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Abstract 
Machine learning models are not static and may 
need to be retrained on slightly changed datasets, 
for instance, with the addition or deletion of a set 
of datapoints. This has many applications, includ-
ing privacy, robustness, bias reduction, and un-
certainty quantifcation. However, it is expensive 
to retrain models from scratch. To address this 
problem, we propose the DeltaGrad algorithm for 
rapid retraining machine learning models based 
on information cached during the training phase. 
We provide both theoretical and empirical support 
for the effectiveness of DeltaGrad, and show that 
it compares favorably to the state of the art. 

1. Introduction 
Machine learning models are used increasingly often, and 
are rarely static. Models may need to be retrained on slightly 
changed datasets, for instance when datapoints have been 
added or deleted. This has many applications, including 
privacy, robustness, bias reduction, and uncertainty quantif-
cation. For instance, it may be necessary to remove certain 
datapoints from the training data for privacy and robust-
ness reasons. Constructing models with some datapoints 
removed can also be used for constructing bias-corrected 
models, such as in jackknife resampling (Quenouille, 1956) 
which requires retraining the model on all leave-one-out 
datasets. In addition, retraining models on subsets of data 
can be used for uncertainty quantifcation, such as construct-
ing statistically valid prediction intervals via conformal pre-
diction e.g., Shafer & Vovk (2008). 

Unfortunately, it is expensive to retrain models from scratch. 
The most common training mechanisms for large-scale mod-
els are based on (stochastic) gradient descent (SGD) and 
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Figure 1. Running time of our DeltaGrad algorithm for retraining 
a logistic regression model on RCV1 as a function of the fraction 
of data deleted and added. Our algorithm is faster than training 
from scratch (Running time BaseL). Also shown is the distance 
of DeltaGrad and the model trained on full data from the correct 
values (Distance BaseL and Distance DeltaGrad, resp.), illustrating 
that our algorithm is accurate. See Section 18 for details. 

its variants. Retraining the models on a slightly different 
dataset would involve re-computing the entire optimization 
path. When adding or removing a small number of data 
points, this can be of the same complexity as the original 
training process. 

However, we expect models on two similar datasets to be 
similar. If we retrain the models on many different new 
datasets, it may be more effcient to cache some information 
about the training process on the original data, and compute 
the “updates”. Such ideas have been used recently e.g., 
Ginart et al. (2019); Guo et al. (2019); Wu et al. (2020). 
However, the existing approaches have various limitations: 
They only apply to specialized problems such as k-means 
(Ginart et al., 2019) or logistic regression (Wu et al., 2020), 
or they require additional randomization leading to non-
standard training algorithms (Guo et al., 2019). 

To address this problem, we propose the DeltaGrad algo-
rithm for rapid retraining of machine learning models when 
slight changes happen in the training dataset, e.g. deletion 
or addition of samples, based on information cached during 
training. DeltaGrad addresses several limitations of prior 
work: it is applicable to general machine learning models de-
fned by empirical risk minimization trained using SGD, and 
does not require additional randomization. It is based on the 
idea of “differentiating the optimization path” with respect 
to the data, and is inspired by ideas from Quasi-Newton 
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methods. 

We provide both theoretical and empirical support for the 
effectivenss of DeltaGrad. We prove that it approximates the 
true optimization path at a fast rate for strongly convex ob-
jectives. We show experimentally that it is accurate and fast 
on several medium-scale problems on standard datasests, 
including two-layer neural networks. The speed-ups can be 
up to 6.5x with negligible accuracy loss (see e.g., Fig. 1). 
This paves the way toward a large-scale, effcient, general-
purpose data deletion/addition machine learning system. 
We also illustrate how it can be used in several applications 
described above. 

1.1. Related work 

There is a great deal of work on model retraining and up-
dating. Recently, this has gotten attention due to worldwide 
efforts on human-centric AI, data confdentiality and privacy, 
such as the General Data Protection Regulation (GDPR) in 
the European Union (European Union, 2016). This man-
dates that users can ask for their data to be removed from 
analysis in current AI systems. The required guarantees are 
thus stronger than what is provided by differential privacy 
(which may leave a non-vanishing contribution of the dat-
apoints in the model, Dwork et al. (2014)), and or defense 
against data poisoning attacks (which only requires that the 
performance of the models does not degrade after poisoning, 
Steinhardt et al. (2017)). 

Effcient data deletion is also crucial for many other appli-
cations, e.g. model interpretability and model debugging. 
For example, repeated retraining by removing different sub-
sets of training data each time is essential in many existing 
data systems (Doshi-Velez & Kim, 2017; Krishnan & Wu, 
2017) to understand the effect of those removed data over 
the model behavior. It is also close to deletion diagnotics, 
targeting locating the most infuential data point for the 
ML models through deletion in the training set, dating back 
to (Cook, 1977). Some recent work (Koh & Liang, 2017) 
targets general ML models, but requires explicitly maintain-
ing Hessian matrices and can only handle the deletion of 
one sample, thus inapplicable for many large-scale appli-
cations. Effcient data deletion also plays a key role in the 
applications of dynamic data stream summarization (Mirza-
soleiman et al., 2017) where deletion requests on subsets 
of training samples are expected to trigger instantaneous 
updates on summaries of the streaming data. 

Effcient model updating for adding and removing data-
points is possible for linear models, based on effcient rank 
one updates of matrix inverses (e.g., Birattari et al., 1999; 
Horn & Johnson, 2012; Cao & Yang, 2015, etc). The scope 
of linear methods is extended if one uses linear feature 
embeddings, either randomized or learned via pretraining. 
Updates have been proposed for support vector machines 

(Syed et al., 1999; Cauwenberghs & Poggio, 2001) and 
nearest neighbors (Schelter, 2019). 

Ginart et al. (2019) proposes a defnition of data erasure 
completeness and a quantization-based algorithm for k-
means clustering achieving this. They also propose several 
principles that can enable effcient model updating. Guo 
et al. (2019) proposes a general theoretical condition that 
guarantees that randomized algorithms can remove data 
from machine learning models. Their randomized approach 
needs standard algorithms such as logistic regression to be 
changed to apply. (Bourtoule et al., 2019) propose the SISA 
(or Sharded, Isolated, Sliced, Aggregated) training frame-
work for “un-learning”, which relies on ideas similar to 
distributed training. Their approach requires dividing the 
training data in multiple shards such that a training point is 
included in a small number of shards only. 

Starting from the concept of Differential Privacy, (Golatkar 
et al., 2020a) proposes a defnition on how much information 
about the training samples to be forgotten may remain in the 
weights of the network after the removal of those samples. 
Based on this defnition, (Golatkar et al., 2020a) and its 
follow-up work (Golatkar et al., 2020b) utilize the Fisher 
Information Matrix to approximately but effectively remove 
the information of the deleted training samples from general 
ML models. Different from (Golatkar et al., 2020a) and 
(Golatkar et al., 2020b), our work does not rely on the 
concept of differential privacy and we explicitly discuss the 
connections between our work and differential privacy in 
Section 4.2.2 and Appendix B.1. 

Our approach relies on large-scale optimization, which has 
an enormous literature. Stochastic gradient methods date 
back to Robbins & Monro (1951). More recently a lot of 
work (see e.g., Bottou, 1998; 2003; Zhang, 2004; Bousquet 
& Bottou, 2008; Bottou, 2010; Bottou et al., 2018) focuses 
on empirical risk minimization. 

The convergence proofs for SGD are based on the contrac-
tion of the expected residuals. They are based on assump-
tions such as bounded variances, the strong or weak growth, 
smoothness, convexity (or Polyak-Lojasiewicz) on the in-
dividual and overall loss functions. See e.g., (Gladyshev, 
1965; Amari, 1967; Kul’chitskiy & Mozgovoy, 1992; Bert-
sekas & Tsitsiklis, 1996; Moulines & Bach, 2011; Karimi 
et al., 2016; Bottou et al., 2018; Gorbunov et al., 2019; 
Gower et al., 2019), etc, and references therein. Our ap-
proach is similar, but the technical details are very different, 
and more closely related to Quasi-Newton methods such as 
L-BFGS (Zhu et al., 1997). 

Contributions. Our contributions are: 

1. DeltaGrad: We propose the DeltaGrad algorithm for 
fast retraining of (stochastic) gradient descent based 
machine learning models on small changes of the data 
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(small number of added or deleted points). 
2. Theoretical support: We provide theoretical results 

showing the accuracy of the DeltaGrad. Both for GD 
and SGD we show the error is of smaller order than 
the fraction of points removed. 

3. Empirical results: We provide empirical results show-
ing the speed and accuracy of DeltaGrad, for addition, 
removal, and continuous updates, on a number of stan-
dard datasets. 

4. Applications: We describe the applications of Delt-
aGrad to several problems in machine learning, in-
cluding privacy, robustness, debiasing, and statistical 
inference. 

2. Algorithms 
2.1. Setup 

The training set {(xi, yi)}n has n samples. The loss ori=1 
objective function for a general machine learning model is 
defned as: 

nX1 
F (w) = Fi (w) 

n 
i=1 

where w represents a vector of the model parameters and 
Fi (w) is the loss for the i-th sample. The gradient and 
Hessian matrix of F (w) are 

n n 

rF (w) = 
1 X 

rFi (w) , H (w) = 
1 X 

Hi (w) 
n n 

i=1 i=1 

Suppose the model parameter is updated through mini-batch 
stochastic gradient descent (SGD) for t = 1, . . . , T : Xηt wt+1 ← wt − rFi (wt)

B 
i∈Bt 

where Bt is a randomly sampled mini-batch of size B 
and ηt is the learning rate at the tth iteration. As a special 
case of SGD, the update rule of gradient descent (GD) isPn wt+1 ← wt − ηt/n After training oni=1 rFi (wt). 
the full dataset, the training samples with indices R = 
{i1, i2, . . . , ir} are removed, where r � n. Our goal is to 
effciently update the model parameter to the minimizer of 
the new empirical loss. Our algorithm also applies when r 
new datapoints are added. 

The naive solution is to apply GD directly over the remain-
ing training samples (we use wU to denote the correspond-
ing model parameter), i.e. run: 

ηt X  �
U U Uw t+1 ← w t − rFi w t (1) 

n − r 
i6∈R P 

which aims to minimize F U (w) = 1/(n − r) Fi (w).i6∈R 

2.2. Proposed DeltaGrad Algorithm 

To obtain a more effcient method, we rewrite Equation (1) 
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Algorithm 1 DeltaGrad 
Input : The full training set (X, Y), model parameters cached 

during the training phase over the full training sam-
ples {w0, w1, . . . , wt} and corresponding gradients 
{rF (w0) , rF (w1) , . . . , rF (wt)}, the indices of 
the removed training samples R, period T0, total iteration 
number T , history size m, “burn-in” iteration number j0, 
learning rate ηt 

Output :Updated model parameter wI
t 

Initialize wI 
0 ← w0 

Initialize an array ΔG = [] 
Initialize an array ΔW = [] 
for t = 0; t < T ; t ++ do 

if [((t − j0) mod T0) == 0] or t ≤ j0 thend � 
compute rF wI

t exactly d 
I 
� 

compute rF w t −rF (wt) based on the cached gra-
dient rF (wt) d � 

set ΔG [k] = rF wI
t −rF (wt) 

set ΔW [k] = wI
t − wt, based on the cached parameters 

wt 

k ← k + 1 
compute wI

t+1 by using exact GD update (equation (1)) 
else 

Pass ΔW [−m :], ΔG [−m :], the last m elements in 
ΔW and ΔG, which are from the j1 

th 
2 m, jth , . . . , jth it-

erations where j1 < j2 < · · · < jm depend on t, 
v = wI

t − wt, and the history size m, to the L-BFGFS 
Algorithm (see Section A.2.1 in the Appendix) to get 
the approximation of H(wt)v, i.e., Bjm vd � d � 

Approximate rF wI
t = rF (wt)+Bjm wI

t − wt 

Compute wI
t+1 by using the ”leave-r-out” gradient for-

mula, based on the approximated rF (wI
t) 

end 
end 
return wI

t 

via the following “leave-r-out” gradient formula (we use 
wI to denote the model parameter derived by DeltaGrad): 

" # � X  �
I I ηt I Iw t+1 = w t − nrF w t − rFi w t . 

n − r 
i∈R 

(2) 

P  � 
Computing the sum rFi wI

t of a small number of i∈R P  � 
terms is more effcient than computing wI

ti6∈R rFi 

when  |R| �= rP� n. For this� we need to approximate 
n 

nrF wI
t = wI

t by leveraging the histori-i=1 rFi 

cal gradient rF (wt) (recall that wt is the model parameter 
before deletions), for each of the T iterations. 

Suppose we can cache the model parameters w0, . . . , wt 

and the gradients rF (w0), . . . , rF (wt) for each iteration 
of training over the original dataset. Suppose that we have 
been able to approximate wI 

0, . . . , wI
t. Then at iteration � 

t + 1, rF wI
t can be approximated using the Cauchy 
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mean-value theorem: � �
I I rF w t = rF (wt) + Ht · w t − wt (3) 

in which Ht is an integrated Hessian, Ht = R 1 �� 
H wt + x wI

t − wt dx. 

Equation (3) requires a Hessian-vector product at every 
iteration. We leverage the L-BFGS algorithm to approx-
imate this, see e.g. Matthies & Strang (1979); Nocedal 
(1980); Byrd et al. (1994; 1995); Zhu et al. (1997); No-
cedal & Wright (2006); Mokhtari & Ribeiro (2015) and 
references therein. The L-BFGS algorithm uses past data 
to approximate the projection of the Hessian matrix in the 
direction of wt+1 − wt. We denote the required historical 
observations at prior iterations j as: Δwj = wI

j − wj ,� 
Δgj = rF wI

j −rF (wj ). 

L-BFGS computes Quasi-Hessians Bt approximating the 
true Hessians Ht (we follow the notations from the classi-
cal L-BFGS papers, e.g., Byrd et al. (1994)). DeltaGrad 
(Algorithm 1) starts with a “burn-in” period of j0 itera-� 
tions, where it computes the full gradients rF wI

t ex-
actly. Afterwards, it only computes the full gradients every 
T0 iterations. For other iterations t, it uses the L-BGFS 
algorithm, maintaining a set of updates at some prior iter-
ations j1, j2, . . . , jm, i.e. Δwj1 , Δwj2 , . . . , Δwjm and 
Δgj1 , Δgj2 , . . . , Δgjm where jk − jk−1 ≤ T0. Then it uses 
an effcient L-BGFS update from Byrd et al. (1994) (see 
Appendix A.2.1 for the details of the L-BGFS update). 

By approximating Ht with Bt in Equation (3) and plugging 
Equation (3) into Equation (2), the DeltaGrad update is: 
wI 

t+1 − wI
t = ηt/(n − r)· (P 

t), (t − j0) mod T0 = 0 or t ≤ j0i6∈R rF (wI 

· P 
n[Bjm (wI

t − wt) + rF (wt)] − i∈R rF (wI
t), else 

2.3. Convergence rate for strongly convex objectives 

We provide the convergence rate of DeltaGrad for strongly 
convex objectives in Theorem 1. We need to introduce some 
assumptions. The norm used throughout the rest of the paper 
is ` 2 norm. 

Assumption 1 (Small number of samples removed). The 
number of removed samples, r, is far smaller than the total 
number of training samples, n. There is a small constant 
δ > 0 such that r/n ≤ δ. 

Assumption 2 (Strong convexity and smoothness). Each 
Fi (w) (i = 1, 2, . . . , n) is µ−strongly convex and L-
smooth with µ > 0, so for any w1, w2 

(rFi (w1) −rFi (w2))
T (w1 − w2) ≥ µkw1 − w2k2 , 

krFi (w1) −rFi (w2) k ≤ Lkw1 − w2k. 

Then F (w) and F U (w) are L-smooth and µ-strongly con-
vex. Typical choices of ηt are based on the smoothness 
and strong convexity parameters, so the same choices lead 
to the convergence for both wt and wU

t. For instance, 
GD over a strongly convex objective with fxed step size 
ηt = η ≤ 2/[L + µ] converges geometrically at rate 
(L − µ)/(L + µ) < 1. For simplicity, we will use a constant 
learning rate ηt = η ≤ 2/[L + µ]. 

We assume bounded gradients and Lipschitz Hessians, 
which are standard (Boyd & Vandenberghe, 2004; Bottou 
et al., 2016). The proof may be relaxed to weak growth 
conditions, see the related works for references. 
Assumption 3 (Bounded gradients). For any model param-
eter w in the sequence [w0, w1, w2, . . . , wt, . . . ], the norm 
of the gradient at every sample is bounded by a constant c2, 
i.e. for all i, j: 

krFi (wj ) k ≤ c2. 

Assumption 4 (Lipschitz Hessian). The Hessian H (w) is 
Lipschitz continuous. There exists a constant c0 such that 
for all w1 and w2, 

kH (w1) − H (w2) k ≤ c0kw1 − w2k. 

An assumption specifc to Quasi-Newton methods is the 
strong independence of the weight updates: the smallest 
singular value of the normalized weight updates is bounded 
away from zero (Ortega & Rheinboldt, 1970; Conn et al., 
1991). This has sometimes been motivated empirically, as 
the iterates of certain quasi-newton iterations empirically 
satisfy it (Conn et al., 1988). 
Assumption 5 (Strong independence). For any sequence, 
[Δwj1 , Δwj2 , . . . , Δwjm ], the matrix of normalized vectors 

ΔWj1,j2,...,jm = [Δwj1 , Δwj2 , . . . , Δwjm ]/sj1 ,jm 

where sj1,jm = max (kΔwj1 k, kΔwj2 k, . . . , kΔwjm k), 
has its minimum singular value σmin bounded away from 
zero. We have σmin (ΔWj1,j2,...,jm ) ≥ c1 where c1 is inde-
pendent of (j1, j2, . . . , jm). 

Empirically, we fnd c1 around 0.2 for the MNIST dataset 
using our default hyperparameters. 

2.3.1. RESULTS 

Then our frst main result is the convergence rate of the 
DeltaGrad algorithm. 

Theorem 1 (Bound between true and incrementally updated 
iterates). For a large enough iteration counter t, the result 
wI

t of DeltaGrad (Algorithm 1) approximates the correct 
iteration values wU

t at the rate � � r kwU
t − wI

tk = o . 
n 

So kwU
t − wI

tk is of a lower order than r/n. 
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The baseline error rate between the full model parameters 
wt and wI

t is expected to be of the order r/n, as can be 
seen from the example of the sample mean. This shows that 
DeltaGrad has a better convergence rate for approximating 
wI

t. The proof is quite involved. It relies on a delicate anal-
ysis of the difference between the approximate Hessians Bt 

and the true Hessians Ht (see the Appendix, and specifcally 
A.2). 

2.4. Complexity analysis 

We will do our complexity analysis assuming that the model 
is given by a computation graph. Suppose the number of 
model parameters is p and the time complexity for forward 
propagation is f(p). Then according to the Baur-Strassen 
theorem (Griewank & Walther, 2008), the time complexity 
of backpropagation in one step will be at most 5f(p) and 
thus the total complexity to compute the derivatives for each 
training sample is 6f(p). Plus, the overhead of computing 
the product of Bjm (wI

t − wt) is O(m3) + 6mp + p ac-
cording to (Byrd et al., 1994), which means that the total 
time complexity at the step where the gradients are approx-
imated is 6rf(p) + O(m3) + 6mp + p (the gradients of r 
removed/added samples are explicitly evaluated), which is 
more effcient than explicit computation of the gradients 
over the full batch (a time complexity of 6(n − r)f(p)) 
when r � n. 

Suppose there are T iterations in the training process. Then 
the running time of BaseL will be 6(n−r)f(p)T . DeltaGrad 
evaluates the gradients for the frst j0 iterations and once ev-
ery T0 iterations. So its total running time is 6(n−r)f(p)× 
T −j0 1+ (6rf(p)+ O(m3)+6mp + p) × (1 − )(T − j0),T0 T0 

T −j0which is close to 6nf(p)× +(O(m3)+6mp+p)×(1−T0 
1 
T0 
)(T −j0) since r is small. Also, when n is large, the over-

head of approximate computation, i.e. (O(m3) + 6mp + p) 
should be much smaller than that of explicit computation. 
Thus speed-ups of a factor T0 are expected when j0 is far 
smaller than T . 

3. Extension to SGD 
Consider now mini-batch stochastic gradient descent: XηS S Sw t+1 = w t − rFi(w t). 

B 
i∈Bt 

The naive solution for retraining the model is: XηU,S U,S U,S w t+1 = w t − rFi(w t). 
B − ΔBt 

i∈Bt,i6∈R 

Here ΔBt is the size of the subset removed from the t-th 
minibatch. If B − ΔBt = 0, then we do not change the 
parameters at that iteration. DeltaGrad can be naturally 

t+1 − wI,S extended to this case: wI,S 
t = ηt/(B − ΔBt)· 

(P 
t), t mod T0 = 0 or t ≤ j0i6∈R rF (wI 

· P 
[B(Bjm (wI

t − wt)) − i∈R rF (wI
t)], else 

Swhich relies on a series of historical observations: Δw j =P 
wI,S wS S B−1 rFi(wI,S − j , Δg = j ) −j j i∈BjP 
B−1 

i∈Bj 
rFi(wS

j ). 

3.1. Convergence rate for strongly convex objectives 

Recall B is the mini-batch size, p is the total number of 
model parameters and T is the number of iterations in SGD. 
Our main result for SGD is the following. 

Theorem 2 (SGD bound for DeltaGrad). With probability 
at least ⎛ ⎞ 

√ ⎜ log(2p) B ⎟
1 − T · [2p exp ⎝− � ⎠�1/4 

log2(2p)4 + 2 
3 B 

√ √log(p + 1) B 
+ (p + 1) exp(− ) + 2 exp(−2 B)],� �1/4 

(log(p+1))2 
4 + 2 

3 B 

the result wI,S 
t of Algorithm 1 approximates the correct 

iteration values wU,S 
t at the rate � � 

r 1U,S I,S kw t − w tk = o + 1 . 
n B 4 

Thus, when B is large, and when r/n is small, our algorithm 
accurately approximates the correct iteration values. 

Its proof is in the Appendix (Section A.3). 

4. Experiments 
4.1. Experimental setup 

Datasets. We used four datasets for evaluation: MNIST 
(LeCun et al., 1998), covtype (Blackard & Dean, 1999), 
HIGGS (Baldi et al., 2014) and RCV1 (Lewis et al., 2004) 1 

. MNIST contains 60,000 images as the training dataset and 
10,000 images as the test dataset; each image has 28 × 28 
features (pixels), containing one digit from 0 to 9. The cov-
type dataset consists of 581,012 samples with 54 features, 
each of which may come from one of the seven forest cover 
types; as a test dataset, we randomly picked 10% of the 
data. HIGGS is a dataset produced by Monte Carlo simula-
tions for binary classifcation, containing 21 features with 
11,000,000 samples in total; 500,000 samples are used as the 
test dataset. RCV1 is a corpus dataset; we use its binary ver-
sion which consists of 679,641 samples and 47,236 features, 
of which the frst 20,242 samples are used for training. 

1We used its binary version from LIBSVM: https: 
//www.csie.ntu.edu.tw/˜cjlin/libsvmtools/ 
datasets/binary.html#rcv1.binary 

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary
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Machine confguration. All experiments are run over a 
GPU machine with one Intel(R) Core(TM) i9-9920X CPU 
with 128 GB DRAM and 4 GeForce 2080 Titan RTX GPUs 
(each GPU has 10 GB DRAM). We implemented DeltaGrad 
with PyTorch 1.3 and used one GPU for accelerating the 
tensor computations. 

Deletion/Addition benchmark. We run regularized logis-
tic regression over the four datasets with L2 norm coeff-
cient 0.005, fxed learning rate 0.1. The mini-batch sizes 
for RCV1 and other three datasets are 16384 and 10200 re-
spectively (Recall that RCV1 only has around 20k training 
samples). We also evaluated our approach over a two-layer 
neural network with 300 hidden ReLU neurons over MNIST. 
There L2 regularization with rate 0.001 is added along with 
a decaying learning rate (frst 10 iterations with learning 
rate 0.2 and the rest with learning rate 0.1) and with deter-
ministic GD. There are no strong convexity or smoothness 
guarantees for DNNs. Therefore, we adjusted Algorithm 
1 to ft general DNN models (see Algorithm 3 in the Ap-
pendix C.3). In Algorithm 1, we assume that the convexity 
holds locally where we use the L-BFGS algorithm to esti-
mate the gradients. For all the other regions, we explicitly 
evaluate the gradients. The details on how to check which 
regions satisfy the convexity for DNN models can be found 
in Algorithm 3. We also explore the use of DeltaGrad for 
more complicated neural network models such as ResNet 
by reusing and fxing the pre-trained parameters in all but 
the last layer during the training phase, presented in detail 
in Appendix D.4. 

We evaluate two cases of addition/deletion: batch and online. 
Multiple samples are grouped together for addition and 
deletion in the former, while samples are removed one after 
another in the latter. Algorithm 1 is slightly modifed to 
ft the online deletion/addition cases (see Algorithm 2 in 
Appendix C.2). In what follows, unless explicitly specifed, 
Algorithm 1 and Algorithm 2 are used for experiments in 
the batch addition/deletion case and online addition/deletion 
case respectively. 

To simulate deleting training samples, w ∗ is evaluated over 
the full training dataset of n samples, which is followed by 
the random removal of r samples and evaluation over the 
remaining n − r samples using BaseL or DeltaGrad. To 
simulate adding training samples, r samples are deleted frst. 
After w ∗ is evaluated over the remaining n − r samples, the 
r samples are added back to the training set for updating 
the model. The ratio of r to the total number of training 
samples n is called the Delete rate and Add rate for the two 
scenarios, respectively. 

Throughout the experiments, the running time of BaseL and 
DeltaGrad to update the model parameters is recorded. To 
show the difference between wU∗ (the output of BaseL, and 
the correct model parameters after deletion or addition) and 

wI∗ (the output of DeltaGrad), we compute the ` 2-norm or 
distance kwU∗ − wI∗k. For comparison and justifying the 
theory in Section 18, kw ∗ − wU∗k is also recorded (w ∗ are 
the parameters trained over the full training data). Given 
the same set of added or deleted samples, the experiments 
are repeated 10 times, with different minibatch randomness 
each time. After the model updates, wU∗ and wI∗ are evalu-
ated over the test dataset and their prediction performance 
is reported. 

Hyperparameter setup. We set T0 (the period of explicit 
gradient updates) and j0 (the length of the inital “burn-
in”) as follows. For regularized logistic regression, we set 
T0 = 10, j0 = 10 for RCV1, T0 = 5, j0 = 10 for MNIST 
and covtype, and T0 = 3, j0 = 300 for HIGGS. For the 
2-layer DNN, T0 = 2 is even smaller and the frst quarter 
of the iterations are used as “burn-in”. The history size 
m is 2 for all experiments. The effect of hyperparameters 
and suggestions on how to choose them is discussed in the 
Appendix D.2. 

4.2. Experimental results 

4.2.1. BATCH ADDITION/DELETION. 

To test the robustness and effciency of DeltaGrad in batch 
deletion, we vary the Delete and Add rate from 0 to 0.01. 
The frst three sub-fgures in Figures 2 and 3 along with 
Figure 1 show the running time of BaseL and DeltaGrad 
(blue and red dotted lines, resp.) and the two distances, 
kwU∗ − w ∗k and kwU∗ − wI∗k (blue and red solid lines, 
resp.) over the four datasets using regularized logistic regres-
sion. The results on the use of 2-layer DNN over MNIST are 
presented in the last sub-fgures in Figures 2 and 3, which 
are denoted by MNISTn . 

The running time of BaseL and DeltaGrad is almost constant 
regardless of the delete or add rate, confrming the time com-
plexity analysis of DeltaGrad in Section 18. The theoretical 
running time is free of the number of removed samples r, 
when r is small. For any given delete/add rate, DeltaGrad 
achieves signifcant speed-ups (up to 2.6x for MNIST, 2x 
for covtype, 1.6x for HIGGS, 6.5x for RCV1) compared to 
BaseL. On the other hand, the distance between wU∗ and 
wI∗ is quite small; it is less than 0.0001 even when up to 1% 
of samples are removed or added. When the delete or add 
rate is close to 0, kwU∗ − wI∗k is of magnitude 10−6 (10−8 

for RCV1), indicating that the approximation brought by 
wI∗ is negligible. Also, kwU∗ − wI∗k is at least one order 
of magnitude smaller than kwU∗ − w ∗k, confrming our 
theoretical analysis comparing the bound of kwU∗ − wI∗k 
to that of kwU∗ − w ∗k. 

To investigate whether the tiny difference between wU∗ and 
wI∗ will lead to any difference in prediction behavior, the 
prediction accuracy using wU∗ and wI∗ is presented in Table 
1. Due to space limitations, only results on a very small 
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Figure 2. Running time and distance with varied add rate 

Figure 3. Running time and distance with varied delete rate 

Table 1. Prediction accuracy of BaseL and DeltaGrad with batch 
addition/deletion. MNISTn refers to MNIST with a neural net. 

Dataset BaseL(%) DeltaGrad(%) 

Add 
(0.005%) 

MNIST 87.530 ± 0.0025 87.530 ± 0.0025 
MNISTn 92.340 ± 0.002 92.340 ± 0.002 
covtype 62.991 ± 0.0027 62.991 ± 0.0027 
HIGGS 55.372 ± 0.0002 55.372 ± 0.0002 
RCV1 92.222 ± 0.00004 92.222 ± 0.00004 

Add 
(1%) 

MNIST 87.540 ± 0.0011 87.542 ± 0.0011 
MNISTn 92.397 ± 0.001 92.397 ± 0.001 
covtype 63.022 ± 0.0008 63.022 ± 0.0008 
HIGGS 55.381 ± 0.0007 55.380 ± 0.0007 
RCV1 92.233 ± 0.00010 92.233 ± 0.00010 

Delete 
(0.005%) 

MNIST 86.272 ± 0.0035 86.272 ± 0.0035 
MNISTn 92.203 ± 0.004 92.203 ± 0.004 
covtype 62.966 ± 0.0017 62.966 ± 0.0017 
HIGGS 52.950 ± 0.0001 52.950 ± 0.0001 
RCV1 92.241 ± 0.00004 92.241 ± 0.00004 

Delete 
(1%) 

MNIST 86.082 ± 0.0046 86.074 ± 0.0048 
MNISTn 92.373 ± 0.003 92.370 ± 0.003 
covtype 62.943 ± 0.0007 62.943 ± 0.0007 
HIGGS 52.975 ± 0.0002 52.975 ± 0.0002 
RCV1 92.203 ± 0.00007 92.203 ± 0.00007 

(0.005%) and the largest (1%) add/delete rates are presented. 
Due to the randomness in SGD, the standard deviation for 
the prediction accuracy is also presented. In most cases, 
the models produced by BaseL and DeltaGrad end up with 
effectively the same prediction power. There are a few cases 
where the prediction results of wU∗ and wI∗ are not exactly 

the same (e.g. Add (1%) over MNIST), their confdence 
intervals overlap, so that statistically wU ∗ and wI∗ provide 
the same prediction results. 

For the 2-layer net model where strong convexity does not 
hold, we use the variant of DeltaGrad m̃entioned above, i.e. 
Algorithm 3. See the last sub-fgures in Figure 2 and 3. The 
fgures show that DeltaGrad achieves about 1.4x speedup 
compared to BaseL while maintaining a relatively small 
difference between wI∗ and wU∗ . This suggests that it may 
be possible to extend our analysis for DeltaGrad beyond 
strong convexity; this is left for future work. 

4.2.2. ONLINE ADDITION/DELETION. 

To simulate deletion and addition requests over the train-
ing data continuously in an on-line setting, 100 random 
selected samples are added or deleted sequentially. Each 
triggers model updates by either BaseL or DeltaGrad. The 
running time comparison between the two approaches in 
this experiment is presented in Figure 4, which shows that 
DeltaGrad is about 2.5x, 2x, 1.8x and 6.5x faster than BaseL 
on MNIST, covtype, HIGGS and RCV1 respectively. The 
accuracy comparison is shown in Table 2. There is essen-
tially no prediction performance difference between wU∗ 

and w ∗ . 

Discussion. By comparing the speed-ups brought by Delt-
aGrad and the choice of T0, we found that the theoretical 
speed-ups are not fully achieved. One reason is that in the 
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Table 2. Distance and prediction performance of BaseL and DeltaGrad in online deletion/addition 

Dataset Distance Prediction accuracy (%) 
U∗ kw − w ∗ k U∗ kkwI∗ − w BaseL DeltaGrad 

MNIST (Addition) 5.7 × 10−3 2 × 10−4 87.548 ± 0.0002 87.548 ± 0.0002 
MNIST (Deletion) 5.0 × 10−3 1.4 × 10−4 87.465 ± 0.002 87.465 ± 0.002 
covtype (Addition) 8.0 × 10−3 2.0 × 10−5 63.054 ± 0.0007 63.054 ± 0.0007 
covtype (Deletion) 7.0 × 10−3 2.0 × 10−5 62.836 ± 0.0002 62.836 ± 0.0002 
HIGGS (Addition) 2.1 × 10−5 1.4 × 10−6 55.303 ± 0.0003 55.303 ± 0.0003 
HIGGS (Deletion) 2.5 × 10−5 1.7 × 10−6 55.333 ± 0.0008 55.333 ± 0.0008 
RCV1 (Addition) 0.0122 3.6 × 10−6 92.255 ± 0.0003 92.255 ± 0.0003 
RCV1 (Deletion) 0.0119 3.5 × 10−6 92.229 ± 0.0006 92.229 ± 0.0006 

approximate L-BFGS computation, a series of small matrix 
multiplications are involved. Their computation on GPU 
vs CPU cannot bring about very signifcant speed-ups com-
pared to the larger matrix operations2, which indicates that 
the overhead of L-BFGS is non-negligible compared to gra-
dient computation. Besides, although r is far smaller than n, 
to compute the gradients over the r samples, other overhead 
becomes more signifcant: copying data from CPU DRAM 
to GPU DRAM, the time to launch the kernel on GPU, etc. 
This leads to non-negligible explicit gradient computation 
cost over the r samples. It would be interesting to explore 
how to adjust DeltaGrad to fully utilize the computation 
power of GPU in the future. 

Figure 4. Running time comparison of BaseL and DeltaGrad with 
100 continuous deletions/addition 

Other experiments with DeltaGrad are in the Appendix 
(Section D): evaluations with larger delete rate (i.e. when 
r � n may not hold), comparisons with state-of-the-art 
work and studies on the effect of mini-batch sizes and hyper-
parameters etc. 

5. Applications 
Our algorithm has many applications, including privacy re-
lated data deletion, continuous model updating, robustness, 
bias reduction, and uncertainty quantifcation (predictive in-
ference). Some of these applications are quite direct, and so 

2See the matrix computation benchmark on GPU with varied 
matrix sizes: https://developer.nvidia.com/cublas 

for space limitations we only briefy describe them. Some 
initial experimental results on how our method can acceler-
ate some of those applications such as robust learning are 
included in Appendix D.5. 

5.1. Privacy related data deletion 

By adding a bit of noise one can often guarantee differential 
privacy, the impossibility to distinguish the presence or 
absence of a datapoint from the output of an algorithm 
(Dwork et al., 2014). We leverage and slightly extend a 
closely related notion, approximate data deletion, (Ginart 
et al., 2019) to guarantee private deletion. 

We will consider learning algorithms A that take as input 
a dataset D, and output a model A(D) in the hypothesis 
space H. With the i-th sample removed, the resulting model 
is thus A(D−i). A data deletion operation RA maps D, 
A(D) and the index of the removed sample i to the model 
RA(D, A(D), i). We call RA an �-approximate deletion if 
for all D and measurable subsets S ⊂ H: 

P (A(D−i) ∈ S|D−i)| log | ≤ � 
P (RA(D, A(D), i) ∈ S|D−i) 

Here if either of the two probabilities is zero, the other must 
be zero too. Using the standard Laplace mechanism (Dwork 
et al., 2014), we can make the output of our algorithm an 
�-approximate deletion. We add independent Laplace (δ/�) 
noise to each coordinate of w ∗ , wU ∗ and wI ∗ , where 

2√ 
pAM1

2r 
r δ = 

η( 1 µ − µ − c0M1r )2(n − r)(n/2 − r)2 n−r 2n 

is an upper bound on p1/2kwU ∗ − wI ∗ k. See the Appendix 
B.1 for details. 

5.2. Continous model updating 

Continous model updating is a direct application. In many 
cases, machine learning models run in production need to 
be retrained on newly acquired data. DeltaGrad can be used 
to update the models. Similarly, if there are changes in the 
data, then we can run DeltaGrad twice: frst to remove the 

https://developer.nvidia.com/cublas
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original data, then to add the changed data. 

5.3. Robustness 

Our method has applications to robust statistical learning. 
The basic idea is that we can identify outliers by ftting a 
preliminary model. Then we can prune them and re-ft the 
model. Methods based on this idea are some of the most 
statistically effcient ones for certain problems, see e.g., the 
review Yu & Yao (2017). 

5.4. Data valuation 

Our method can be also used to evaluate the importance 
of training samples (see Cook (1977) and the follow-up 
works such as Ghorbani & Zou (2019)). One common 
method to do this is the leave-one-out test, i.e. comparing 
the difference of the model parameters before and after 
the deletion of one single training sample of interest. Our 
method is thus useful to speed up evaluating the model 
parameters after the deletion operations. 

5.5. Bias reduction 

Our algorithms can be used directly to speed up existing 
techniques for bias correction. There are many different 
techniques based on subsampling (Politis et al., 1999). A 
basic one is the jackknife (Quenouille, 1956). Suppose we 
have an estimator f̂  

n computed based on n training data-
points, and defned for both n and n − 1. The jackknife bias-
correction is f̂  

jack = f̂  
n − ̂b(f̂  

n) where b̂(f̂  
n) is the jack-

knife estimator of the bias b(f̂  
n) of the estimator f̂  

n. This� � 
−1 Pnis constructed as b̂(f̂  

n) = (n − 1) n f̂−i − f̂  
ni=1 

where f̂−i is the estimator f̂  
n−1 computed on the training 

data removing the i-th data point. Our algorithm can be 
used to recompute the estimator on all subsets of size n − 1 
of the training data. To validate that this works, a good 
example may be logistic regression with n not much larger 
than p, which will have bias (Sur & Candès, 2018). 

5.6. Uncertainty quantifcation / Predictive inference 

Our algorithm has applications to uncertainty quantifca-
tion and predictive inference. These are fundamental prob-
lems of wide applicability. Techniques based on conformal 
prediction (e.g., Shafer & Vovk, 2008) rely on retraining 
models on subsets of the data. As an example, in cross-
conformal prediction (Vovk, 2015) we have a predictive 
model f̂  that can be trained on any subset of the data. We 
can split the data into K subsets of roughly equal size. We 
can train f̂−Sk on the data excluding Sk, and compute 
the cross-validation residuals Ri = |yi − f̂−Sk (xi)| for 
i ∈ Si. Then for a test datapoint xn+1, we form a prediction 
set C(xn+1) with all y overlapping n − (1 − α)(n + 1) 
of the intervals f̂−Sk (xn+1) ± Ri. This forms a valid 
β = 1 − 2α − 2K/n level prediction set in the sense that 
P (yn+1 ∈ C(xn+1)) ≥ β over the randomness in all sam-

ples. The ”best” (shortest) intervals arise for large K, which 
means a small number of samples is removed to fnd f−Sk . 
Thus our algorithm is applicable. 

6. Conclusion 
In this work, we developed the effcient DeltaGrad retrain-
ing algorithm after slight changes (deletions/additions) of 
the training dataset by differentiating the optimization path 
with Quasi-Newton method. This is provably more accurate 
than the baseline of retraining from scratch. Its perfor-
mance advantage has been empirically demonstrated with 
some medium-scale public datasets, revealing its great po-
tential in constructing data deletion/addition machine learn-
ing systems for various applications. The code for replicat-
ing our experiments is available on Github: https:// 
github.com/thuwuyinjun/DeltaGrad. Adjust-
ing DeltaGrad to handle smaller mini-batch sizes in SGD 
and more complicated ML models without strong convexity 
and smoothness guarantees is important future work. 

https://github.com/thuwuyinjun/DeltaGrad
https://github.com/thuwuyinjun/DeltaGrad
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