On the Noisy Gradient Descent that Generalizes as SGD

A. Missing proofs in main paper
A.1. Proof of Proposition 1

Proof. We first calculate the expectation and variance of the sampling random vector W4, then obtain that of the sampling
noise Vsgd.

Sampling with replacement In the circumstance of sampling with replacement, the sampling random vector Wsgq could
be decompose as
Wegd = WH + -+ WP,

where W1, ... W? are i.i.d. and each of them represents once sampling procedure. Thus W* = (wi, ..., w?)? contains
one multiple of % and n — 1 multiples of zero, with random index. Hence we have
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Recall W', ... WP arei.id., thus
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E[Wsga] = DEW'] = ﬁll, Var[Wigd] = b Var[W'] = o I— ﬁ]l]l .
Therefore for the sampling noise Vigq = Wega — %]l we have
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Sampling without replacement Let W_,4 = (w},..., w),)T. In the case of sampling without replacement, we know the

sampling random vector Wégd contains exactly b multiples of %s and n — b multiples of zero, with random index. Hence we
have

n—l)l n—1) 1 n—2\ 1
(5= 1 (5-1) 1 (5-2) 5 b—-1 ‘
Elw)] = 2552 = =, B[(w))’] = 25 = —, Blwjuwy] = 22 = Vi # k.
! () n ! () bn ! () bn(n —1)
Thus
1
E[ s/gd] :N]L
VarWigq] =EWiaWega) '] — EWV]EWVTT
1 b—1 . b=l
blTI bn(rifl) o bnl()ﬁIl) ) , ,
_ bn(n—1) bn bn(n—1) _ 7]1]17« _ n— I *]l]lT .
n? bn(n —1) n
b—1 b-1 .. 1
bn(n—1)  bn(n—1) b2n
Therefore for the sampling noise Vi,; = Wi,q — L1 we have
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A.2. Proof of Theorem 1
Proof. Let
€n = Yn — xzew

by assumption we have
Ele,zn) =0, Ele,) =0, Ele?zzT] < 0?5

Recall the MSGD updates
Ont1 =0, —n Z Wy (xrxggn - yrxr) )
reB,
hence we have
Opni1 — 0 = (I 7 Z Wy Ty T, ) (0 —0.)+7 Z Wy€p L.
reB, reB,
Define
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Then recursively we obtain
i
0; — 0. = M(i,1)(00 — 0.) +n > _ M(i, k+ 1)N(k). (8)

k=1

Moments of L(k) We first calculate the first and second moments of N (k) defined in Eq. (7). Since E[w,] = &+, E[w?] =
o Elwiw] = ppb5ty, i # j.and B [HtzmxT} < R?Y, ¥ < I, we have
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Moments of M (i,k) We only consider i > k.
E[M (i, k)] = (I = E[L()]) - -- (I = nE[L(K)]) = (I — 7).
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Hence
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Calculate averaging Takeing expectation to wy, and By, we have
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and in the following we bound E }"7"  [|6; — 6. Hg We do so by bounding each term.
Now since the solution of 6; in Eq. (8) and the fact E[N (k)] = 0, we have

E|6; — 6.5 =E || M(i, 1)(6o — . HQWEZZ (i, k + 1)N(k), M(i,j+ 1)N(j))
k=1j=1
=F || M(i,1) (60 — 6. \\2—1—772]}32 (i,k +1)N(k), M(i,k +1)N(k)).

In conclusion we have
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‘We call the two terms as the noiseless term and the noise term.

Noise term We bound the noise term by observing that
E (M(i,k +1)N(k), M(i,k +1)N(k))
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Noiseless term  Let Ey = (0o —6.)(0p—0.)T . Define two linear operators S and 7" from symmetric matrices to symmetric
matrices as

SA =E[L(k)AL(k)]

TA=XA+ AY. —nE[L(k)AL(k)] = XA+ AY — nSA.
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With these notations and M (i,1) = (I — nL(4))--- (I —nL(1)), we recursively have

E [M(i,1)"M(i,1)] = (I —nT)'I.
Next we bound the noiseless term
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Let M =T I, then =TM =XM + MY — 1S M, hence by the Kronecker’s produce we have
I+nSM=YXM+ME=(EI+IxX)M,

thus
_ _ 1 _
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Therefore
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We left to bound SM and (S @ I+ 1@ %) Ey.
Bound (X @1+ ® 2)71 Ey By Cauchy-Schwarz inequality we have
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Bound SM  Firstly by definition,
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Secondly taking trace we have

20

d = Tr[I] = Te[TM] = 2 Tx[SM] — n Te[SM] > 2 Te[SM] > Er b

Tr[SM],

which implies that Tr[SM] < Rz%lgfl))‘d.

To sum up we have
SM, (SI+Ix%)"" E0>
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Therefore for the noiseless term we have
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In conclusion we have
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which complete our proof.

B. Strong convergence of Gaussian MSGD and its SDE
Theorem 2. (Strong convergence between Gaussian MSGD and SDE) Let T > 0. Let C(0) be the diffusion matrix, e.g.,

c(9) = ﬁ Vo L(0) € RP*N. Assume there exist some L, M > 0 such that . max N(|V9€i(9)|) < M and that V{;(0)

)

are Lipschitz continuous with bounded Lipschitz constant L > 0 uniformly forall i = 1,2, ..., N.
Then the Gaussian MSGD iteration (9)

k1 — O, = —nVoL(0k) +nC(Ok)Wis1, Wi ~ N(0,1), i.i.d. )
is a order 1 strong approximation to SDE (10)
dO; = -V L(0,)dt + /nC(©.)dWy, B9 =0y, W, € RY is a standard Brownian motion (10)
i.e., there exist a constant C independent on 1 but depending on L and M such that

E||Ok, — 0| < Cn?,  forall0 <k < |[T/n]. (1)
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Proof. We show that, as 7 — 0, the discrete iteration 6, of Eq. (9) in strong norm and on finite—time intervals is close to the
solution of the SDE (10). The main techniques follow (Borkar & Mitter, 1999), but (Borkar & Mitter, 1999) only considered
the case when C(0) is a constant.

For vector z € R?, we define its norm as |z| := VzTlz; for matrix X € R¥*92, we define its norm as |X| :=
VIr(XTX) = /Tr(XXT).

Let O, be the process defined by the integral form of the stochastic differential equation

~

t t
O, — 0= —/ VQL(QL%Jn)dS + \/’ﬁ/ C(@L%Jn)dWS , ©g=10. (12)
0 0

Here for a real positive number a > 0 we define |a| = max {k € N,k < a}. From (12) we see that we have, for
k=0,1,2,...

Oty — Okn = 1V L(Ory) — v/1COrr)) Wit 1)y — Wikn) - (13)

Since \/7(Wk+1yy — Win) ~ N(0,7°T), we could let nWy. 1 = \/H(Wst1yy — Win), where Wi 1 is the i.i.d. Gaussian
sequence in (9). From here, we see that

Oy = 0y , (14)

where 6, is the solution to (9).

We first bound ©; in Eq. (12) and ©, in Eq. (10). Then we could obtain the error estimation of ;, = ékn and Oy, by simply
sett = kn.

Since we assumed that V,y¢;(#) is L-Lipschitz continuous, we get |C(6;) — C(69)] =

1 N 1
\/W\/Z [Voli(01) — Voli(62)]2 < \/ﬁ\/NLﬂ@l — 032 < L|f; — 0| since b > 1. Thus C(0) is also
i=1

L-Lipschitz continuous. Take a difference between (12) and (10) we get

O, — 6, = —/ [VoL(O|2,) — VoL(O))ds + \/ﬁ/ [C(B2)) = C(,)]dW, . (15)
0 0

We can estimate
VoL(©): 1) — VoL(O,)[
<2AVyL(O2),) = VoL (O 2 )[* + 2|V L(O)| 2 ) — Vo L(O)[? (16)
<2218y — Oz )4[* + 217102}y — O,

1 N
where we used the inequality |VoL(61) — Vg L(62)| ST IVoli(01) — Voli(62)] < L0 — 05
=1

<N
Similarly, we estimate
C(O2),) — C(O,)
<2|C(O): 1) — C(O2 1) > +2/C(O 2 ) — C(O,)] (17)
<2L%(O) 2y — Oz )yl” + 207102 )y — O
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On the other hand, from (15), the 1td’s isometry (Jksendal, 2003) and Cauchy—Schwarz inequality we have

E|O; — 6,/
2
+ 2nE

2

<28 [ [9uL(015),) - VaLi@.)as | e®i-cenaw,

> —_— , (18)
+2n/ E|C®s) - c(0.)] ds
0

t
<2E‘/ [VoL(O|2 ) — VoL(O,)]ds
0 7

2

t 2 t .
SQ/ E’V@L(@ijn)7V9L(@g) d8+2’l7/ E‘C(@Lij)*C(@g) ds.
0 " 0 7

Combining (16), (17) and (18) we obtain that
E|©; — O]
t
2101 2 2 2
SQ/O <2L E|@\_%J77 _GL%M| + 2L E|@L%Jn — O] )ds

(212w 24 9r2 > (19)
+277/0 <2L E[©| 2y = Oz )y|" + 2L°E|O |2 |, — O] )ds

t t
:4(1+’I7)L2- (/0 E|@L%J77_®L%J7I|2ds+/0 ]E|@|_;Jn_@s|2d3) .

Since we assumed that there is an M > 0 such that _mnax (\V(;E (0)]) < M, we conclude that |VoL(0)| <

— Z [Vol:(8)] < M and |C(6) ” Z [Val;(0)|? < M since b > 1. By (10), the 1td’s isometry (Bksendal,

2003) the Cauchy-Schwarz inequality and 0<s— 77 < n we know that

E|9L%Jn -6,

=E|- VoL(0,)du+ /7 C(0,)dW,
[&1n L&1n
S 2 S 2
<9I VoL(0,)du| + 2nE C(©,)dw,
L%J’? L%JVI (20)
2
<2E (/ Vo L(6.,)] du> + Qn/ E|C(O.)*du
[£1n L£]n
gzn/ E|V9L(®u)|2du—|—277/ E|[C(0.,)]*du
L51n L51n
<202 M? + 202 M? = 40> M? .
Combining (20) and (19) we obtain
t
E|O; — 0% <4(1+n)L*- (/ ElO| 2], — @L%m|2ds + 4n2M2t) . Q1)
0

SetT > 0and m(t) = Orga?tE\C:)s — ©,]?, noticing that m(L%Jn) < m(s) (as L%Jn < s), then the above gives for any
0<t<T, o

m(t) < 4(1+n)L (/ m(s)ds + 4n> M>T > (22)
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By Gronwall’s inequality we obtain that for 0 <¢ < T,
m(t) < 16(1 + n)L2n>M>Te I+ L (23)
Suppose 0 < 7 < 1, then there is a constant C' which is independent on 7 s.t.
E|6; — 02 < m(t) < Cn?. (24)
Set t = kn in (24) and make use of (14), we finish the proof.
O
Remark. As we have seen in the previous proof, the functions Vo L(6) and C'(6) are both L-Lipschitz continuous, and thus

the SDE (10) admits a unique solution ((Jksendal, 2003), Section 5.2).

C. Experiments setups and further results
The code is available at https://github.com/uuujf/MultiNoise.

The experiments are conducted using GeForce GTX 1080 Ti and PyTorch 1.0.0.

C.1. FashionMNIST

Dataset https://github.com/zalandoresearch/fashion-mnist

We randomly choose 1, 000 original test data as our training set, and use the 60, 000 original training data as our test set.
Thus we have 1, 000 training data and 60, 000 test data. We scale the image data to [0, 1].

Model We use a LeNet alike convolutional network:

input = convl = max_pool = ReLU = conv2 =
max_pool = ReLU = fcl = ReLU = fc2 = output.

Both convolutional layers use 5 x 5 kernels with 10 channels and no padding. The number of hidden units between fully
connected layers are 50. The total number of parameters of this network are 11, 330.

Optimization We use standard (stochastic) gradient descent optimizer. The learning rate is 0.01. If not stated otherwise,
the batch size of SGD is 50.

C.2. SVHN
Dataset http://ufldl.stanford.edu/housenumbers/

We randomly choose 25, 000 original test data as our training set, and 70, 000 original training data as our test set. Thus we
have 25, 000 training data and 70, 000 test data. We scale the image data to [0, 1].

Model We use standard VGG-11 without Batch Normalization.

Optimization We use standard (stochastic) gradient descent optimizer. The learning rate is 0.05. If not stated otherwise,
the batch size of SGD is 100.

C.3. CIFAR-10
Dataset https://www.cs.toronto.edu/~kriz/cifar.html

We use standard CIFAR-10 dataset. We scale the image into [0, 1].

Models We use two models: VGG-11 without Batch Normalization and standard ResNet-18.



On the Noisy Gradient Descent that Generalizes as SGD

85.0 90
82.5 iy mmEEESm—mmm e m—m————————
—_ — 85 A7
X 80.0 o S :Wf
~ ~ A
3775 v 3 a0/
o o
> 75.0 =}
(9] (9]
V) O 751
o —— MSGD-Cov (80.41) o —— MSGD-Cov (85.86)
§ 70.0 —— MSGD-[Cov-100] (79.96) § ---- MSGD-[Cov-1K] (86.47)
—— MSGD-[Cov-50] (80.66) 707 ---- MSGD-[Cov-500] (85.97)
67.5
MSGD-[Cov-10] (79.16) MSGD-[Cov-100] (85.58)
65.00 10‘00 20‘00 30‘00 40‘00 50‘00 60‘00 70‘00 650 SObO 75‘00 10600 12500 15600 17500 20600
iteration iteration
(a) Small FashionMNIST (b) SVHN

Figure 3. The generalization of MSGD. X-axis: number of iterations; y-axis: test accuracy. (a): We randomly draw 1, 000 samples from
FashionMNIST as the training set, then train a small convolutional network with them. (b): We use 25, 000 samples from SVHN as the
training set, then train a VGG-11 without Batch Normalization. MSGD-Cov: MSGD with Gaussian gradient noise whose covariance is
the SGD covariance. MSGD-[Cov-B]: MSGD-Cov with the SGD covariance estimated using a mini-batch of samples in size B.

Table 1. Additioal experimetns for CIFAR-100 on ResNet-18

Algorithm | Test Accuracy
SGD-500 76.38%
SGD-2k 72.78%
[MSGD-Fisher]-2k 76.83%
SGD-5k 59.16%
[MSGD-Fisher]-5k 76.46%

Optimization for VGG-11 We use momentum (stochastic) gradient descent optimizer. The momentum is 0.9. The
learning rate is 0.01 decayed by 0.1 at iteration 40, 000 and 60, 000. If not stated otherwise, the batch size of SGD is 100.

Optimization for ResNet-18 We use momentum (stochastic) gradient descent optimizer. The momentum is 0.9. The
learning rate is 0.1 decayed by 0.1 at iteration 40, 000 and 60, 000. If not stated otherwise, the batch size of SGD is 100.

For large batch training, we use ghost batch normalization (Hoffer et al., 2017).

Specially, for the experiments to obtain state-of-the-art performance on ResNet-18, we also use standard data augmentation
and weight decay 5 x 1074,

C4. Additional experiments

FashionMNIST and SVHN Figure 3 shows additional experiments for MSGD-Cov. We see that indeed for MSGD-Cov,
1) the performance is similar to MSGD-Fisher, and 2) noises from different classes can generalize similarly.

VGG-11 Figure 4 repeats our experiments in main text on VGG-11. The results are consistent with our main conclusions.

CIFAR-100 Table 1 show addtional result for CIFAR-100 on ResNet-18. The setups follow Figure 2 (c), except that the
dataset is CIFAR-100 instead of CIFAR-10.
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Figure 4. The generalization of MSGD and mini-batch MSGD. X-axis: number of iterations; y-axis: test accuracy. (a) (b): We train a
VGG-11 on CIFAR-10 without using Batch Normalization, data augmentation and weight decay. MSGD-Fisher: MSGD with Gaussian
gradient noise whose covariance is the scaled Fisher. MSGD-Cov: MSGD with Gaussian gradient noise whose covariance is the SGD
covariance. MSGD-Bernoulli: MSGD with Bernoulli sampling noise. SGD-B: SGD with batch size B. [MSGD-Fisher]-B: mini-batch
MSGD with batch size B, and an compensatory gradient noise whose covariance is the estimated Fisher. textbf[MSGD-Cov]-B:
mini-batch MSGD with batch size B, and an compensatory gradient noise whose covariance is the estimated SGD covariance.



