 81.0
PGD + Proj. Sink. (� = 1/20000) � � � � �
PGD + Dual Proj. 72.5 64.4 56.3 48.8 42.2
FW + Dual LMO 72.4 64.0 55.5 47.8 41.2

PGD + Dual Proj. (w/o post-processing) 72.0 63.3 54.9 47.2 40.6
FW + Dual LMO (w/o post-processing) 71.7 62.2 52.9 44.7 37.5
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G. Post-processing: Capacity Constrained Projection for Hypercube Constraint
In this section, we present the post-processing algorithm mentioned in §5.3.

G.1. Algorithm

Suppose that pixel values of input images are represented by real numbers in [0, 1]n. We need to add one additional
constraint ⇧>1  1, which results in the following Euclidean projection problem:

minimize
⇧�0

1

2
k⇧ � Gk2

F

subject to ⇧1 = x, ⇧>1  1, h⇧, Ci  �.
(28)

We call this problem a capacity constrained projection, since the additional constraint essentially specifies the maximum
mass that a pixel location can receive. We introduce the partial Lagrangian to derive the following dual problem:

maximize
��0,µ�0

g(�,µ),

where

g(�,µ) = min
⇧�0,⇧1=x

1

2
k⇧ � Gk2

F + � (h⇧, Ci � �) + µ> �
⇧>1 � 1

�

= min
⇧�0,⇧1=x

1

2
k⇧ � Gk2

F + � (h⇧, Ci � �) + h⇧,1µ>i � µ>1

= min
⇧�0,⇧1=x

1

2
k⇧ � G + �C + 1µ>k2

F � hG,�C + 1µ>i +
1

2
k�C + 1µ>k2

F � �� � µ>1

We optimize g(�,µ) by alternating maximization on � and µ respectively: fixing µ, we maximize � via bisection method;
fixing �, we maximize µ via k steps gradient ascent with nesterov acceleration, where k is a hyperparameter. Evaluating the
gradient of µ in bisection method, as well as evaluating the gradient of µ, can be reduced to simplex projections following
similar derivations in dual projection (§3).

Due to sublinear convergence rate of gradient ascent, it may be slow to obtain a very high precision solution. However,
empirical evidences show that a few hundred alternating maximization (with k around 10 or 20) converges to a solution with
reasonable precision (e.g. satisfying hypercube constraint up to the third digit after the decimal point), and convergence to
these modest precision solutions is already sufficient for generating valid Wasserstein adversarial examples.

H. Additional Related Work
In this section, we comment on a few more works related to threat models beyond the standard `p metric. A number
of authors have recently explored geometric transformations as an adversarial attack against deep models. As already
mentioned in the main paper, (Engstrom et al., 2019) studied adversarial rotations and translations where perturbation
is measured by the degree of rotation and translation. Similarly, Alaifari et al. (2019) Alaifari et al. (2019) considered
adversarial deformations and used the maximum Euclidean size of the deformation as the perturbation budget. Kanbak
et al. (2018) studied the more general case where spatial transformation is parameterized as a Lie group, and employed the
geodesic distance in the image appearance manifold to measure perturbation size. Xiao et al. (2018), on the other hand,
modeled spatial transformations as a vector flow and used the total variation of the flow to measure perturbation size. On
a high level, spatial transformation shares some similarity with the Wasserstein threat model, as they both involve pixel
mass movement. In fact, the Wasserstein threat model can be treated as a further relaxation of spatial transformations,
where we are not only allowed to move pixels but also to change pixel values (e.g. pixel mass splitting). In this sense, the
Wasserstein threat model is a combination of spatial transformation and the standard `p additive perturbation, although
the way it measures perturbation is entirely different from either. All of the above methods employ first order gradient
algorithms to solve their respective optimization problems. We note that some authors, e.g. Athalye et al. (2018); Li et al.
(2019), have already considered physical attack for real world objects.

Lastly, we mention that certification algorithms for spatial transformations and the Wasserstein threat model have recently
been developed by Balunovic et al. (2019) and Levine & Feizi (2019), respectively.
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