
DeltaGrad: Rapid retraining of machine learning models

Yinjun Wu 1 Edgar Dobriban 2 Susan B. Davidson 1

Abstract
Machine learning models are not static and may
need to be retrained on slightly changed datasets,
for instance, with the addition or deletion of a set
of datapoints. This has many applications, includ-
ing privacy, robustness, bias reduction, and un-
certainty quantifcation. However, it is expensive
to retrain models from scratch. To address this
problem, we propose the DeltaGrad algorithm for
rapid retraining machine learning models based
on information cached during the training phase.
We provide both theoretical and empirical support
for the effectiveness of DeltaGrad, and show that
it compares favorably to the state of the art.

1. Introduction
Machine learning models are used increasingly often, and
are rarely static. Models may need to be retrained on slightly
changed datasets, for instance when datapoints have been
added or deleted. This has many applications, including
privacy, robustness, bias reduction, and uncertainty quantif-
cation. For instance, it may be necessary to remove certain
datapoints from the training data for privacy and robust-
ness reasons. Constructing models with some datapoints
removed can also be used for constructing bias-corrected
models, such as in jackknife resampling (Quenouille, 1956)
which requires retraining the model on all leave-one-out
datasets. In addition, retraining models on subsets of data
can be used for uncertainty quantifcation, such as construct-
ing statistically valid prediction intervals via conformal pre-
diction e.g., Shafer & Vovk (2008).

Unfortunately, it is expensive to retrain models from scratch.
The most common training mechanisms for large-scale mod-
els are based on (stochastic) gradient descent (SGD) and

1Department of Computer and Information Science, Univer-
sity of Pennsylvania, PA, United States 2Department of Statis-
tics, University of Pennsylvania, PA, United States. Correspon-
dence to: Yinjun Wu <wuyinjun@seas.upenn.edu>, Edgar Do-
briban <dobriban@wharton.upenn.edu>, Susan B. Davidson <su-
san@cis.upenn.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Figure 1. Running time of our DeltaGrad algorithm for retraining
a logistic regression model on RCV1 as a function of the fraction
of data deleted and added. Our algorithm is faster than training
from scratch (Running time BaseL). Also shown is the distance
of DeltaGrad and the model trained on full data from the correct
values (Distance BaseL and Distance DeltaGrad, resp.), illustrating
that our algorithm is accurate. See Section 18 for details.

its variants. Retraining the models on a slightly different
dataset would involve re-computing the entire optimization
path. When adding or removing a small number of data
points, this can be of the same complexity as the original
training process.

However, we expect models on two similar datasets to be
similar. If we retrain the models on many different new
datasets, it may be more effcient to cache some information
about the training process on the original data, and compute
the “updates”. Such ideas have been used recently e.g.,
Ginart et al. (2019); Guo et al. (2019); Wu et al. (2020).
However, the existing approaches have various limitations:
They only apply to specialized problems such as k-means
(Ginart et al., 2019) or logistic regression (Wu et al., 2020),
or they require additional randomization leading to non-
standard training algorithms (Guo et al., 2019).

To address this problem, we propose the DeltaGrad algo-
rithm for rapid retraining of machine learning models when
slight changes happen in the training dataset, e.g. deletion
or addition of samples, based on information cached during
training. DeltaGrad addresses several limitations of prior
work: it is applicable to general machine learning models de-
fned by empirical risk minimization trained using SGD, and
does not require additional randomization. It is based on the
idea of “differentiating the optimization path” with respect
to the data, and is inspired by ideas from Quasi-Newton

mailto:san@cis.upenn.edu
mailto:dobriban@wharton.upenn.edu
mailto:wuyinjun@seas.upenn.edu

DeltaGrad

methods.

We provide both theoretical and empirical support for the
effectivenss of DeltaGrad. We prove that it approximates the
true optimization path at a fast rate for strongly convex ob-
jectives. We show experimentally that it is accurate and fast
on several medium-scale problems on standard datasests,
including two-layer neural networks. The speed-ups can be
up to 6.5x with negligible accuracy loss (see e.g., Fig. 1).
This paves the way toward a large-scale, effcient, general-
purpose data deletion/addition machine learning system.
We also illustrate how it can be used in several applications
described above.

1.1. Related work

There is a great deal of work on model retraining and up-
dating. Recently, this has gotten attention due to worldwide
efforts on human-centric AI, data confdentiality and privacy,
such as the General Data Protection Regulation (GDPR) in
the European Union (European Union, 2016). This man-
dates that users can ask for their data to be removed from
analysis in current AI systems. The required guarantees are
thus stronger than what is provided by differential privacy
(which may leave a non-vanishing contribution of the dat-
apoints in the model, Dwork et al. (2014)), and or defense
against data poisoning attacks (which only requires that the
performance of the models does not degrade after poisoning,
Steinhardt et al. (2017)).

Effcient data deletion is also crucial for many other appli-
cations, e.g. model interpretability and model debugging.
For example, repeated retraining by removing different sub-
sets of training data each time is essential in many existing
data systems (Doshi-Velez & Kim, 2017; Krishnan & Wu,
2017) to understand the effect of those removed data over
the model behavior. It is also close to deletion diagnotics,
targeting locating the most infuential data point for the
ML models through deletion in the training set, dating back
to (Cook, 1977). Some recent work (Koh & Liang, 2017)
targets general ML models, but requires explicitly maintain-
ing Hessian matrices and can only handle the deletion of
one sample, thus inapplicable for many large-scale appli-
cations. Effcient data deletion also plays a key role in the
applications of dynamic data stream summarization (Mirza-
soleiman et al., 2017) where deletion requests on subsets
of training samples are expected to trigger instantaneous
updates on summaries of the streaming data.

Effcient model updating for adding and removing data-
points is possible for linear models, based on effcient rank
one updates of matrix inverses (e.g., Birattari et al., 1999;
Horn & Johnson, 2012; Cao & Yang, 2015, etc). The scope
of linear methods is extended if one uses linear feature
embeddings, either randomized or learned via pretraining.
Updates have been proposed for support vector machines

(Syed et al., 1999; Cauwenberghs & Poggio, 2001) and
nearest neighbors (Schelter, 2019).

Ginart et al. (2019) proposes a defnition of data erasure
completeness and a quantization-based algorithm for k-
means clustering achieving this. They also propose several
principles that can enable effcient model updating. Guo
et al. (2019) proposes a general theoretical condition that
guarantees that randomized algorithms can remove data
from machine learning models. Their randomized approach
needs standard algorithms such as logistic regression to be
changed to apply. (Bourtoule et al., 2019) propose the SISA
(or Sharded, Isolated, Sliced, Aggregated) training frame-
work for “un-learning”, which relies on ideas similar to
distributed training. Their approach requires dividing the
training data in multiple shards such that a training point is
included in a small number of shards only.

Starting from the concept of Differential Privacy, (Golatkar
et al., 2020a) proposes a defnition on how much information
about the training samples to be forgotten may remain in the
weights of the network after the removal of those samples.
Based on this defnition, (Golatkar et al., 2020a) and its
follow-up work (Golatkar et al., 2020b) utilize the Fisher
Information Matrix to approximately but effectively remove
the information of the deleted training samples from general
ML models. Different from (Golatkar et al., 2020a) and
(Golatkar et al., 2020b), our work does not rely on the
concept of differential privacy and we explicitly discuss the
connections between our work and differential privacy in
Section 4.2.2 and Appendix B.1.

Our approach relies on large-scale optimization, which has
an enormous literature. Stochastic gradient methods date
back to Robbins & Monro (1951). More recently a lot of
work (see e.g., Bottou, 1998; 2003; Zhang, 2004; Bousquet
& Bottou, 2008; Bottou, 2010; Bottou et al., 2018) focuses
on empirical risk minimization.

The convergence proofs for SGD are based on the contrac-
tion of the expected residuals. They are based on assump-
tions such as bounded variances, the strong or weak growth,
smoothness, convexity (or Polyak-Lojasiewicz) on the in-
dividual and overall loss functions. See e.g., (Gladyshev,
1965; Amari, 1967; Kul’chitskiy & Mozgovoy, 1992; Bert-
sekas & Tsitsiklis, 1996; Moulines & Bach, 2011; Karimi
et al., 2016; Bottou et al., 2018; Gorbunov et al., 2019;
Gower et al., 2019), etc, and references therein. Our ap-
proach is similar, but the technical details are very different,
and more closely related to Quasi-Newton methods such as
L-BFGS (Zhu et al., 1997).

Contributions. Our contributions are:

1. DeltaGrad: We propose the DeltaGrad algorithm for
fast retraining of (stochastic) gradient descent based
machine learning models on small changes of the data

DeltaGrad

(small number of added or deleted points).
2. Theoretical support: We provide theoretical results

showing the accuracy of the DeltaGrad. Both for GD
and SGD we show the error is of smaller order than
the fraction of points removed.

3. Empirical results: We provide empirical results show-
ing the speed and accuracy of DeltaGrad, for addition,
removal, and continuous updates, on a number of stan-
dard datasets.

4. Applications: We describe the applications of Delt-
aGrad to several problems in machine learning, in-
cluding privacy, robustness, debiasing, and statistical
inference.

2. Algorithms
2.1. Setup

The training set {(xi, yi)}n has n samples. The loss ori=1
objective function for a general machine learning model is
defned as:

nX1
F (w) = Fi (w)

n
i=1

where w represents a vector of the model parameters and
Fi (w) is the loss for the i-th sample. The gradient and
Hessian matrix of F (w) are

n n

rF (w) =
1 X

rFi (w) , H (w) =
1 X

Hi (w)
n n

i=1 i=1

Suppose the model parameter is updated through mini-batch
stochastic gradient descent (SGD) for t = 1, . . . , T : Xηt wt+1 ← wt − rFi (wt)

B
i∈Bt

where Bt is a randomly sampled mini-batch of size B
and ηt is the learning rate at the tth iteration. As a special
case of SGD, the update rule of gradient descent (GD) isPn wt+1 ← wt − ηt/n After training oni=1 rFi (wt).
the full dataset, the training samples with indices R =
{i1, i2, . . . , ir} are removed, where r � n. Our goal is to
effciently update the model parameter to the minimizer of
the new empirical loss. Our algorithm also applies when r
new datapoints are added.

The naive solution is to apply GD directly over the remain-
ing training samples (we use wU to denote the correspond-
ing model parameter), i.e. run:

ηt X �
U U Uw t+1 ← w t − rFi w t (1)

n − r
i6∈R P

which aims to minimize F U (w) = 1/(n − r) Fi (w).i6∈R

2.2. Proposed DeltaGrad Algorithm

To obtain a more effcient method, we rewrite Equation (1)

1
2
3
4
5

6

7

8

9

10

11

12
13

14

15

16

17

18

Algorithm 1 DeltaGrad
Input : The full training set (X, Y), model parameters cached

during the training phase over the full training sam-
ples {w0, w1, . . . , wt} and corresponding gradients
{rF (w0) , rF (w1) , . . . , rF (wt)}, the indices of
the removed training samples R, period T0, total iteration
number T , history size m, “burn-in” iteration number j0,
learning rate ηt

Output :Updated model parameter wI
t

Initialize wI
0 ← w0

Initialize an array ΔG = []
Initialize an array ΔW = []
for t = 0; t < T ; t ++ do

if [((t − j0) mod T0) == 0] or t ≤ j0 thend �
compute rF wI

t exactly d
I
�

compute rF w t −rF (wt) based on the cached gra-
dient rF (wt) d �

set ΔG [k] = rF wI
t −rF (wt)

set ΔW [k] = wI
t − wt, based on the cached parameters

wt

k ← k + 1
compute wI

t+1 by using exact GD update (equation (1))
else

Pass ΔW [−m :], ΔG [−m :], the last m elements in
ΔW and ΔG, which are from the j1

th
2 m, jth , . . . , jth it-

erations where j1 < j2 < · · · < jm depend on t,
v = wI

t − wt, and the history size m, to the L-BFGFS
Algorithm (see Section A.2.1 in the Appendix) to get
the approximation of H(wt)v, i.e., Bjm vd � d �

Approximate rF wI
t = rF (wt)+Bjm wI

t − wt

Compute wI
t+1 by using the ”leave-r-out” gradient for-

mula, based on the approximated rF (wI
t)

end
end
return wI

t

via the following “leave-r-out” gradient formula (we use
wI to denote the model parameter derived by DeltaGrad):

" # � X �
I I ηt I Iw t+1 = w t − nrF w t − rFi w t .

n − r
i∈R

(2)

P �
Computing the sum rFi wI

t of a small number of i∈R P �
terms is more effcient than computing wI

ti6∈R rFi

when |R| �= rP� n. For this� we need to approximate
n

nrF wI
t = wI

t by leveraging the histori-i=1 rFi

cal gradient rF (wt) (recall that wt is the model parameter
before deletions), for each of the T iterations.

Suppose we can cache the model parameters w0, . . . , wt

and the gradients rF (w0), . . . , rF (wt) for each iteration
of training over the original dataset. Suppose that we have
been able to approximate wI

0, . . . , wI
t. Then at iteration �

t + 1, rF wI
t can be approximated using the Cauchy

0

DeltaGrad

mean-value theorem: � �
I I rF w t = rF (wt) + Ht · w t − wt (3)

in which Ht is an integrated Hessian, Ht = R 1 ��
H wt + x wI

t − wt dx.

Equation (3) requires a Hessian-vector product at every
iteration. We leverage the L-BFGS algorithm to approx-
imate this, see e.g. Matthies & Strang (1979); Nocedal
(1980); Byrd et al. (1994; 1995); Zhu et al. (1997); No-
cedal & Wright (2006); Mokhtari & Ribeiro (2015) and
references therein. The L-BFGS algorithm uses past data
to approximate the projection of the Hessian matrix in the
direction of wt+1 − wt. We denote the required historical
observations at prior iterations j as: Δwj = wI

j − wj ,�
Δgj = rF wI

j −rF (wj).

L-BFGS computes Quasi-Hessians Bt approximating the
true Hessians Ht (we follow the notations from the classi-
cal L-BFGS papers, e.g., Byrd et al. (1994)). DeltaGrad
(Algorithm 1) starts with a “burn-in” period of j0 itera-�
tions, where it computes the full gradients rF wI

t ex-
actly. Afterwards, it only computes the full gradients every
T0 iterations. For other iterations t, it uses the L-BGFS
algorithm, maintaining a set of updates at some prior iter-
ations j1, j2, . . . , jm, i.e. Δwj1 , Δwj2 , . . . , Δwjm and
Δgj1 , Δgj2 , . . . , Δgjm where jk − jk−1 ≤ T0. Then it uses
an effcient L-BGFS update from Byrd et al. (1994) (see
Appendix A.2.1 for the details of the L-BGFS update).

By approximating Ht with Bt in Equation (3) and plugging
Equation (3) into Equation (2), the DeltaGrad update is:
wI

t+1 − wI
t = ηt/(n − r)· (P

t), (t − j0) mod T0 = 0 or t ≤ j0i6∈R rF (wI

· P
n[Bjm (wI

t − wt) + rF (wt)] − i∈R rF (wI
t), else

2.3. Convergence rate for strongly convex objectives

We provide the convergence rate of DeltaGrad for strongly
convex objectives in Theorem 1. We need to introduce some
assumptions. The norm used throughout the rest of the paper
is ` 2 norm.

Assumption 1 (Small number of samples removed). The
number of removed samples, r, is far smaller than the total
number of training samples, n. There is a small constant
δ > 0 such that r/n ≤ δ.

Assumption 2 (Strong convexity and smoothness). Each
Fi (w) (i = 1, 2, . . . , n) is µ−strongly convex and L-
smooth with µ > 0, so for any w1, w2

(rFi (w1) −rFi (w2))
T (w1 − w2) ≥ µkw1 − w2k2 ,

krFi (w1) −rFi (w2) k ≤ Lkw1 − w2k.

Then F (w) and F U (w) are L-smooth and µ-strongly con-
vex. Typical choices of ηt are based on the smoothness
and strong convexity parameters, so the same choices lead
to the convergence for both wt and wU

t. For instance,
GD over a strongly convex objective with fxed step size
ηt = η ≤ 2/[L + µ] converges geometrically at rate
(L − µ)/(L + µ) < 1. For simplicity, we will use a constant
learning rate ηt = η ≤ 2/[L + µ].

We assume bounded gradients and Lipschitz Hessians,
which are standard (Boyd & Vandenberghe, 2004; Bottou
et al., 2016). The proof may be relaxed to weak growth
conditions, see the related works for references.
Assumption 3 (Bounded gradients). For any model param-
eter w in the sequence [w0, w1, w2, . . . , wt, . . .], the norm
of the gradient at every sample is bounded by a constant c2,
i.e. for all i, j:

krFi (wj) k ≤ c2.

Assumption 4 (Lipschitz Hessian). The Hessian H (w) is
Lipschitz continuous. There exists a constant c0 such that
for all w1 and w2,

kH (w1) − H (w2) k ≤ c0kw1 − w2k.

An assumption specifc to Quasi-Newton methods is the
strong independence of the weight updates: the smallest
singular value of the normalized weight updates is bounded
away from zero (Ortega & Rheinboldt, 1970; Conn et al.,
1991). This has sometimes been motivated empirically, as
the iterates of certain quasi-newton iterations empirically
satisfy it (Conn et al., 1988).
Assumption 5 (Strong independence). For any sequence,
[Δwj1 , Δwj2 , . . . , Δwjm], the matrix of normalized vectors

ΔWj1,j2,...,jm = [Δwj1 , Δwj2 , . . . , Δwjm]/sj1 ,jm

where sj1,jm = max (kΔwj1 k, kΔwj2 k, . . . , kΔwjm k),
has its minimum singular value σmin bounded away from
zero. We have σmin (ΔWj1,j2,...,jm) ≥ c1 where c1 is inde-
pendent of (j1, j2, . . . , jm).

Empirically, we fnd c1 around 0.2 for the MNIST dataset
using our default hyperparameters.

2.3.1. RESULTS

Then our frst main result is the convergence rate of the
DeltaGrad algorithm.

Theorem 1 (Bound between true and incrementally updated
iterates). For a large enough iteration counter t, the result
wI

t of DeltaGrad (Algorithm 1) approximates the correct
iteration values wU

t at the rate � � r kwU
t − wI

tk = o .
n

So kwU
t − wI

tk is of a lower order than r/n.

DeltaGrad

The baseline error rate between the full model parameters
wt and wI

t is expected to be of the order r/n, as can be
seen from the example of the sample mean. This shows that
DeltaGrad has a better convergence rate for approximating
wI

t. The proof is quite involved. It relies on a delicate anal-
ysis of the difference between the approximate Hessians Bt

and the true Hessians Ht (see the Appendix, and specifcally
A.2).

2.4. Complexity analysis

We will do our complexity analysis assuming that the model
is given by a computation graph. Suppose the number of
model parameters is p and the time complexity for forward
propagation is f(p). Then according to the Baur-Strassen
theorem (Griewank & Walther, 2008), the time complexity
of backpropagation in one step will be at most 5f(p) and
thus the total complexity to compute the derivatives for each
training sample is 6f(p). Plus, the overhead of computing
the product of Bjm (wI

t − wt) is O(m3) + 6mp + p ac-
cording to (Byrd et al., 1994), which means that the total
time complexity at the step where the gradients are approx-
imated is 6rf(p) + O(m3) + 6mp + p (the gradients of r
removed/added samples are explicitly evaluated), which is
more effcient than explicit computation of the gradients
over the full batch (a time complexity of 6(n − r)f(p))
when r � n.

Suppose there are T iterations in the training process. Then
the running time of BaseL will be 6(n−r)f(p)T . DeltaGrad
evaluates the gradients for the frst j0 iterations and once ev-
ery T0 iterations. So its total running time is 6(n−r)f(p)×
T −j0 1+ (6rf(p)+ O(m3)+6mp + p) × (1 −)(T − j0),T0 T0

T −j0which is close to 6nf(p)× +(O(m3)+6mp+p)×(1−T0
1
T0
)(T −j0) since r is small. Also, when n is large, the over-

head of approximate computation, i.e. (O(m3) + 6mp + p)
should be much smaller than that of explicit computation.
Thus speed-ups of a factor T0 are expected when j0 is far
smaller than T .

3. Extension to SGD
Consider now mini-batch stochastic gradient descent: XηS S Sw t+1 = w t − rFi(w t).

B
i∈Bt

The naive solution for retraining the model is: XηU,S U,S U,S w t+1 = w t − rFi(w t).
B − ΔBt

i∈Bt,i6∈R

Here ΔBt is the size of the subset removed from the t-th
minibatch. If B − ΔBt = 0, then we do not change the
parameters at that iteration. DeltaGrad can be naturally

t+1 − wI,S extended to this case: wI,S
t = ηt/(B − ΔBt)·

(P
t), t mod T0 = 0 or t ≤ j0i6∈R rF (wI

· P
[B(Bjm (wI

t − wt)) − i∈R rF (wI
t)], else

Swhich relies on a series of historical observations: Δw j =P
wI,S wS S B−1 rFi(wI,S − j , Δg = j) −j j i∈BjP
B−1

i∈Bj
rFi(wS

j).

3.1. Convergence rate for strongly convex objectives

Recall B is the mini-batch size, p is the total number of
model parameters and T is the number of iterations in SGD.
Our main result for SGD is the following.

Theorem 2 (SGD bound for DeltaGrad). With probability
at least ⎛ ⎞

√ ⎜ log(2p) B ⎟
1 − T · [2p exp ⎝− � ⎠�1/4

log2(2p)4 + 2
3 B

√ √log(p + 1) B
+ (p + 1) exp(−) + 2 exp(−2 B)],� �1/4

(log(p+1))2
4 + 2

3 B

the result wI,S
t of Algorithm 1 approximates the correct

iteration values wU,S
t at the rate � �

r 1U,S I,S kw t − w tk = o + 1 .
n B 4

Thus, when B is large, and when r/n is small, our algorithm
accurately approximates the correct iteration values.

Its proof is in the Appendix (Section A.3).

4. Experiments
4.1. Experimental setup

Datasets. We used four datasets for evaluation: MNIST
(LeCun et al., 1998), covtype (Blackard & Dean, 1999),
HIGGS (Baldi et al., 2014) and RCV1 (Lewis et al., 2004) 1

. MNIST contains 60,000 images as the training dataset and
10,000 images as the test dataset; each image has 28 × 28
features (pixels), containing one digit from 0 to 9. The cov-
type dataset consists of 581,012 samples with 54 features,
each of which may come from one of the seven forest cover
types; as a test dataset, we randomly picked 10% of the
data. HIGGS is a dataset produced by Monte Carlo simula-
tions for binary classifcation, containing 21 features with
11,000,000 samples in total; 500,000 samples are used as the
test dataset. RCV1 is a corpus dataset; we use its binary ver-
sion which consists of 679,641 samples and 47,236 features,
of which the frst 20,242 samples are used for training.

1We used its binary version from LIBSVM: https:
//www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/binary.html#rcv1.binary

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary

DeltaGrad

Machine confguration. All experiments are run over a
GPU machine with one Intel(R) Core(TM) i9-9920X CPU
with 128 GB DRAM and 4 GeForce 2080 Titan RTX GPUs
(each GPU has 10 GB DRAM). We implemented DeltaGrad
with PyTorch 1.3 and used one GPU for accelerating the
tensor computations.

Deletion/Addition benchmark. We run regularized logis-
tic regression over the four datasets with L2 norm coeff-
cient 0.005, fxed learning rate 0.1. The mini-batch sizes
for RCV1 and other three datasets are 16384 and 10200 re-
spectively (Recall that RCV1 only has around 20k training
samples). We also evaluated our approach over a two-layer
neural network with 300 hidden ReLU neurons over MNIST.
There L2 regularization with rate 0.001 is added along with
a decaying learning rate (frst 10 iterations with learning
rate 0.2 and the rest with learning rate 0.1) and with deter-
ministic GD. There are no strong convexity or smoothness
guarantees for DNNs. Therefore, we adjusted Algorithm
1 to ft general DNN models (see Algorithm 3 in the Ap-
pendix C.3). In Algorithm 1, we assume that the convexity
holds locally where we use the L-BFGS algorithm to esti-
mate the gradients. For all the other regions, we explicitly
evaluate the gradients. The details on how to check which
regions satisfy the convexity for DNN models can be found
in Algorithm 3. We also explore the use of DeltaGrad for
more complicated neural network models such as ResNet
by reusing and fxing the pre-trained parameters in all but
the last layer during the training phase, presented in detail
in Appendix D.4.

We evaluate two cases of addition/deletion: batch and online.
Multiple samples are grouped together for addition and
deletion in the former, while samples are removed one after
another in the latter. Algorithm 1 is slightly modifed to
ft the online deletion/addition cases (see Algorithm 2 in
Appendix C.2). In what follows, unless explicitly specifed,
Algorithm 1 and Algorithm 2 are used for experiments in
the batch addition/deletion case and online addition/deletion
case respectively.

To simulate deleting training samples, w ∗ is evaluated over
the full training dataset of n samples, which is followed by
the random removal of r samples and evaluation over the
remaining n − r samples using BaseL or DeltaGrad. To
simulate adding training samples, r samples are deleted frst.
After w ∗ is evaluated over the remaining n − r samples, the
r samples are added back to the training set for updating
the model. The ratio of r to the total number of training
samples n is called the Delete rate and Add rate for the two
scenarios, respectively.

Throughout the experiments, the running time of BaseL and
DeltaGrad to update the model parameters is recorded. To
show the difference between wU∗ (the output of BaseL, and
the correct model parameters after deletion or addition) and

wI∗ (the output of DeltaGrad), we compute the ` 2-norm or
distance kwU∗ − wI∗k. For comparison and justifying the
theory in Section 18, kw ∗ − wU∗k is also recorded (w ∗ are
the parameters trained over the full training data). Given
the same set of added or deleted samples, the experiments
are repeated 10 times, with different minibatch randomness
each time. After the model updates, wU∗ and wI∗ are evalu-
ated over the test dataset and their prediction performance
is reported.

Hyperparameter setup. We set T0 (the period of explicit
gradient updates) and j0 (the length of the inital “burn-
in”) as follows. For regularized logistic regression, we set
T0 = 10, j0 = 10 for RCV1, T0 = 5, j0 = 10 for MNIST
and covtype, and T0 = 3, j0 = 300 for HIGGS. For the
2-layer DNN, T0 = 2 is even smaller and the frst quarter
of the iterations are used as “burn-in”. The history size
m is 2 for all experiments. The effect of hyperparameters
and suggestions on how to choose them is discussed in the
Appendix D.2.

4.2. Experimental results

4.2.1. BATCH ADDITION/DELETION.

To test the robustness and effciency of DeltaGrad in batch
deletion, we vary the Delete and Add rate from 0 to 0.01.
The frst three sub-fgures in Figures 2 and 3 along with
Figure 1 show the running time of BaseL and DeltaGrad
(blue and red dotted lines, resp.) and the two distances,
kwU∗ − w ∗k and kwU∗ − wI∗k (blue and red solid lines,
resp.) over the four datasets using regularized logistic regres-
sion. The results on the use of 2-layer DNN over MNIST are
presented in the last sub-fgures in Figures 2 and 3, which
are denoted by MNISTn .

The running time of BaseL and DeltaGrad is almost constant
regardless of the delete or add rate, confrming the time com-
plexity analysis of DeltaGrad in Section 18. The theoretical
running time is free of the number of removed samples r,
when r is small. For any given delete/add rate, DeltaGrad
achieves signifcant speed-ups (up to 2.6x for MNIST, 2x
for covtype, 1.6x for HIGGS, 6.5x for RCV1) compared to
BaseL. On the other hand, the distance between wU∗ and
wI∗ is quite small; it is less than 0.0001 even when up to 1%
of samples are removed or added. When the delete or add
rate is close to 0, kwU∗ − wI∗k is of magnitude 10−6 (10−8

for RCV1), indicating that the approximation brought by
wI∗ is negligible. Also, kwU∗ − wI∗k is at least one order
of magnitude smaller than kwU∗ − w ∗k, confrming our
theoretical analysis comparing the bound of kwU∗ − wI∗k
to that of kwU∗ − w ∗k.

To investigate whether the tiny difference between wU∗ and
wI∗ will lead to any difference in prediction behavior, the
prediction accuracy using wU∗ and wI∗ is presented in Table
1. Due to space limitations, only results on a very small

DeltaGrad

Figure 2. Running time and distance with varied add rate

Figure 3. Running time and distance with varied delete rate

Table 1. Prediction accuracy of BaseL and DeltaGrad with batch
addition/deletion. MNISTn refers to MNIST with a neural net.

Dataset BaseL(%) DeltaGrad(%)

Add
(0.005%)

MNIST 87.530 ± 0.0025 87.530 ± 0.0025
MNISTn 92.340 ± 0.002 92.340 ± 0.002
covtype 62.991 ± 0.0027 62.991 ± 0.0027
HIGGS 55.372 ± 0.0002 55.372 ± 0.0002
RCV1 92.222 ± 0.00004 92.222 ± 0.00004

Add
(1%)

MNIST 87.540 ± 0.0011 87.542 ± 0.0011
MNISTn 92.397 ± 0.001 92.397 ± 0.001
covtype 63.022 ± 0.0008 63.022 ± 0.0008
HIGGS 55.381 ± 0.0007 55.380 ± 0.0007
RCV1 92.233 ± 0.00010 92.233 ± 0.00010

Delete
(0.005%)

MNIST 86.272 ± 0.0035 86.272 ± 0.0035
MNISTn 92.203 ± 0.004 92.203 ± 0.004
covtype 62.966 ± 0.0017 62.966 ± 0.0017
HIGGS 52.950 ± 0.0001 52.950 ± 0.0001
RCV1 92.241 ± 0.00004 92.241 ± 0.00004

Delete
(1%)

MNIST 86.082 ± 0.0046 86.074 ± 0.0048
MNISTn 92.373 ± 0.003 92.370 ± 0.003
covtype 62.943 ± 0.0007 62.943 ± 0.0007
HIGGS 52.975 ± 0.0002 52.975 ± 0.0002
RCV1 92.203 ± 0.00007 92.203 ± 0.00007

(0.005%) and the largest (1%) add/delete rates are presented.
Due to the randomness in SGD, the standard deviation for
the prediction accuracy is also presented. In most cases,
the models produced by BaseL and DeltaGrad end up with
effectively the same prediction power. There are a few cases
where the prediction results of wU∗ and wI∗ are not exactly

the same (e.g. Add (1%) over MNIST), their confdence
intervals overlap, so that statistically wU ∗ and wI∗ provide
the same prediction results.

For the 2-layer net model where strong convexity does not
hold, we use the variant of DeltaGrad m̃entioned above, i.e.
Algorithm 3. See the last sub-fgures in Figure 2 and 3. The
fgures show that DeltaGrad achieves about 1.4x speedup
compared to BaseL while maintaining a relatively small
difference between wI∗ and wU∗ . This suggests that it may
be possible to extend our analysis for DeltaGrad beyond
strong convexity; this is left for future work.

4.2.2. ONLINE ADDITION/DELETION.

To simulate deletion and addition requests over the train-
ing data continuously in an on-line setting, 100 random
selected samples are added or deleted sequentially. Each
triggers model updates by either BaseL or DeltaGrad. The
running time comparison between the two approaches in
this experiment is presented in Figure 4, which shows that
DeltaGrad is about 2.5x, 2x, 1.8x and 6.5x faster than BaseL
on MNIST, covtype, HIGGS and RCV1 respectively. The
accuracy comparison is shown in Table 2. There is essen-
tially no prediction performance difference between wU∗

and w ∗ .

Discussion. By comparing the speed-ups brought by Delt-
aGrad and the choice of T0, we found that the theoretical
speed-ups are not fully achieved. One reason is that in the

DeltaGrad

Table 2. Distance and prediction performance of BaseL and DeltaGrad in online deletion/addition

Dataset Distance Prediction accuracy (%)
U∗ kw − w ∗ k U∗ kkwI∗ − w BaseL DeltaGrad

MNIST (Addition) 5.7 × 10−3 2 × 10−4 87.548 ± 0.0002 87.548 ± 0.0002
MNIST (Deletion) 5.0 × 10−3 1.4 × 10−4 87.465 ± 0.002 87.465 ± 0.002
covtype (Addition) 8.0 × 10−3 2.0 × 10−5 63.054 ± 0.0007 63.054 ± 0.0007
covtype (Deletion) 7.0 × 10−3 2.0 × 10−5 62.836 ± 0.0002 62.836 ± 0.0002
HIGGS (Addition) 2.1 × 10−5 1.4 × 10−6 55.303 ± 0.0003 55.303 ± 0.0003
HIGGS (Deletion) 2.5 × 10−5 1.7 × 10−6 55.333 ± 0.0008 55.333 ± 0.0008
RCV1 (Addition) 0.0122 3.6 × 10−6 92.255 ± 0.0003 92.255 ± 0.0003
RCV1 (Deletion) 0.0119 3.5 × 10−6 92.229 ± 0.0006 92.229 ± 0.0006

approximate L-BFGS computation, a series of small matrix
multiplications are involved. Their computation on GPU
vs CPU cannot bring about very signifcant speed-ups com-
pared to the larger matrix operations2, which indicates that
the overhead of L-BFGS is non-negligible compared to gra-
dient computation. Besides, although r is far smaller than n,
to compute the gradients over the r samples, other overhead
becomes more signifcant: copying data from CPU DRAM
to GPU DRAM, the time to launch the kernel on GPU, etc.
This leads to non-negligible explicit gradient computation
cost over the r samples. It would be interesting to explore
how to adjust DeltaGrad to fully utilize the computation
power of GPU in the future.

Figure 4. Running time comparison of BaseL and DeltaGrad with
100 continuous deletions/addition

Other experiments with DeltaGrad are in the Appendix
(Section D): evaluations with larger delete rate (i.e. when
r � n may not hold), comparisons with state-of-the-art
work and studies on the effect of mini-batch sizes and hyper-
parameters etc.

5. Applications
Our algorithm has many applications, including privacy re-
lated data deletion, continuous model updating, robustness,
bias reduction, and uncertainty quantifcation (predictive in-
ference). Some of these applications are quite direct, and so

2See the matrix computation benchmark on GPU with varied
matrix sizes: https://developer.nvidia.com/cublas

for space limitations we only briefy describe them. Some
initial experimental results on how our method can acceler-
ate some of those applications such as robust learning are
included in Appendix D.5.

5.1. Privacy related data deletion

By adding a bit of noise one can often guarantee differential
privacy, the impossibility to distinguish the presence or
absence of a datapoint from the output of an algorithm
(Dwork et al., 2014). We leverage and slightly extend a
closely related notion, approximate data deletion, (Ginart
et al., 2019) to guarantee private deletion.

We will consider learning algorithms A that take as input
a dataset D, and output a model A(D) in the hypothesis
space H. With the i-th sample removed, the resulting model
is thus A(D−i). A data deletion operation RA maps D,
A(D) and the index of the removed sample i to the model
RA(D, A(D), i). We call RA an �-approximate deletion if
for all D and measurable subsets S ⊂ H:

P (A(D−i) ∈ S|D−i)| log | ≤ �
P (RA(D, A(D), i) ∈ S|D−i)

Here if either of the two probabilities is zero, the other must
be zero too. Using the standard Laplace mechanism (Dwork
et al., 2014), we can make the output of our algorithm an
�-approximate deletion. We add independent Laplace (δ/�)
noise to each coordinate of w ∗ , wU ∗ and wI ∗ , where

2√
pAM1

2r
r δ =

η(1 µ − µ − c0M1r)2(n − r)(n/2 − r)2 n−r 2n

is an upper bound on p1/2kwU ∗ − wI ∗ k. See the Appendix
B.1 for details.

5.2. Continous model updating

Continous model updating is a direct application. In many
cases, machine learning models run in production need to
be retrained on newly acquired data. DeltaGrad can be used
to update the models. Similarly, if there are changes in the
data, then we can run DeltaGrad twice: frst to remove the

https://developer.nvidia.com/cublas

DeltaGrad

original data, then to add the changed data.

5.3. Robustness

Our method has applications to robust statistical learning.
The basic idea is that we can identify outliers by ftting a
preliminary model. Then we can prune them and re-ft the
model. Methods based on this idea are some of the most
statistically effcient ones for certain problems, see e.g., the
review Yu & Yao (2017).

5.4. Data valuation

Our method can be also used to evaluate the importance
of training samples (see Cook (1977) and the follow-up
works such as Ghorbani & Zou (2019)). One common
method to do this is the leave-one-out test, i.e. comparing
the difference of the model parameters before and after
the deletion of one single training sample of interest. Our
method is thus useful to speed up evaluating the model
parameters after the deletion operations.

5.5. Bias reduction

Our algorithms can be used directly to speed up existing
techniques for bias correction. There are many different
techniques based on subsampling (Politis et al., 1999). A
basic one is the jackknife (Quenouille, 1956). Suppose we
have an estimator f̂

n computed based on n training data-
points, and defned for both n and n − 1. The jackknife bias-
correction is f̂

jack = f̂
n − ̂b(f̂

n) where b̂(f̂
n) is the jack-

knife estimator of the bias b(f̂
n) of the estimator f̂

n. This� �
−1 Pnis constructed as b̂(f̂

n) = (n − 1) n f̂−i − f̂
ni=1

where f̂−i is the estimator f̂
n−1 computed on the training

data removing the i-th data point. Our algorithm can be
used to recompute the estimator on all subsets of size n − 1
of the training data. To validate that this works, a good
example may be logistic regression with n not much larger
than p, which will have bias (Sur & Candès, 2018).

5.6. Uncertainty quantifcation / Predictive inference

Our algorithm has applications to uncertainty quantifca-
tion and predictive inference. These are fundamental prob-
lems of wide applicability. Techniques based on conformal
prediction (e.g., Shafer & Vovk, 2008) rely on retraining
models on subsets of the data. As an example, in cross-
conformal prediction (Vovk, 2015) we have a predictive
model f̂ that can be trained on any subset of the data. We
can split the data into K subsets of roughly equal size. We
can train f̂−Sk on the data excluding Sk, and compute
the cross-validation residuals Ri = |yi − f̂−Sk (xi)| for
i ∈ Si. Then for a test datapoint xn+1, we form a prediction
set C(xn+1) with all y overlapping n − (1 − α)(n + 1)
of the intervals f̂−Sk (xn+1) ± Ri. This forms a valid
β = 1 − 2α − 2K/n level prediction set in the sense that
P (yn+1 ∈ C(xn+1)) ≥ β over the randomness in all sam-

ples. The ”best” (shortest) intervals arise for large K, which
means a small number of samples is removed to fnd f−Sk .
Thus our algorithm is applicable.

6. Conclusion
In this work, we developed the effcient DeltaGrad retrain-
ing algorithm after slight changes (deletions/additions) of
the training dataset by differentiating the optimization path
with Quasi-Newton method. This is provably more accurate
than the baseline of retraining from scratch. Its perfor-
mance advantage has been empirically demonstrated with
some medium-scale public datasets, revealing its great po-
tential in constructing data deletion/addition machine learn-
ing systems for various applications. The code for replicat-
ing our experiments is available on Github: https://
github.com/thuwuyinjun/DeltaGrad. Adjust-
ing DeltaGrad to handle smaller mini-batch sizes in SGD
and more complicated ML models without strong convexity
and smoothness guarantees is important future work.

https://github.com/thuwuyinjun/DeltaGrad
https://github.com/thuwuyinjun/DeltaGrad

DeltaGrad

Acknowledgements
This material is based upon work that is in part supported by
the Defense Advanced Research Projects Agency (DARPA)
under Contract No. HR001117C0047. Partial support was
provided by NSF Awards 1547360 and 1733794.

References
Amari, S. A theory of adaptive pattern classifers. IEEE

Transactions on Electronic Computers, (3):299–307,
1967.

Baldi, P., Sadowski, P., and Whiteson, D. Searching for
exotic particles in high-energy physics with deep learning.
Nature communications, 5:4308, 2014.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-dynamic pro-
gramming, volume 5. Athena Scientifc Belmont, MA,
1996.

Birattari, M., Bontempi, G., and Bersini, H. Lazy learning
meets the recursive least squares algorithm. In Advances
in neural information processing systems, pp. 375–381,
1999.

Blackard, J. A. and Dean, D. J. Comparative accuracies
of artifcial neural networks and discriminant analysis in
predicting forest cover types from cartographic variables.
Computers and electronics in agriculture, 24(3):131–151,
1999.

Bottou, L. Online learning and stochastic approximations.
On-line learning in neural networks, 17(9):142, 1998.

Bottou, L. Stochastic learning. In Summer School on Ma-
chine Learning, pp. 146–168. Springer, 2003.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT’2010,
pp. 177–186. Springer, 2010.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. arXiv preprint
arXiv:1606.04838, 2016.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. Siam Review,
60(2):223–311, 2018.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot, N.
Machine unlearning. arXiv preprint arXiv:1912.03817,
2019.

Bousquet, O. and Bottou, L. The tradeoffs of large scale
learning. In Advances in neural information processing
systems, pp. 161–168, 2008.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Byrd, R. H., Nocedal, J., and Schnabel, R. B. Representa-
tions of quasi-newton matrices and their use in limited
memory methods. Mathematical Programming, 63(1-3):
129–156, 1994.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. A limited
memory algorithm for bound constrained optimization.
SIAM Journal on scientifc computing, 16(5):1190–1208,
1995.

Cao, Y. and Yang, J. Towards making systems forget with
machine unlearning. In 2015 IEEE Symposium on Secu-
rity and Privacy, pp. 463–480. IEEE, 2015.

Cauwenberghs, G. and Poggio, T. Incremental and decre-
mental support vector machine learning. In Advances
in neural information processing systems, pp. 409–415,
2001.

Conn, A. R., Gould, N. I., and Toint, P. L. Testing a class of
methods for solving minimization problems with simple
bounds on the variables. Mathematics of computation, 50
(182):399–430, 1988.

Conn, A. R., Gould, N. I., and Toint, P. L. Convergence
of quasi-newton matrices generated by the symmetric
rank one update. Mathematical programming, 50(1-3):
177–195, 1991.

Cook, R. D. Detection of infuential observation in linear
regression. Technometrics, 19(1):15–18, 1977.

Doshi-Velez, F. and Kim, B. A roadmap for a rigorous sci-
ence of interpretability. arXiv preprint arXiv:1702.08608,
150, 2017.

Dwork, C., Roth, A., et al. The algorithmic foundations
of differential privacy. Foundations and Trends R in
Theoretical Computer Science, 9(3–4):211–407, 2014.

European Union, C. o. Council regulation (eu) no
2016/679. 2016. URL https://eur-lex.europa.
eu/legal-content/EN/ALL/?uri=CELEX:
02016R0679-20160504.

Ghorbani, A. and Zou, J. Data shapley: Equitable valuation
of data for machine learning. In International Conference
on Machine Learning, pp. 2242–2251, 2019.

Ginart, A., Guan, M., Valiant, G., and Zou, J. Y. Making
ai forget you: Data deletion in machine learning. In
Advances in Neural Information Processing Systems, pp.
3513–3526, 2019.

Gladyshev, E. On stochastic approximation. Theory of
Probability & Its Applications, 10(2):275–278, 1965.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:02016R0679-20160504

DeltaGrad

Golatkar, A., Achille, A., and Soatto, S. Eternal sunshine of
the spotless net: Selective forgetting in deep networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020a.

Golatkar, A., Achille, A., and Soatto, S. Forgetting out-
side the box: Scrubbing deep networks of information
accessible from input-output observations. arXiv preprint
arXiv:2003.02960, 2020b.

Gorbunov, E., Hanzely, F., and Richtárik, P. A unifed theory
of sgd: Variance reduction, sampling, quantization and
coordinate descent. arXiv preprint arXiv:1905.11261,
2019.

Gower, R. M., Loizou, N., Qian, X., Sailanbayev, A.,
Shulgin, E., and Richt´ Sgd: General analysisarik, P.
and improved rates. arXiv preprint arXiv:1901.09401,
2019.

Griewank, A. and Walther, A. Evaluating derivatives: prin-
ciples and techniques of algorithmic differentiation, vol-
ume 105. Siam, 2008.

Guo, C., Goldstein, T., Hannun, A., and van der Maaten,
L. Certifed data removal from machine learning models.
arXiv preprint arXiv:1911.03030, 2019.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge
university press, 2012.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the polyak-łojasiewicz condition. In Joint European Con-
ference on Machine Learning and Knowledge Discovery
in Databases, pp. 795–811. Springer, 2016.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via infuence functions. In Proceedings of the 34th
International Conference on Machine Learning-Volume
70, pp. 1885–1894. JMLR. org, 2017.

Krishnan, S. and Wu, E. Palm: Machine learning explana-
tions for iterative debugging. In Proceedings of the 2nd
Workshop on Human-In-the-Loop Data Analytics, pp. 4.
ACM, 2017.

Kul’chitskiy, O. Y. and Mozgovoy, A. Estimation of conver-
gence rate for robust identifcation algorithms. Interna-
tional journal of adaptive control and signal processing,
6(3):247–251, 1992.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. Rcv1: A
new benchmark collection for text categorization research.

Journal of machine learning research, 5(Apr):361–397,
2004.

Matthies, H. and Strang, G. The solution of nonlinear fnite
element equations. International journal for numerical
methods in engineering, 14(11):1613–1626, 1979.

Mirzasoleiman, B., Karbasi, A., and Krause, A. Deletion-
robust submodular maximization: Data summarization
with the right to be forgotten. In International Conference
on Machine Learning, pp. 2449–2458, 2017.

Mokhtari, A. and Ribeiro, A. Global convergence of online
limited memory bfgs. The Journal of Machine Learning
Research, 16(1):3151–3181, 2015.

Moulines, E. and Bach, F. R. Non-asymptotic analysis of
stochastic approximation algorithms for machine learning.
In Advances in Neural Information Processing Systems,
pp. 451–459, 2011.

Nocedal, J. Updating quasi-newton matrices with limited
storage. Mathematics of computation, 35(151):773–782,
1980.

Nocedal, J. and Wright, S. Numerical optimization. Springer
Science & Business Media, 2006.

Ortega, J. M. and Rheinboldt, W. C. Iterative solution
of nonlinear equations in several variables, volume 30.
Siam, 1970.

Politis, D. N., Romano, J. P., and Wolf, M. Subsampling.
Springer Science & Business Media, 1999.

Quenouille, M. H. Notes on bias in estimation. Biometrika,
43(3/4):353–360, 1956.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–
407, 1951.

Schelter, S. amnesia–towards machine learning models
that can forget user data very fast. In 1st International
Workshop on Applied AI for Database Systems and Appli-
cations (AIDB19), 2019.

Shafer, G. and Vovk, V. A tutorial on conformal prediction.
Journal of Machine Learning Research, 9(Mar):371–421,
2008.

Steinhardt, J., Koh, P. W. W., and Liang, P. S. Certifed
defenses for data poisoning attacks. In Advances in neural
information processing systems, pp. 3517–3529, 2017.

Sur, P. and Candès, E. J. A modern maximum-likelihood
theory for high-dimensional logistic regression. arXiv
preprint arXiv:1803.06964, 2018.

DeltaGrad

Syed, N. A., Huan, S., Kah, L., and Sung, K. Incremental
learning with support vector machines. 1999.

Vovk, V. Cross-conformal predictors. Annals of Mathemat-
ics and Artifcial Intelligence, 74(1-2):9–28, 2015.

Wu, Y., Tannen, V., and Davidson, S. B. Priu: A provenance-
based approach for incrementally updating regression
models. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data, pp. 447–
462, 2020.

Yu, C. and Yao, W. Robust linear regression: A review and
comparison. Communications in Statistics-Simulation
and Computation, 46(8):6261–6282, 2017.

Zhang, T. Solving large scale linear prediction problems
using stochastic gradient descent algorithms. In Pro-
ceedings of the twenty-frst international conference on
Machine learning, pp. 116. ACM, 2004.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. Algorithm
778: L-bfgs-b: Fortran subroutines for large-scale bound-
constrained optimization. ACM Transactions on Mathe-
matical Software (TOMS), 23(4):550–560, 1997.

	Batch addition/deletion.
	Online addition/deletion.

