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A Mathematical details

The main result for DeltaGrad with GD is Theorem [5] proved in Section

A.1 Additional notes on setup, preliminaries
A.1.1 Classical results on GD convergence, SGD convergence

Lemma 1 (GD convergence, folklore, e.g., Boyd and Vandenberghe| (2004)). Gradient descent over a strongly

convex objective function with fixed step size iy =n < LL_HL has exponential convergence rate, i.e.:

F(w) = F (w) < ¢y — | 1)

where ¢ :== (L — p) /(L + p) < 1.
Recall also that the eigenvalues of the ”contraction operator” I — 7 H (w) are bounded as follows.

Lemma 2 (Classical bound on eigenvalues of the ” contraction operator”). Under the convergence conditions

of gradient descent with fixed step size, i.e. ny =n < ;H-%’ the following inequality holds for any parameter

w:
T —nH (w)[|< 1. (2)
This lemma follows directly, because the eigenvalues of I — nH are bounded between —1 < 1 —nlL <

l—nu<1

Lemma 3 (SGD convergence, see e.g., Bottou et al.| (2018)). Suppose that the stochastic gradient estimates
are correlated with the true gradient, and bounded in the following way. There exist two scalars J; > Jo >0
such that for arbitrary By, the following two inequalities hold:

1
VF<wt)TEE > VF;(w) > | VF (w) ||, (3)
1EB

1
B> VE (w) [|< 21| VF (w) |l
i€By

Also, assume that for two scalars Js, Jy > 0, we have:

Var (é > VF <wt>> < T+ LIVE (w) | @

i€By

By combining equations —, the following inequality holds:

1
EHE > VE (w) < Js + J5||VF (w;) ||°
1€B

where Js = Jy + J12 > J22 > 0.
Then stochastic gradient descent with fized step size ny =n < L‘]—j has the convergence rate:

E[F () — F ()] < 225 4 (1 - pputy)! ™ <F<wl> — F ()

AN
— 2uds

2/LJ2 2/1]2 '

If the gradient estimates are unbiased, then EB% Yien, VEi(wy) = LN VF;(wy) = VF(w,) and
thus J; = Jy; = 1. Moreover, Js3 ~ 1/m, where m is the minibatch size, because Js is the variance of the
stochastic gradient.

So the convergence condition for fixed step size becomes 1, = n < ﬁ’ in which Js = Jy+J = Jy+1 > 1.

Som=n< ﬁ < % suffices to ensure convergence.



A.1.2 Notations for DeltaGrad with SGD

The SGD parameters trained over the full dataset, explicitly trained over the remaining dataset and incre-
mentally trained over the remaining dataset are denoted by w®, w¥>5 and w’*® respectively. Then given
the mini-batch size B, mini-batch B;, the number of removed samples from each mini-batch AB,; and the

set of removed samples R, the update rules for the three parameters are:

1
wop = wo, — g Z VF(w%) = w® — nGp,s(w®), (5)
iE€EBy
1
WU, = wUS, - RN VE(wUS))
tieB,,idR (6)
=wi? — nG%fAB,S(WUSt)v
LS _ _m 1,8 t—3j mod Tp =0
I WL — 5oRE; 2uieB,igr VE (W) gr t jgo)jo 0
W =g whS - B%A&{B[Bjm(wlvst — w5) + 5 Viep, VE(W)] — otherwise

Y icRich, VE(w')}
(7)

in which G ¢(w°;) and G§_ A B, 5(wU9,) represent the average gradients over the minibatch B; before

and after removing samples.

We assume that the minibatch randomness of w¥5 and w’% is the same as w®. By following Lemma [3]
we assume that the gradient estimates of SGD are unbiased, i.e. E (B% >ien, VFi (w)) =15 VF(w)=

VF (w) for any w, which indicates that:

1 1o
E (Biez‘; VFi(wSt)> = ;w} (W) = VF (w%,),

1
—— D VE (W) = VFY (w5
1€B:IER iZR

1 U,S
E B—AB, Z VE(w??) | =

A.1.3 Classical results for random variables

To analyze DeltaGrad with SGD, Bernstein’s inequality (Oliveira, |2009; |Troppl [2012, 2016, e.g.,) is necessary.
Both its scalar version and matrix version are stated below.

Lemma 4 (Bernstein’s inequality for scalars). Consider a list of independent random variables, S1, Sa, ..., Sk
satisfying E(S;) = 0 and |S;|< J, and their sum Z = Zle S;. Then the following inequality holds:

—z2

Vo > 0.
S E(ST) + J)

Lemma 5 (Bernstein’s inequality for matrices). Consider a list of independent di X do random matrices,
S1,Sa, ..., Sk satisfying E(S;) = 0 and ||S;||< J, and their sum Z = Zle S;. Define the deterministic
7varianc surrogate”:

Pr(||Z||> x) < exp (

k k
V(Z) = max (IIZE(&SE‘)JIZ]E(S?&)II)- (8)



Then the following inequalities hold:

Pr(||Z]|> z) < (di + d2) exp (m) Vo >0, (9)
E(12I) < V(2 Togldr T ) + 5.Jlog (dh + ). (10)

A.2 Results for deterministic gradient descent

The main result for DeltaGrad with GD is Theorem [f] proved in Section

A.2.1 Quasi-Newton

By following equations 1.2 and 1.3 in Byrd et al.| (1994)), the Quasi-Hessian update can be written as:

BtAththBt AgtAg?
Awl'B;Aw; Agl Aw,

Bt+1 = Bt - (11)

We have used the indices % to index the Quasi-Hessians B, . This allows us to see that they correspond
to the appropriate parameter gap Aw;, and gradient gap Ag;,. The indices ji depend on the iteration
number t in the main algorithm, and they are updated by removing the “oldest” entry, and adding T at

every period.
DeltaGrad uses equation on the prior updates:

B - 9
Tk Aw;“FkBjkijk Ag}-; Awj,

Jk+1 (12)
where the initialized matrix By, is Bj, = Agl Aw;, /[Aw] Aw;,]1.

We use formulas 3.5 and 2.25 from Byrd et al.| (1994) for the Quasi-Newton method, with the caveat that
they use slightly different notation.

For the update rule of B;,, i.e.:

Bjk ijk ij]; Bjk Agjk Ag};

B,., =B, — . 13
Tkt Tk Aw?;Bjkijk Agﬁ Awj, (13)
There is an equivalent expression for the inverse of B;, as below:
Aw;, Agh Agj, Aw?t Aw;, Aw!
B;! = (1- ) gt (1 2l ) SO (14)
Agjk Awj, Agjkijk Agjkijk

See Algorithm [1] for an overview of the L-BFGS algorithm.

Algorithm 1: Overview of L-BFGS algorithm
Input : The sequence of the model parameter differences AW = {Awo, Aw, ..., Awm—_1}, the sequence of
the gradient differences AG = {Ago, Ag, ..., Agm—1}, & vector v, history size m
Output: Approximate results of H(w.,)v at point w.,, and for some v, such that Aw; ~ w; — w;—1 for all 4
Compute AWTAW
Compute AWTAG, get its diagonal matrix D and its lower triangular submatrix L
Compute o = Agﬂ_lAwmfl/(AwTTn_lAwmfl)
Compute the Cholesky factorization for cAWTAW + LDLT to get JJT
_ -1
_p¥ p i)' Dt o0 AGTy
0 JT DT g7 cAWTv
6 return ov — [AG’ UAW} P

B W N R

5 Compute p = {




A.2.2 Proof that Quasi-Hessians are well-conditioned

We show that the Quasi-Hessian matrices computed by L-BFGS are well-conditioned.

Lemma 6 (Bounds on Quasi-Hessians). The Quasi-Hessian matrices Bj, are well-conditioned. There exist
two positive constants K1 and Ko (depending on the problem parameters u, L, etc) such that for any t, any
vector z, and all k € {0,1,...,m}, the following inequality holds:

Ki||2*< 2" By, 2 < K2HZH2

Proof. We start with the lower bound. Based on equation (14)), ||Bj, H can be bounded by:

Aw;, A Aw Awj, AwT
1B, < T - Tig“n B, )1~ g;’“ i el (15)
Je+1 Ag; Aw Ag; Aw Ag; Aw
in which by using the mean value theorem, ||I — %H can be bounded as:
- w;, Agj, I< ||ijkﬁgﬁ|\
AngkA n A TAka (16)
I (B AT A I A
= + 5 <14 —.
Aw] Hj, Awj, pl|Aw, || ]
L. AkaAw7k
In addition, ”W” can be bounded as:
T
||A“’“Aw“ R e A (")
Agl Awj, Aw] Hj, Awj, "~ qu Awj, T p
So by combining Equation (|16) and Equation , Equation (|15) can be bounded by:
L 1+ 51
B B + < (14 =)k 7;&7
1B, I < (1+ ) 1B, (1 u) 1B, [+ ETEAryy
2k
_ay Ll ﬂl.
poop 1= (1+ 52 p
which thus implies that |B;, ||> K := 11_(1+£)2k where 0 < k < m. Recall that m is small,
I

Ly2k Ly~ p’ 1
(A+2)2* o+ 17(1+%)2 Iz

(set as m = 2 in the experiments). So the lower bound will not approach zero.
Then based on Equation (L), we derive an upper bound for |B;, || as follows:
T T
o a zTBjkz Z BJkAw]kAw B,z =z Ag;jkAgjkz
1 ¢
* ijkBjkAw]k Agjkij,c
T T T T
z' Agj Ag; z z' H;, Aw; Aw; H; z
< zTBjkz—i— -z;?k 95 ZZTBjkz—i— Jk T ke PR
AgjkAw]k ijkijijk
z'H; zAw H, Awg,
AwﬁHMAw]k

< zTBjkz + L||z||2.

z"B,;

< zTBjkz + = zTBjkz + zTijz

The first inequality uses the fact that z” B;, Aw;, ijTkBjkz = (zTBjkijk) > 0 and Aw L Bj Awj,
> 0, due to the positive definiteness of Bj,. The second inequality uses the Cauchy-Schwarz mequahty for
the Quasi-Hessian, i.e.:

(a"Hj,b)” < (a”Hj,a) (b"H,,b).

By applying the formula above recursively, we get z’Bj, ,,z < (k + 1)L||z|*> where 0 < k < m. Again,

as m is bounded, so we have (k + 1)L < K5 := (m + 1)L. This finishes the proof. O



A.2.3 Proof preliminaries
First of all, we provide the bound on d;, which is defined as:
Lemma 7 (Upper bound on §;). By defining

6 = n_r< ZVF w’, —ZVFi(wUt)),

i€R

we then have ||6,]|< 2cp 1

Proof. Based on the definition of §;, we can rearrange it a little bit as:

lo]l= |- ——— ZVF W) + =3 VE (wh) |

i€ER

= |I—%[Z VE; (W) = Y VE (wo)] + (= - n(nm; S VE W)

i€R i€R
- ||_7ZVF wU t QZVFi (WUt)
zQR n i€ER

Then by using the triangle inequality and Assumption [3| (bounded gradients), the formula above can be
bounded as:

< iy I TE W) [ SIVE (W) 1S e+ hes = = Fes
z%R ZER

O

Notice that Algorithmrequires 2m vectors as the input, i.e. [Awj,, Awj,,...,Aw;,, ] and [Ag,,, Agj,,

, Agj,. ] to approximate the product of the Hessian matrix H(w;) and the input vector Aw, at the t,
iteration where j,,—1 <t < jim—1 + 1o

Note that by multiplying Aw;, on both sides of the Quasi-Hessian update Equation , we have the
classical secant equation that characterizes Quasi-Newton methods as below:

Bj,., Awj, = Agj,.. (18)

Then we give a bound on the quantity ||Ag;, — B;, Awj, || where the intermediate index ¢ is in between
the "correct” index k + 1 and the final index m, so m > ¢ > k + 1. This characterizes the error by using
a different Quasi-Hessian at some iteration. Its proof borrows ideas from |Conn et al.|(1991). Unlike (Conn
et al.| (1991), our proof relies on a preliminary estimate on the bound on ||w; — w!;||, which is at the level
of O(7). The proof of the bound will be presented later.

Theorem 1. Suppose that the preliminary estimate is: ||w;, — w!j,||< %Mlﬁ, where k = 1,2, ..

and My = . Lete = M , for the upper and lower bounds K1, Ko on the eigenvalues of the quasi-

Hessian from Lemma [a for the upper bounds cz on the gradient from Assumption [ and for the Lipshitz
constant co of the Hessian. For 1 <k +1 < g < m, we have:

1 r
1H, — Hj, |I< codjy. g, +cor—7 M-
2 n
and 1
k— r
1Ag;, = Bj, Awj [I< [(1+ €)™ = 1] - co(dje.jy + 77 M1=) * 81
2 n

where sj, 3, = max ([[Awgl),—;, ;,. i and d is defined as the mazimum gap between the steps of the

algorithm over the iterations from ji to jq:

djyj, = max (||w, — 'wb”)jkgagbgjq . (19)



PT‘OOf. Let Vg = Agjk qu+1ijk7 b - HUCJ” and f = CO(djl,]erTo 1+ 1 M1 )thjm'

Let us bound the difference between the averaged Hessians |H;, — jq|| where 1 < k < ¢ < m, using
their definition, as well as using Assumption 4] on the Lipshitzness of the Hessian:

[[H, — Hj, ||
1 1
_y / [H(w, + 2(w', — w;,))lde — / [H(w,, +a(w!;, — w;,)]dz]
1
oy / [E(w, +o(w!), —w;,)) — H(w;, +z(w';, —w; )de]
1
< 60/0 Wi, + 2w, —wj,) — [w;, +2(w;, —w; )]||dz (20)

S COHW]k W]q||+ ||W Ik ij - (leq - W]q)”

CO
< col|wy, —qu||+§||qu w qu+ [w! s, —wj, |l
Co 'S
< codjyj, + T—F Ml* < codjy j+mo-1 + 77 M
2 n 2 n n

On the last line, we used the definition of d;, ;,, and the assumption on the boundedness of ||w!;, —w;,||.
Then, when ¢ = k, according to Equation (18, the secant equation Ag;, = Bj,,, Awj, holds. So
|Agj, — By, Awj, ||= 0, which proves the claim When qg=k. Sov,=by=0.
Next, let u, = Ag;, — Bj, Aw,, . This quantity is closely related to v,—1 = Ag;, — B; Awj,, and the
difference is that in uq, the Ag, Aw terms are defined at g, as opposed to the base one at k. Then |unij,c l,
where ¢ > k, can be bounded as:

Jk41

\ugij,J

= |Ag] Aw;, — Ag), Aw;, + Ag, Aw;, — Aw] B, Awy, |
< |A937-;ijk — Agﬁijq|+|Aw};vq,1|

< |Ag], Awj, — Agj, Aw;, [+[|Aw;, [|-bg—1

= |Aw] Hy, Aw;, — Aw] Hj, Awy, |+ Awj, || -5y

= |[Aw], (H;, —Hj,) Awj, [+ Aw;, -1

< [|[Awy, |1, — Hj, [|-][ Awj, [[+]| Aw;, [|-bg—1

< (f +bg—1) |Awy, ||,

in which the first inequality uses the triangle inequality, the second inequality uses the Cauchy-Schwarz
inequality, and the subsequent equality uses the Cauchy mean value theorem. Finally, the third inequality
uses Assumption [4] and equation . We also use the following bounds, which hold by definition (notice
that k, ¢ < m):

Hw]k - qu ||S djkajq ||A’LU_7QHS 8j17j171'

The argument on the upper bound of b, will proceed by induction. The claim is true for the base case
q = k. Assuming that the claim is true for ¢ — 1, we want to prove it for ¢, which is bounded as below:

(22)

5 _||A g, _quijqu};qu Agjq g,}; w. ||
1 Yi Ja AwiBjQijq AgTAqu Tk

By using the triangle inequality, we obtain the following upper bound:

Agj, Agf B WANTUS AuwTB i
qu_1+||< " rw- " AwTB A ) Aval

Agj Awj, Aw] Bj, Awj,



Now we come to a key and nontrivial step of the argument. By bringing fractions to the common de-
nominator in the second term, adding and subtracting Ag;, Ag Aw Ag] and Ag;, (B; ijq)Tijj; Agj,
and rearranging to factor out the term —u, in the numerator of each summand, the formula above can be

rewritten as:
Il[— Agqugj Aw g+ Agju TAwTAg] JrquwTB AwTAg] ]Aw]kH

=b,_
-t Ag ququijqBJqu]q

Next, using the Cauchy mean value theorem, and the fact that the smallest eigenvalues of H;_,B;, are lower
bounded by u, K7 respectively, the formula above is bounded as:
- AngAg] Aw gt Agj,ul Aw JAgj, + quw B; AwT LAgj, | Aw;, |
pK 1||Awgq 14
< bg—1 + ([1Ag5, 1| Aw] ugAw, ||+ Agy, |- ug Awj, Ag;, Awy, |
+ [lugAwj By, Aw;, Aw] Agj,|[)/uky || Aw;, |[*.

< bqfl

Now we want to bound the last three terms one by one. First of all, | Ag;, [|*[|Aw] usAw;, || can be bounded
as:

1Ag;, |17l Aw] g Awj, || = |[HL, Awy, || Aw] ugl-[| Aw;, |

< Ll Aw;, 1P| Awf ug|< L (f +bg—1) [|Aw;, ||,

in which the first equality uses the Cauchy mean value theorem, the subsequent inequality uses Assump-
tion 3| and the last inequality uses equation ([21] , the upper bound on |AwT Ug)-

Then for [|Ag;, |- ||uTAwT Agj, Awj, ||, we have a very similar argument The only difference is that we
factor out the scalar ijq Ag;,, and bound it by L||Aw;, |12,

18g;, |I-llug Aw], Agj, Awy, |
= |8, Aw;, [|-|Aw], Agj, |- lug Aw, |
< L2 (f + bg—1) | Awy, |I%,
in which the first equality uses Cacuhy mean value theorem and the fact that Aw}; Agj, is a scalar and

the last inequality uses Assumption |3| and Equation .
In terms of the bound on Hquijqqu Awj, ijTq Ag; ||, it is derived as:

[ugAw], B, Awj, Aw] Ag;, |

= ||quwj1;quijkAw};Agjq||

< NugAw], ||-|Aw] By, Awj, |- Agj, |

< (f 4 bg1) [|Aw, [|-]Aw] By, Aw, |- Hj, Aw;, |
< (f 4 bg1) [|Aw, [|- Ka|| Aw, |- L|| Aw;, |

= KL (f +bg—1) [|Aw;, |I*,

in which the first inequality uses the Cauchy Schwarz inequality, the second inequality uses equation
and the third inequality uses Assumption [6]

In summary, for all j > ¢ + 1, Equation is bounded by:

L(L+1) 4 Ky L
K || Awj, [1*

= (1+e€)bg—1 +ef.

by < bg—1+ (f + bg—1) | Aw;, |[*



By recursion and using the fact that b, = 0, this can be bounded as:

qg—k—1
< (14e)" P by + (1+e)e-f
i=0 (23)
1+e) k-1 ke
R I (R Ty
This proves the required claim b, < [(1+ ¢)?=% — 1] f and finishes the proof. O
Corollary 1 (Approximation accuracy of quasi-Hessian to mean Hessian). Suppose that |w;, — w!;, ||<

LM Z and |[w —
n

2

=~ where s =1,2,...,m. Then for j,, <t < jm +To—1,

1
| H: — By, I< &y g i= Adjy jtm—1 + AT— Ml* (24)

2 n

where recall again that co is the Lipschitz constant of the Hessian, dj, j;, +1,—1 1S the mam'mal gap between
the iterates of the GD algorithm on the full data from j1 to jm +To — 1 (see equation ) which goes to

zero ast — 00) and A = cov/m[(1+e)” —1] ~+co in which e is a problem dependent constant defined in Theorem

C1
c1 is the “strong mdependence constant from .
Proof. Based on Theorem!, bg—1 = [|H;, Aw;, — B;, Aw;, [[< [(1+e)1 k1 —1] f.

Then based on the “strong linear independence” in Assumption the matrix AWy, 5, . =

Awj, Awj,,

[ ijl

Sj1.dm

;o ; +-+, s—2=] has its smallest singular value lower bounded by ¢; > 0. Then |[H;, — By, || can be
J1:dm J1sdm

bounded as below:

1
25)
c 1 (
<Vm[(1+e)™ - 1= (djl,jmwol tr—r Ml)
(&1 57w n

The second inequality uses the bound ||M]|< /mmax;|m;||, where M is a matrix with the m columns m;.
So by combining the results from equation , we can upper bound ||H; — B;, | where j, <t <
jm +T() - ]., ie.:

IH: — jm 1= [H: = Hj,, + Hj, + By, |

< HHt - J'nL +||Hjm - Bjm
T C 1
< coldj,,.¢ + M) + vm[(1+e)™ — 1];0 (djl,jmTo—l +1— Mln) (26)
1 27 n

1 r
< Adj, j41y-1 + AT— M-
37

This finishes the proof. O

Note that in the upper bound on |[H; — B;, ||, there is one term d;, j,,+7,—1. So we need to do some
analysis of this term:

Lemma 8 (Contraction of the GD iterates). Recall the definition of dj, ;. from Theorem :

ks.jq

djyj, = max (||w, — wb”)jkgagbgjq .

Then dj, ;, < dj, — j,—- for any positive integers z and d;, ;, < (1 — pn)’*do j,—j, for any 0 < ji < jg.



Proof. To prove the two inequalities, we should look at dj, ;. and dj;, . ;, —. where z is a positive integer.
For any given ji < a <b < j,, the upper bound on |jw, — wy|| can be derived as below:

[Wa — Wo||= [[Wa—1 —VF(Wa-1) = (Wp—1 — nVF(wp_1)|
= |lWa—1 = Wp1 = (VE(Wa_1) = VF(Wp_1))||

= ”Wa—l — Wp—1—

(/ ZH Wao1 +2(Wpo1 — Wo_ 1))d$> (Wa—1 —wp_1)|
_||<I— (/ ZH (Wa—1 + 2(Wp_1 — Wo_ 1))dx>> (Wa—1 — Wp—1)|-

The derivation above uses the update rule of gradient descent and Cauchy mean-value theorem. Then
according to Cauchy Schwarz inequality and strong convexity, it can be further bounded as ||w, — wp||<
(I =nu)[wa-1 — Wp—1]|.

This can be used iteratively, which ends up with the following inequality:

[Wa — W[ < (1 —np)*[[Wa—z — Wh—| (27)

which indicates that dj, ;, < (1 —nu)?*d;, . j,—- and thus d;, ;, < dj, . j,—-. So by replacing z with j,
we will have: d;, ;. < (1 — pn)*doj,—j,.
O

A.2.4 Main recursions

We bound the difference between w!; and w¥;. The proofs of the theorems stated below are in the following
sections.

Our proof starts out with the usual approach of trying to show a contraction for the gradient updates,
see e.g., [Bottou et al. (2018). First we bound ||w; — w?,]|, i.e.:

Theorem 2 (Bound between iterates on full and the leave-r-out dataset). |lw; — w"4||< MyLZ where My =

%02 is some positive constant that does not depend on t.

To show that the preliminary estimate on the bound on ||w!; — w;|| used in Theorem [l and Corollary
holds, the proof is provided as below:

Theorem 3 (Bound between iterates on full data and incrementally updated ones). Consider an iteration
t indexed with j,, for which j, < t < jm + To — 1, and suppose that we are at the x-th iteration of
full gradient updates, so j1 = jo + xTo, Jm = jo+ (m — 1+ x)Ty. Suppose that we have the bounds
|H; — Bj, [|< &)y, = Adj, g +19—1+ oy AM1 . (where we recalled the definition of £) and &, 5, < 5 for

all iterations x. Then
2res/n < 1
1- r/n):u - gjg,jo—&-(m—l)To

Recall that cq is the Lipshitz constant of the Hessian, My and A are defined in Theorem[d and Corollary /1]
respectively, which do not depend on t,

Lo — < ML
w11 — wepa[|< ( 1

1 _r
2 n

For this theorem, note that this inequality depends on the condition |H,—B;, [|< ;, j,, while in Theorem
to prove |H; —B;, ||< &}, ... we need to use the inequality in Theorem ie. |wli—
1

what follows, we will show that both inequalities hold for all the iterations ¢ without relying2 on other
conditions.
We can select hyper-parameters Tp, jo such that
i 1 r . T coMyir(n —r)
+1
AL = np)?* =" do (m—1)T, + QAM% < mln(§7 (1- E)H T o

);

10



e.g. when m = 2 and T, = 5, which is what we used in our experiments. It is enough that

log( gz 5 — THr AMIE)] log(sg (1 — 5w~ %i%AMlg)]) I
) m — 1.
log(1 — nu) log(1 — )

Jo > max(

This holds for small enough r/n:

log( g5 5 — %i%AMli)] . .
m
log(1 — nu)

Jo >
Then the following two theorems hold.

Theorem 4 (Bound between iterates on full data and incrementally updated ones (all iterations)). For any
jm <t<jm+TO_1) ||w1t—th§ ! Ml% a”rLd ||Ht—Bj7n||S§jl7j1n'

1_
2

Then we have the following bound for ||wY; — w!;||, which is our main result.

Theorem 5 (Convergence rate of DeltaGrad). For all iterations t, the result w'; of DeltaGrad, Algorithm
approzimates the correct iteration values w¥, at the rate

U I r
wy —w¢||=o(—).
s — ' l= o)
So ||wYy — w'y|| is of a lower order than .
This is proved in Section

A.2.5 Proof of Theorem [2]
Proof. By subtracting the GD update from equation , we have:

wli —wi =wl - wy
L (s N (28)
- (n — (; VE (W) =) VE (WUt)> - ;w; (wt)>

i€R
in which the right-hand side can be rewritten as:

wV —wy — 1 (VF(wUt) — VF(wt))
_n (n - (Z vE (W) - Y VE (WUt)> ~ 1Y VR (WUt)>
i=1 i€ER =1
=wY, —w,—7 (VF(WUt) — VF(wy))
S (p3 e - pn )
i=1 i€R
= WUt — Wy —1 (VF(WUt) - VF(Wt)) + 6t~

Then by applying Cauchy mean value theorem, the triangle inequality, Cauchy schwarz inequality and
Lemma [7] respectively, we have:

[Wes1 — WUt+1H

1

< oW B (o (W= ) ) (=) L]
0
1

2
< ||I—n/ H (w; + 2 (Ws — wt)) da||||wy _WUt||+%
0

11



Then by applying the triangle inequality over integrals and Lemma[2] the formula can be further bounded
as:

2
< ||/ (I nH (w, + 2 (W) — wi)) o) wy — wV |+ =2

2627”77
< (1= np)lwe = w [ +——

Then by applying this formula iteratively, we get:

12 2
carny _ 22T _ 40T
nu n non n

[Wirr — w ]| < —

A.2.6 Proof of Theorem [3

Proof. The updates for the iterations j,, <t < j., +Tp — 1 follow the Quasi-Hessian update. We proceed in
a similar way as before, by expanding the recursion as below:

||W1t+1 - Wt+1H
= |w'y = (wi = nVF (wy))

— i (n [Bjm (WIt — Wt) + VE( Wt ZVF w! t (29)
" " i€R

_ n I

—Hﬂfngj;B%th—wm)fn VF(w _TE:VF'wf

By rearranging the formula above and using the triangle inequality, we get:

n rn
= [I(T- o TBJm)(Wlt — W) — EVF(Wt)
LY (B x (W= we) + VE (we))|
1ER (30)
n U
<|X- ntjm,)(WIt — W)+ o ZHt,i x (wly —wy)|
i€R
7 U
+ ||EVF(Wt)||+||E EZI{VFi(Wt)H
in which we use H; ; to denote fo (Wi + x(wI + — wy))dx (recall that H; represents the Hessian matrix

evaluated at the iz, sample) Then the terms in the first absolute value are rewritten as:

n
—T(Bjm Ht+Ht)](W t —Wt

W t_wt)

[L-n
zER

n
:[I_nn_,r(Bjm_Ht)](wlt_wt n—r%};Htl Wt_Wt)

which uses the fact that H, = > | H;, = ZigR H;; + > ,cr His. Then Formula can be further
bounded as:

n
<|Ir- p—— > Hyl(w'y - Wt)\|+7||( i — H) (W —wy)|
iZR
7 n
+ ||EVF(Wt)||+||EZVFi(Wt)H (31)
ieR

r1CY nreg

(1_77N+77 f]l,ﬁm)HW t— W ||+ T

12



Then according to Lemma l jy G +To—1 = jo 42Ty jo+(w+m)To—1 decreases with increasing z, and thus
Ejrim = Adj G +To—1+ P AM1 is also decreasing with increasing x. So the formula above can be further
bounded as:

2rncs
< U TG oty W — w2

This shows a recurrent inequality for ||w!; —wy||. Next, notice that the conditions for deriving the above
inequality hold for all j,, <t < j,, + 1o — 1.

Then, when we reach ¢t = j,,, we have an iteration where the gradient is computed exactly. For these
iterations we have w!; ;| = w!; — L iZR VFE(wl;) as well as wy; = w; — nVF (w;). Using the same

argument as in the bound for w; — w¥; we can get:

2027"7]

W1 — Wit ]|< [1 = np] [[w, — w!e||+

Therefore, we effectively have £ = 0 for these iterations. We then continue with ¢ < t — 1, and use the
appropriate bound among the two derived above. This recursive process works until we reach ¢t = 1.

As long as &g jo+(m-1)1y < 5y M +HN7258 0 jo+(m-1)T, < —Np+17%55 < 0. Then we get the following
inequality:
gmrez
lw's —we|| < T
Nt = 172580, j0+(m—1)Tp
2rea/n

B (1 - 'I"/TL)’U - éjo,jo-i—(m—l)To

As long as & jo+(m—1)1, < %, then

—
<

2 2
||WIt —wi< reg/n < res/n _ M
(L=r/n)p =&y jo+m-1y1 ~ (L=r/n)p—5§ n

N|—=
3=

The last step uses the fact that My =

A.2.7 Proof of Theorem [4]

Architecture of the proof. To visualize the recursive proof process, we draw a picture as:

13



: Jjo < t < jo+ To
: {j17j27-~-7jm}
i ={jo—m+1,j0 —m+2,...,50 —2,j0 — 1]0}

: jo+To < t < jo + 270
: {jl:j27-4~;jm}
v ={jo—m+2,...,50 — 2,50 — 1, 50,50 + To}

Theorem Bl
Corollary

-1 By,

Lot (@+m—1)Ty <t < jo+ (z+m)Tp
} {71,52,- -, jm}
= {jo+aTo, jo+(z+1)To, ..., jo+(z+m— 1)T0}

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Proof. First of all, in terms of the bound on &, ;, which is required in Theorem [3} i.e. &; ;, < &, we do

the analysis below to show that we can adjust the value of jy, and Tj such that it can hold for all £. When
J1 > jo, i-e. j1 = jo + 1), then

{92,735 s dm} = {do + (x + 1)T0, jo + (x + 2)Tp, ..., jo + (x +m — 1)Tp},

thus &, 5, = &o+aTo jot(@+m-1)To = Adjo+aTy jo+(z+m)To—1 T -y =AM, ;. Here djo 4o, jot(ztm)To—1 de-
creases with x, and so does &j, j,, = &§jo+aTs,jo+(a+m—1)Tp- SO the followmg inequality holds:

dj()—‘rITo,jg—‘r(I-‘rm)Tg—l S djo,j()erT(]*l S (1 - Nn)JOdO,ngfb

When j; < jo, there are only m different choices for {ji,j2,...,Jm}, in which the smallest j; used for
approximation is jo — m + 1. Then, the following inequality holds:

djy g < (L =) do g, —j, < (1= )~ do 5, 5,
For those j1,72, .., Jm, we have j,, —j1 < (m — 1)T, and thus
djy g < (1 =np)do g, 5, < (1 - nu)j“m“do,jmfjl < (1 =)™ o (m—1y13-
So &, 4, is bounded by A(1 — nu)?o=" 1 dy 1)T0 +t1-x =AM, 7. To make sure §;, ;< &, we can adjust

Jo,m, Ty to make A(1 —nu)o~"dy (_1yp + = Ale smaller than &.

14



Then when t < jo, the gradient is evaluated explicitly, which means that w¥, = w',, so the bound clearly
holds, i.e., from Theorem we have |[wV; —w,[|< 207 and thus [|[w!; —wy[|= [|[wV—wy||< 200 < Lo 2
2

n - n
n

When jo < t < jo+Tp, in order to compute w!;, we need to use the history information {Aw;,, Awj,,. ..,
Aw;, }, {Agj,, Agj,, - .., Ag;,. } and the corresponding quasi-Hessian matrices {B;,,Bj,, ..., B, } where
{1,525, dm}t ={Jo—m+1,50—m+2,...,jo} (we suppose m < jo, which is a natural assumption). Since
[w!y — wy||< M1 for any ¢ < jo, the conditions of Corollary (used here with the ji,...,j, described

above) hold up to jg, so when ¢t = jo + 1, |H,—1 — B;,,[|< &, 5,, where

T T
Eivim = Ejo—m+1,jo = Adjy jp+To—1 + AM% = Adj,—m+1,jo+T0 + AM1E~

Plus, according to Theorem Wl —wy||< (1_,./2,:)(2;[2147” = (1—7-/n)2urf2££:ﬂn+1,j0' When &, —mt1,5, < 5,
then
2reg/n 2reg/n 1 r
||Wlt—wt||g 1 — = 1 m = 1 erf.
A =r/mp=E 4, (A=r/mjp=5 -5 "n

So the bound on ||w!; — wy|| holds for all ¢ < jo + 1. Then according to the conditions of Corollary |1} when

t=jo+2, |Hi—1—Bj,,||< &, holds. This can proceed recursively until ¢ = jo+Tp, in which the gradients
are explicitly evaluated according to Theorem [3] i.e.:

2rea/n 2res/n 1 r

W’ otz = Wigan, [I< = = M —.

R (e L T O N (VDT n

Next when jo + Ty < t < jo + 270, jm is updated as jo + Ty while {j1,j2,...,4m—1} is updated as

{jo—m+2,jo—m+3,...,j0} and we know that |[w!; —w;,||< ﬁMrﬁ So based on Corollary the

following inequality holds:

r
n

.
[H: — By, 1< &y g = Ejo—mt2,jo+T0 = Adjy jp 1101 + AM,

,
= Adjo—m+2jo+2r, + AM:

This process can proceed recursively.
When jo + 2Ty <t < jo + (x + 1)Tp, we know that:

.
[H: — Bj,, 1< &y g = Adjy iy +10—1 + AMy .

Then based on Theorem [3| [[w/; — wy|[< t2=M;Z. Then at iteration jo + (z + 1)Tp, we update
2 n
J15J2s -y Jm a8t Jm  Jo+ (x + 1)To and j;—1 < j; (i =2,3,...,m) and thus
r

1
lejk 7ij||§ Mlﬁ

Lol
3=

still holds for all k =1,2,...,m.

So when jo + (z + 1)Tp <t < jo + ( + 2)Tp, Corollary [I| and Theorem |3| are applied alternatively. Then
the following two inequalities hold for all iterations ¢ satisfying jo + (x + 1)Tp < t < jo + (z + 2)Tp:

T
H: — B, 1< &y = Adjy i +10—1 + AM;

1
||W1jk — Wi ||S

r
M, —.
n

3

1
2
So in the end, we know that:

1

,
[wy — wy||< M, —
n

r
n

N[—=

and
He — By, 1< &g
hold for all ¢.
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A.2.8 Proof of Theorem [5l

Proof. The proof is by induction.

When t < jo, the gradient is evaluated explicitly, which means that wY;, = w!;, so the bound clearly
holds.

From iteration T, to iteration ¢, the difference between w’; and wY; can be bounded as follows. In

these equations, we use the definition of the update formula w'¢ i = w!y — L [n(B;, (w!y — wy)) —

>ier VF(w!y)]. By rearranging terms appropriately, we get:

nnjr B, (Wl — i) + VF(w,)]

Y VE(w T N"vEwY)) (32

- Tr
i€R iZR

HWIt+1 - WUt+1|| = ||W1t - WUt -

n

Then by bringing in H; into the expression above, it is rewritten as:

B ”WIt —Whe - nn—nr [(Bjm —H,) (w'y —wy) + Hy x (W, —wy) + VF(Wt)]
Z (VFi(w'y) — VE;(wy) + VF(w,)) (33)

- T
'LGR iZR

In the formula above, we will try to make sure there is no confusion between H,(w) (Hessian as a function
evaluated at w) and H; x (w) (Hessian times a vector). Then by applying the Cauchy mean value theorem
over each individual VFi(wI +) — VF;(w;) and by denoting the corresponding Hessian matrix as H, ; (note
that . | Hy; = nH,), the expression becomes:

n
= s —w -~ T (B, — Hy) (Wl — wy) + Hy x (w!y —wy) + VF(wy)]

—-Tr
U TS (Hys x (W = wi) + VE (we)) +nr_’rZVFi(wUt)||
lER iZR

Then by using the fact that >, 5 VE; (W) + 2,05 VFi(We) =nVF(wy) and >, g Hei + 0 p Hei =
nH;, the expression can be rearranged as:

nmn

||Wt* Wt*Wt)

[(By,, —Hy) (wh —wy)]

-Tr
'LQR

- vawm%vaW%)n

n-—r
igR iZR

in which —— Zle r VEi(w;) is canceled out. Then by adding and subtracting wU, in the first part, we
get:

W t— WUt) o [(Bjm - Hy) (W t— WUt)}

||W t— —
'L&R
n
a nir _QZRHM x (W —wi) - n_WT [(Bj,, —Hy) (WY —wy)]
n n U
- —— ) VE(Ww)+——> VE(w")|
igR iZR
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We apply Cauchy mean value theorem over — 13", VE;(wy) + 75 > ,0p VE; (wYy), ie.

— LY VE(w) + =Y VE(w)

n—r

iZR iZR
1
= U . [Z/ H;(w; + z(wY, — wy))dz](wY, — wy).
—r" 0
In addition, note that H;; = fo i(wi +2(w!y — wy))dz. So the formula above becomes:

= |lw's — (wh —w") - nn_nr [(B;,, —Hy) (wh —wy)]
z&R
T i . Z(/ H;(w; + z(w!; —wy))da) (WY — wy) — Ti?r [(B;, — Hy) (wY, — wy)]
igRr Y0
n ! U U
(| Hj(wi+ax(w’y —wy))da)(w”y —wy)|.
n—r igZR /0

Then by applying the triangle inequality and rearranging the expression appropriately, the expression
can be bounded as:

<= S H)w - wly)|

iR

n ' i\ W $WU — W X — ' i\ W .’,CWI — W ﬁL'WU — W
%/ L (wi +a(w? =)o — [ B v+ ool = w)dl (o = )

n YL [(B, — Hy) (W' —w )] |

“L[(By, — Hy) (wy —w)] ||

in which the first term is the main contraction component which always appears in the analyses of gradient
descent type algorithms. The remaining terms are error terms due to the various sources of error: using a
quasi-Hessian, not having a quadratic objective (implicitly assumed by the local models at each step), using
the iterate w! for our update instead of the correct wv.

Then by using the following facts:

LT = nHe | < 1 —np;

2. from Theorem [4] on the approximation accuracy of the quasi-Hessian to mean Hessian, we have the
error bound ”Ht - Bjm < §j17j7n.;

3. we can bound the difference of integrated Hessians using the strategy from equation ;

4. from Theorem we have the error bound [|[wY; —w,||< ML (and this requires no additional assump-
tions),

the expression above can be bounded as follows:

1co
<(1—nu + 5]1 am)HW t— W t||+ 9 HWUt - WIt||||WUt — w|
nn
+ nifjmmuw t— WtH (34)
coMyirn Myrn
< (1 —np + fal,gm + T)let — w1+ e fal,gm

17



Recall from Corollary |1 that &;, ;.. = &ovatyjot+(mta—1)T0 = AdjotaTy jo+(mta)To—1 T A M1 de-
creases with the increasing z. So the formula above can be bounded as:

coMyrn
> T (35)

Also by plugging the formula for £ into the formula above and using Lemma I contraction of GD
updates), we get:

Mir
Jllw! e — w4

(1 — Ny + g]odo-‘r(m DT, +

nmn coMyrn I U
SA—nu+ mfjoJoJr(m—l)To + T)HW ¢ =Wl
Myrn 1
+ n—r (Adjo+$T07]0+(m+I)To 1+ A T Ml*)
nmn 02M :n (36)
0M1 I U
<(Q-nu+ nifjo,jo-&-(m—l)To + 2n W —w |
Mir r
+ - n(A(]' nu)jUerTOdO mTp—1 + A 1 p le)
n—r 5— - n

Now, we will argue that it is pssible to choose hyperparameters such that &, ;o4 m-1ym, < (1 — 2)p —
%(27177“) Then 1 —npu+ 22L& 5ot (m—1)Tp + ° Ml €21 g a constant for all £ and smaller than 1. By denoting

p— ==& do+(m—1)To — CO%” as C, the formula above can be written as:

r
= (1O s = w4 AL g Ty g, + A

r
LoD,
E n

1
2
This can be used recursively until iteration j,, = jo + (z + m)Tp — 1, i.e.:

< (1= eyt Gorltm=UTo) Yl )11 = W jot(@sm—1)To1]

1 — (1 —nC)t=Uot@@tm=1To) Nf ) r
A1 = pu)lot=Tod, m 1+ A My —
+ C —— (A —np) 0,mTo—1 + T_: 1)
< (1 —nC)t ot @tm=DT) =T iql L me 1)To+1 - WUjo+(x+m—1)To+1H
MlT i

Al — Jo+zTo g o — A M-

+C(n77“)( (1 —nu) 0,mTo—1 T i_L 1— )
n
We can set t = jo + (y + m)Tp and for any y = 1,2,...,2 — 1, the formula above can be rewritten as:
HWIjo-l-(y-‘rm)To - WUjo+(y+m)T0 ”
< (1 =nC) " W s rm—1ymr1 — WY ot (yrm—1)To 11|
Ml’l” s 1 T
T (A(1— Jo+yTodm B A M=
+C’(n77’)( (1 =nu) 0.mTo—1 + s )

Then at the iteration ¢ = jo + (y + m — 1)Tp, the gradient is explicitly evaluated, which means that:
I U I U
W jot (tm—1)To+1 = W jor(ytm—1)To+1 S (1 =)W jo b (yrm—1)T5 = W ot (y+m—1)75 -

Since C' = p — ==& it (m—1)Ty — COQMn”, then 1 —nu < 1 —nC and thus

W st tm—1)To+1 — W jor (im—1)To+1 1S (1= 0O [W jo - (ytm—1y10 — W jot (yrm—1)To |l

which can be plugged into the formula above:

I U
W ot (ytm)To = W ot (y+m)To |l

T I U
< (1 =nC) W ot yrm—1)T0 = W jot (yrm-1)T |

M .
+ C(Tl_rr)(A(l —nqu)PotvTody 1+ A

.
M, —).
n

1 _r
2 n

18



This can be used recursively over y =2z — 1,2 —2,...,2,1:

||WIj0+(y+m)T0 - WUj0+(y+m)To H

< (1 - UC)yTO ||W1jo+mTo - WUjo+mTo ”
Yy

Mir .
1 — pC\w—p)To 1 A1 —pu)ioteTog, o~ 4+ A M, =
+;( n ) C’(n—r)( ( 77:“‘) 0,mTo—1 + %_% 1 )
=(1- UC)yTO ||W1jo+mTo - WUjoJrMTo | (37)
Y ( ) er
1 —nC) =T —— _(A(1 — nu)otPTody 0,
+;( n ) C(’I’L—T)( ( 77:“’) 0,mTo 1)
Y
AM?2r?
1 — pC\w—P)To 1
+;( T Sy
in which
Y Ml’l’ :
Z 1—nC) (y—p)To (A(1— 77/1)]0+pT0d0,mT071)
C(n—r)
p=1
AM;irn ) Y _
= C(Tir)(l —nC)YT (1 = ) do -1 Y (1 —nC) P (1 = nu)PTe,
p=1
Recall that since 1 — nC > 1 — nu, then the formula above can be bounded as:
Y Mir .
S (1 = nO) T L (AL — ) P odg )
C(n—r)
p=1
AMyrn T - 1
——— (1 =nC)*° (1 — nu)°do mry-1————-
S Gin =y L7 nO) (= )" oy eET
_ A 2,2
Also YV_ (1 —nC)lv=—P)To W can be simplified to:
Y 2,.2 y—1 2,2
Zlf’rlc yp AMlT :Z(lan)pr’ AMlT
= C(n—r)(n/2—r) = C(n—r)(n/2—-r7)
< 1 AM?r?
“1-1-nC) C(n—r)(n/2—71)
So equation can be further bounded as:
||ijo+(y+m)To - WUjo-i-(y-HrL)To ”
< (1 - nC)yTo ||leo+mTo - WUjo+mT0 ”
AMlT‘ T : 1
+ a1 =nC)" (L =) dommy—1 =i (38)
C(n—r) T ()T
1 AMEr?
+ .
1-(1-=nCYo C(n—7r)(n/2—r1)
When ¢ — oo and thus y — oo, (1 —nC)¥T — 0 and thus
T
W st (ytmyme = W jort (ytmyol|= o(-)-
O
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A.3 Results for stochastic gradient descent
A.3.1 Quasi-Newton
We modify Equations and to SGD versions:

S S sT »s s s T
B jkAw jkAw jkB Jk Ag jkA‘g Jk

stk+1 S]k T (39)
; S T
AwsjkB inAwS Agsjk Aws;,
s sT s sT s sT
BS»_I _ ( _ Aw jkAg jk) BSf1 (I _ Ag jkAw jk) + Aw jkAw Jk (40)
T T T
et AgsjkAijk Tk AgsjkAijk AgsjkAijk

This iteration has the same initialization as B;, and Bj_kl but relies on the history information collected
from the SGD-based training process [Aw®,, Aw®;,,...,Aw®; ] and [Agsjo, Ag¥i, .., Agsjmil} where
Awd; = w; —wl®; and Ag®, = Gps(w';,) — Gps(w®j,) (x =0,1,2,...m — 1). By the same
argument as the proof of Lemma [6] the following inequality holds:

Ki|z|*< 2" B%j,z < K>|z|” (41)

where K := 117(“&)2,” and Ky := (m + 1)L, which are both positive values representing a
L L 1
(A mt 1—(1+u%>2 "

lower bound and an upper bound on the eigenvalues of B® -
A.3.2 Proof preliminaries

Similar to the argument for the GD-version of DeltaGrad, we can give an upper bound on d; s:

Lemma 9 (Upper bound on &; g). Define §; 5 = G s(w’;) — Gg_AB,S(wU’St). Then ||0¢,5]|< 2¢2 Ag‘.
Moreover, with probability higher than 1 —t x 2 eXp(—2\/§),

T 1

[[6¢,5]|< 202(n + W)

uniformly over all iterations t' < t.
Proof. Recall that

and

By subtracting G s(w"%;) from GB_,p 4(WV5;), we have:

||G%—AB,S(WU’S:£) — Gp,s(wW5)|

1 1
=I5 2 VRO - gy, X VR
icB, tieB,,igR
1 1 1
== > VEWS)+(5z-5—5) Y. VEWY)
BiEB,,,iER B B-AB i€By,igR

Then by using the triangle inequality and the fact that ||VF;(w/,)||< c2 (Assumption , the formula
above can be bounded by M%.

Because of the randomness from SGD, the r removed samples can be viewed as uniformly distributed
among all n training samples. Each sample is included in a mini-batch according to the outcome of a

Bernoulli(r/n) random variable S;. Within a single mini-batch By at the iteration ¢, we get E(},c5, Si) =
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E(ABy) = BL and Var(ZZGBtI S;)=BI(1-1).

n

and variance will be E(AB*') = = and Var(Agt’) =g-(1=1).

Then based on Hoeffding’s inequality, the following inequality holds:

— —|<€) >1—2exp(—26°B).
n

Then by setting € = ﬁ the formula above can be written as:
ABt/ |

B - Bl/4
Then by taking the union for all the iterations before ¢, we get: with probability higher than 1 — ¢ x

2 exp(_Q\/E)v

Pr(| ) < 2exp(—2VB)

ABt/ r < 1

=5 .= 5
and thus

ABt/ r 1
B —n ' Bl/A
for all ¢/ < t. O

+

In what follows, we use ¥, to represent ¥; := 2exp(—2v/B), which goes to 0 with large B.
Next we provide a bound for the sum of random sampled Hessian matrices within a minibatch in SGD.

Theorem 6 (Hessian matrix bound in SGD). With probability higher than

log(2p)\/§
442 (loggfzm)”‘*

1 —2pexp

1/4
H;(w%)) — Hw®)|< L (log (ZP)) where p represents the number of

) . . 1
for a given iteration t, || (§ > B

i€EBy
model parameters.

Proof. We consider using the matrix Bernstein inequality, Lemma [}] We define the random matrix S; =
M (i € Bt). Due to the randomness from SGD, we know that E(S;) = E(W) =0.
Using the sum Z as required in Lemma Z=(% > ien, Hi(w)) — H(w). Also note that H(w) and H,(w)
are both p x p matrices, so d; = ds = p in Lemma [5|

Furthermore, for each S; = , its norm is bounded by =% 2L hased on the smoothness condition,

which means that J = % in Lemma Then we can explicitly calculate the upper bound on E(S;S}) and
V(Z):

412

IES:SHI< E(IS:S]]) < E(IS:IST) < J* = %5,

412 412
V) <) = m
i€B,

Thus by plugging the above expression into equation @ and , we get:

P(Z]|z =) = Plfll( > Hi(w ) H(w)|[= z)

i€EBy
—1'2 —ZE2
< (i +d2)exp | qr—p, | =2 | gy |70 20
B T35 BT3B
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E(|2]) = <|| (; > Hi<w>> - H(w))

€8 (44)
8L2 2L 8L2 2L
<4/ i — /2= = ,
< \/ B log(dy + dz2) + 3B log(dy + d2) 5 log(2p) + 3B log(2p)
: log?(2p) \ /2 :
Then by setting x = L (%) , Equation becomes:
1/4
log®(2p)
iz £ (22 )
1/4
1 10g2(2p))
=P — H; —H >L| ———=
. <|| (B > (w)) )l 2 (5 )
i€By
L?log(2p)
——VB log(2p)V' B
< (2p) exp L0 = (2p)exp | - )

2 1/4 2 1/4
4L2 | 2L2 (log®(2p) 2 ( log?(2p)
B T35 (%) 4+3 (%)

1/4
For large mini-batch size B, both L (bg#) and (2p) exp (—W> are approaching 0. [

442 (logg%))l/“

In what follows, we use W5 to denote the probability ¥s := (2p) exp <_210(g1(i§22f1/4 .
3 (T
Based on this result, we can derive an SGD version of Theorem [I] as below, which also relies on a

preliminary estimate on the bound on ||[w!*, — w%,||:

Theorem 7 (Error in mean Hessian, and in secant equation with incorrect quasi-Hessian for SGD). Suppose
that ||[w®y — wh || < My +—2——(Z + ﬁ) and

2 w Hiz "

1/4

1 g g log?(2p)
|5 X o) - e Dli< (25

hold for any t' < t where My = 2%, W is from Assumption@ and co 18 from Assumption @ Let e =

L(Lt}iggm for the upper and lower bounds K1, Ko on the eigenvalues of the quasi-Hessian from equation

and for the Lipshitz constant ¢y of the Hessian. For any t1,ts such that 1 <t; <ty <t, we have:

|H®,, — HS,||< 2L log® (2p) 1/4+ d ! Tyt
" = ( B ) 0 t17t2+360M1%7%7 311/4 (n+ B1/4).
For any j1,J2, ..., jm such that j,, <t' < j, +To—1 and t' < t, we have:
18g°%;, — B%;,Aw®, |
e 3co M, 1

B + Bl/4 )] ' Sjnnjl'

o log?(2
< [(1 +e)yeiet —1] - 2L (og(p)) + codj, j, + T —(

S .
a1 i dj ja in<a<h<iy’ H”; is the average of the

S, and whS, for the samples in mini-batch By:

Here s;,, j, = max (|[Aw®,]|) = max (||lw¥, — w%)

Hessian matriz evaluated between w

1 1
H®, = 35 Z / Hi(wst + z(wU’St - 'wst))dac.
1€EBy 0
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Proof. First of all, let us bound |H%, — fol H(w?;, + 2(wl®;, — w9;,))dz| by adding and subtracting
£ > ien, Hi(w,) and H(w®,,) inside the norm:
t1

1
|H5,, — / H(wS,, +c(whS,, —wS,))dz]
0

1 1

1

1 5 3 e = wS e — [ B e )
1€B,

1
1 1
=/ 5 > (WS, +a(whSy, —w5y)) — Hy(wy,))de + B > Hi(why)
0 i€By, i€By,

1

- / (H(wSy, +2(whS;, —wS,,)) — H(wS,, ))dz — H(wS,,)|.

Then by using the triangle inequality and Assumption 4} the formula above can be bounded as:

1
1
< [ 3 3D IS (- ) - Hiw)do
0 )
1€By,
1

+ HH(WStl + x(wl’stl - Wstl)) - H(Wstl)”d‘r

1
1
+H 5 > Hi(wS,) —H(W,)||
0 1€By,
) 1 1 (46)
< gl > / cox||w', — w5y ||dz) +/ coz||w'%y, — wy, | da
0 0

1

S S S S

< eoll w5, w1 S HLwS,) ~ H(wS,)]|
1€By,

Then based on the above results, we can compute the bound on |[H®,, — H,, ||, for which we use the
triangle inequality first:

HHStl - Hst2 H
1
= |H%, _/ H(w5, +z(wh%, —w®,))de|
0
1 1
B (S, < wS o~ [ H@S, a5, - wS )]
0 0
1
+ ||/ H(Wstz + x(wLStz - Wstz))dx - Hst2||'
0
Then by using the result from Formula , this term can be further bounded as:

1
1
<l = w3 )~ Hw)]
1€B,

1
1
eolw S, = w4+ [ g 3w~ Hw)]
’LEBt2

1 1
y / H(wS,, +z(whS,, —wS,,))de - / H(wS,, + 2(wS,, — w,))dz].
0 0
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Since
1/4

5 X Hee) | el o (FE)

) B
1E€EBL

for any ¢’ < t, then the formula above can be bounded as:

1/4
log?(2p
<2 (FEPD) bl - w4+ I - W

Co
+ EHWLSQ - Wstz ||+COHWI75751 - WStl H+CO||WLS?52 - Wstz ”

1/4

log*(2 1 ro,o 1
=2L (gép)) + 3co M 5 —(=+ ) + codiy t,-

This finishes the proof of the first inequality. Then by defining

1/4
log*(2p) 1 r,o 1
f= <2L < 5 +3coMi—; i (E + 31/4) + Codji gy | Sjm.ga

and using the same argument as Equation — (except that Aw and Ag are replaced with Aw® and
Ag®), the following inequality thus holds:

BS, AwS, AwST BY, Ag® AgST
S Ja Jq q Jq q q
b, = |1Ag°;, — <B T T : ; | Aw®, |

T T
wS; BY; AwS;, AgS; AwS;, (48)
<[ +eyrre —1f
and thus o
189%;, =B, Aw; | < [(1+ et 1,
which finishes the proof.
For simplicity, we denote M{ := M; 2 ——. So the preliminary estimate of the bound on ||w*; —
277 Bl/4
w!5, || becomes: [|w® — w5y ||< M (L + 5i7)
O

Similarly, we get a SGD-version of Corollary [T}

Corollary 2 (Approximation accuracy of Quasi-Hessian to mean Hessian). Suppose that ||w®y — w5 ||<
S(r 1
M1 (E + W) and

1/4

1 log?(2p)

5 Hwt | - ol (2
i€By

hold for any t' <t. My and Mls are provided in Theorem |7, i.e. My = 262 and Mls =M, —L——. Then

27 nT gi/a

for any t' and j,, such that j,, <t < j,, +To—1 and t' <t, the followmg inequality holds:

s s
I1H — B%, <&,

J1:Jm

1 log?(2p)\ /"
0g
= Ay + 37+ o+ 2o (L)
where recall again that cy is the Lipschitz constant of the Hessian, d;, ;.. +1,—1 @5 the mazimal gap between

the iterates of the SGD algorithm on the full data from j1 to j,m +To — 1 and A = M +co in
which e is a problem dependent constant defined in Theorem [7, ¢i is the "strong mdependence constant
from Assumption .
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This proof is similar to the proof of Corollary [I} First of all, H, B, &, ;. in Corollary [1| are replaced
with HY, B?, 591 jm- Second, Theorem |7| holds and thus the following inequality holds:

1/4

log?(2 r 1

|HS, —H5, |<2L (gB(p)) + cody ;, + 3coMS (= +

™ n Bl/4)

B® can be bounded as:

. . . S
by using strong independence from Assumption |5 [|H”; o

m

HS, —BS, |<vmll+e™—1%. (d, . pans(hy Ly 2 (gt (49)
H”;,, i 1< VM e) P J1:dm+To—1 1(% Bl/4) a — B

Then by combining the two formulas above, we know that Corollary [2| holds. Note that the definition of

jsl n, Can be rewritten as below:
1/4
r 1 2 log?(2p)
e = Al I g 2 () (50)
T 1
= Adjl,jerTofl + Alg + A2m

in which Ay := 3AM13 and Ay := 3AMIS + w.

co
We can do a similar analysis to Lemma [8] by simply replacing w; and F(x) with w*; and G B,S:

Lemma 10. Let us use the definition of dy 4 from Theorem l]

di,q = max (”""Sa - “’Sb”)kgangq

— )k , (log(p+1))* )/ ; ity i
where k < q¢ < t, then drq < (1 —nu)®do,q—; + 2c2 = holds with probability higher than

_ __ log(p+1)VB
1—t(p+1)exp < 442 (“"5(1};1))2)1/4> .

Proof. According to Lemma [5, we can define a random matrix S; = +(VF;(w¥,) — VF(w®,) where recall
that VE(w®,) = 23" | VE, o(w¥,) (i € B;). Due to the randomness from SGD, we know that E(S;) = 0.
Based on the definition of Z in Lemma [5, Z = % ZieBt VF;(w?,) — VF(w?,). Also note that VF;(w?,)
and VF(w?®,) are both p x 1 matrices, so d; = p and dy = 1 in Lemma

Moreover according to Assumption [VF;(w,)||< c2. Then we know that V(Z) < % and ||S;||< 22.
So according to Lemma [5] the following inequality holds:

P(|Z][= =) = P1f(||% Y VE(W ) = VF(w )= z)
i€By

g2 2
< (d1 + dz2) exp P I— =(p+1)exp P aa— Ve >0

4c3 cox 4c3 cox
B 3B Ry

(51)

1/4
By setting x = co (M) , the formula above is evaluated as:

o 9o 1/4
Pr(Hé Z VF;(w®,) = VF(w®,)||> c2 (Ug(]);m) )
1€EBy
< (p+ 1)exp log(p +1)vB

442 (Uog(z?l))z)l/‘*
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So by taking the union for the first ¢ iterations, then with probability higher than 1—¢(p+1) exp (— ;Zi(p :;131\{)2?) v, ) ,
4+2 ng

the following inequality holds for all ¢’ < ¢:

(log(p +1))2\ "/
1% S VE(wWS,) = VEWS,)||< e (1082 D) (52)
ZEZB,/ ( B )

Then by using the similar arguments to Lemma[8] we get:

2co [ (log(p +1))?
B

1/4 gy 1/4
5 log(p+1
Il (1) oo 202 (BBEERE) T 1w, mws e, (R0

1/4
and thus dy ; < (1—nu)kdy g—k+M (W) holds with probability higher than 1—¢(p+1) exp ( z?i%éﬁﬁ)”“) )
435

In what follows, we use U3 to denote (p + 1) exp <_ 2?%(1;;;1)1‘)/)?)1/4).
4+2 Of

O

Then by using the definition of £ 3 the following inequality holds with probability higher than 1 —t W5
for any x such that for jo + (x +m — 1)TO < t, the following inequality holds:

fhjm = j“s[v)“l’xTOgjO“r(iU‘l’WL*l)To S (1 - nl’l’)xToAd‘jo,j0+ngfl
1/4 (53)
(log(p +1))*
R s

A.3.3 Main recursions

I u,s ||.
Ak

We bound the difference between w!*¥;, and w'-%;. First we bound |w*; — w
Theorem 8 (Bound between iterates on full and the leave-r-out dataset). When

ABt/ < r 1
B —n ' Bl/A

holds for all t' < t, ||w¥, — w"5,[|< 2C2( + gi71)- Since with probability higher than 1 —t x Wy,

ABtl < r 1
B =n B

holds for all ' < t. Then with the same probability, ||w®; 1 — w5y 1]|< My (% + ﬁ) for all iterations
t' < t, where recall that M; = %2

Similarly, we can bound the difference between wl, and wy.

Theorem 9 (Bound between iterates on full data and incrementally updated ones). Suppose that for at
some iteration t and any given t' <t such that j, <t < jl + Ty — 1, we have the following bounds:

S S log2(2 1/4
L H v =By 1< &5 51 = Adjy gy, 47~ 1A 1(%+ﬁ)+A%L(OgB( p)) ’

QAB .

- n

1.
Bl/4
3. Formula holds for any x such that jo + (x +m — 1)Ty < ¢;

+Ax M, ((log(%+1))2>1/4 <

por=

S
4- é.jovjo-ﬁ‘(m—l)To
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then
202 r 1 1

IS, —w' i |< M
Hw t'41 w t+1H (5—%—31/4)[1,(71 Bl/4) 1( Bl/4)
for any t' <t Recall that co is the Lipshitz constant of the Hessian, My and A are defined in Theorem[§ and
Corollary[g respectively, and do not depend on t.

in particular for all t, the following inequality holds:

202 r 1 1
||,wI7S75+1 - wst+1H§ (1 r 1 - Ml ( + Bl/4)

Similarly, we will show that both inequalities |H®; — B®;
) hold for all iterations ¢.

S noand [wh i —wS ||< MP(Z +

Jm S J1:Im

Bl/4
Theorem 10 (Bound between iterates on full data and incrementally updated ones (all iterations)). Suppose

that there are T iterations in total for each training phase, then with probability higher than 1 —T x (¥ +
Wo+V3), for any t where jp, <t < jm+To—1, |[w'S; —w||< T—2——M: (% +Bl/4) and |H®,— B, ||<

S where 53917]4 is defined in Corollary@ Uy is defined in LemmaE Wy is defined in Theoremla and Uy

J15)m’

is defined in Lemma[T0,
Then we have the following bound for ||[wY; — w'||.

Theorem 11 (Main result: Bound between true and incrementally updated iterates for SGD). Suppose that
there are T iterations in total for each training phase, then with probability higher than 1—T x (U1 +Wy+TU3),

the result w'*%; of Algorithm approzimates the correct iteration values wV>S, at the rate
U,S whS r 1
H’LU t — W t||<0(( Bl/4))

So [Jw”%, — w54 is of a lower order than (% + ﬁ)

A.3.4 Proof of Theorem
Proof. By subtracting w®; — w¥%,, taking the matrix norm and using the update rule in equation and

(6), we get:

w1 = w5 |

= |w® —nGp.s(w%) — (W' = GG _aps(WP)) ||

= [|w® = w5 =0 (G s(w®) = Gp_aps(W")) ||

- w5 —n(Gps(w¥) — Gps(Wwh®)) (54)
+Gp (W) — Gh_ap s(wh))

= ||w% — w5, — (G s(W®) — Gps(W"5))) +

1 (Gps(W"%) = Gi_aps(w’)) |

By Cauchy mean-value theorem and the triangle inequality, the above formula becomes:

= ||Wst

< ||wSt —wis / Z H W t+96( S —w t))dx) (W t— W U’St) [[-+nll0¢,s]|

1EB:
= (I— B/ ZH w t+x( S —w t))dx)) (wst—wU’St) [I-+71|6¢, 5]l
1€B:

Then by using the Lemma [3] and Lemma [J] the formula above can be bounded as:

AB
< (U= ) [ws = w [ +n2e, =
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Then by using Lemma [J] and using the formula above recursively, we get that with probability higher
than 1 —¢t- ¥y, |[w — w9 < 2%(% + 5i77) holds for all iterations ¢’ < ¢, which finishes the proof.
O

A.3.5 Proof of Theorem

Proof. For any t' < t, by subtracting w°, by w!*°, and taking the same argument as equation —
(except that wy, wly, H, B, n, r are replaced with wo, whdy, HS, BS, B, ABy), the following equality
holds due to the bound on |[HY, — B%; |:

w51 — W |
2ABincs (55)

B
<(1- s LS _ .S .
< w2 = w2+ 5—R,

WJF”B—A& J1,dm

Since % <, -+ L for all iterations between 0 and ¢, the following two inequalities hold:

A
2AByncs _ 2ney < 2ncs B 2nca (1 n 1 ) (56)
B - AB, %—1‘@—1 1-Z— 2l 'n  BUAY
B 1 1
= < - ) (57)
B-AB; 11— 7 1= (; + 5i)
1/4
Moreover, since Formula holds and ﬁ))j0+(m71)T0 + A x M, (W) < 4. then:

S — S .TTO
Jisdm — Sjo+aTo,jo+(z+m—1)To = (1 - 77”) Adjo,jo-i-mTo—l

/4
r ! (log(p+ 1))\
/4
r 1 (log(p+ 1))
< Adjo,j0+mT0_1 + Alﬁ + AQW —+ AMl (B
log(p + 1)) 1/4
= €j07j0+mTo—l + AM; ((g(p‘B))) < %

Then the Formula can be bounded as:
||WI’St'+1 - Wst’+1||

/4
B s (log(p + 1))? ! 1,8 s 2ABncs
< (=4 ng—r g5 & jorm-nn, T4 X M (B Jw" e —wull+ 51

2\ 1/4
é-S'-‘rn—lT<i>‘/4><‘7\4-1(%) 2nc r 1
Jo,do+(m—1)To )HWI’St/ —WSt/”"’ Tc2

T r (7+ )a
1— (5 + 5i) 1—L— =7 n B

<A =nu+n

which uses equation and . Then applying the formula recursively from iteration ¢ to 0, we can
get:

[wh 51— Wy

< 1 2nca (r n 1 )
S - 4 1 _r _ 1\~ 1/47"
( . 5fo‘J'o-%—(m—l)To—’_202(w) ) 1 777’ Bt/4 K B/
T -G+ 557)
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Then since 55’; Jo+(m—1)To < %, the formula above can be further bounded as:

_ 2¢o r n 1 )
- 1/4\, T B1/4
r 1 (log(p+1))? n

(1= b= G — A ¢ M (252
202 T 1
< (= + )-
(%_%_ﬁ)ﬂn B/

A.3.6 Proof of Theorem [10]

The proof is the same as the proof of Theorem | except that w, w!, n, 7, &, .., H, B need to be replaced
by w°, wl B, r, fs . i . H®, B® and the main theorems that the proof depends on will be replaced by
Theorem [J] and Corollary @ But we need some careful explanations for the probability, which is shown as:

Proof. We define the following event at a given iteration k:

1
Qo(k) = {w®e — w5 < Ml( + )b

1
(k) = {[wSh — whS < MF (= ~+ )b
Qo(k) = {|H% 1 —B%; <&} (m <k—1<jm+To—1),

2 /
Qs(k) =] L > Hy(wS1) | ~HwS)|< L log™(2p) 1
BieBk_l B

( ) {gjo-‘rlTo Jot(z+m—1)Ty = (1 - nﬂ)jOerTOAdO,mTo—l

(log(p +1))*\ " . |
—|—A1 —|—A2B1/4+AM1 — 5 } where jo+ (z4+m—1)To <k—1<jo+ (x + m)Ty — 1,
ABk 1 T 1
() { +Bl/4}

For all ¢, according to Corollary [2| the following equation holds:

t t—1

ﬂ R 2 (k). ) (k) = 1.
k=1 k=1

in which the co-occurrence of multiple events is denoted by () or “”. So this formula means that the
probability that Qo (k) is true for all k£ < ¢ given that the events Q; (k) and Q3(k) are true at the same time

for all k <tis 1.
Similarly, according to Theorem@ Pr(N_; (k)’ Mr—y Qa(k), Ny k), N, Q5(k)) = 1. Then we

know that:

Pr(() (k)| () Q2(k), () Qalh), () Qs(k)) - Pr(() Q2(k)] () (k). () Qs (k)
k=1 .

k=1 k=1 k=1 k=1 k=1 k=1
() (8. () Q9] () 20k, () (k). () (k). () (k) = 1.
k=1 k=1 k=1 k=1 k=1 k=1

which can be multiplied by
t—1 t—1 t—1 t—1
r(() )| ) Qak), () 2a(k), () 25 (k))
k=1 k=1 k=1 k=1
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The result is then multiplied by

Then the following equality holds:

which uses the fact that (},_, 2, (k) ﬂz_:ll Q, (k) = Ny (k) (y = 1,2,3,4,5). So by repeating this until
the iteration jg, then the following equality holds:

Pr(() @a(k), () Q2(0)| () Qalk), () Qs(k), () 2k, () (k) =1 (58)
k=1 k=1 k=1 k=1 k=1 k=1

When t < jo, we know that w!¥, = w5, and M7 > M, which means that if Qo (k) holds, then ©; (k)
holds when w'°;, = w9, and thus

ﬂ O (k ﬂ Qo(k

Then according to Theorem [8] we know that:

Pr(() Qo(k)| () Q5(k)) =
k=1 k=1

By multiplying the above two formulas, we get:

Pr(() (k)] Qo(k)) - Pr([) Q0(k)| () (k)
k=1 k=1 k=1

k=1
= Pr([) (), [ Q0 (k)] () () =
k=1 k=1 k=1

Note that since the probability of two joint events is smaller than that of either of the events, the following
inequality holds:

Pr(() Qu(k), () Qo(k)| () 2s(k) < Pr(() (k)| () (k) <1
k=1 k=1 k=1 k=1 k=1
So we know that: ' _
Pr(() (k)| () Qs(k) =
k=1 k=1

which can be multiplied by Formula and thus the following equality holds:

t

ﬂ ﬂ 2(B)| () k), () 25(k), () Qa(k) =1 (59)
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Then we can compute the probability of the negation of the joint event (o=} Q4 (k), Mi_; Q2(k)):

()0

l )m
k‘
~
N

= Pr(() 2u(k), () Q200)] () Qa(k), () k), () (k) - Pr(() Quk), () Qs (k) () Qu(k))
k=1 k=1 k=1 k=1 k=1 k=1 k=1 k=1

+ Pr(() k), () Q2(0)| () k), () Q5(k), ) Qak)) - Pr(() R (k). () 25(k), ) (k)
k=1 k=1 k=1 k=1 k=1 k=1 k=1 k=1

<Pr(() k), ) ﬂz<k>\ () Qu(k), () Qs(k), () Qa(k) +Pr(() Qu(k), () k), () (k)
k=1 k=1 k=1 k=1 k=1 k=1 k=1 k=1

EU
D
E’
DH
D
53

Pr(() (k). () Q20| () Qulk), () 2s5(k), () (k) =0
k=1 k=1 k=1 k=1 k=1
and
Pr(() (k). () a(0)| () Qulk), () Q5(k), () 2s(k) <1
k=1 k=1 k=1 k=1 k=1

By further using the property of the probability of the union of multiply events, the formula above is
bounded as:

get:

Then we can know that:

Pr(() Qu(k), (] (k) > 1 — (U + V5 + Uy)
k=1 k=1
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and thus .

r(() Quk) = Pr(() (k). () Qa(k)) = 1 — (05 + Wy + ).
k=1

This finishes the proof.
Similarly, from Formula , we know that for all T iterations:

t t t t t t t
() 0 (2200, () 0. M0 s(0)| () k), () 25k, () Qa(k) =1 (60)
k=1 k=1 k=1 k=1 k=1 k=1 k=1
Through the same argument, we know that:
T T T T
Pr(() Qa(h), (7] 9208, (7] 20, (1 05(0)) 2 1= T(¥a + T+ 01,

k=1 k=1 k=1 k=1

O

A.3.7 Proof of Theorem [11I

The proof is the same as the proof of Theorem [4 I except that w, w!, n, r, &1 ,jm» H, B need to be replaced
by w°, wlS, B, r, jSM HS B® and the main theorems that the proof depends on will be replaced by
Theorem [J] and Corollary I We will show some key steps below.

First of all, according to the proofs of Theorem [I0} we know that the following inequalities hold with

probability higher than 1 — T(¥y + U3 + Uy):

||WSIC - WI,SkHS 1

S

S S .
H”x =B, 1< &5 5
1/4
5 ot r 1 (log(p + 1))
£j0+a:To7j0+(a:+mfl)To < (1 - nu)jo 0Ad07mT0_1 + Alﬁ + A2W +AM, (B
/4
log(p + 1)) !
< o jot(m—1)1, T AM: (((B)) ;
ABk < T 1
B =n A

Then by subtracting w!*%; by w¥»; and following the arguments from Formula to , the following
inequality holds for ||w!®; — w¥%,|| with probability higher than 1 — T x (Uy + ¥y + U3):

||WI’S WU,StH
n s 1,8 U,S
<@ —np+ B — AB;, g W |
c B
RIS WS w5 w b W W
Bn S coMin ,r 1 1.5 U.s Bn s r 1
< (1—77#+ B - AB, J1.jm T 2 (ﬁ"’ 31/4) [wh? —w tH+7B—ABt jhijl(ﬁ—’— 731/4).

1/4
By using the fact that % <- -+ ﬁ and &5, .. < &l jo+(m—1)T, T A X M (W) , the formula
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above can be bounded as:

||WI"St - WU’StH
Bn s coMun v 1 1,8 U,S Bn s r 1
< — _ &Y — ) — ) P S o~ _ I
- (1 At g ag e t g Gt ) ) W = W R 6 MU i)
1/4
" (log(p + 1))°
<[ —=nu+ 11—z —( jSo,joJr(mfl)To—i_AXMl ( B )
n Bl/4
coMin v 1 1,8 U.s n s r 1
9 (ﬁ Bl/4 )]”W t— W t||+1 _r 311/4 jo-‘rxTo,jU—‘r(Jc-‘rm—l)ToMl(ﬁ + Bl/4)'
: s (og(p+1))* | /4 : cs :
Since orjot(m—1)Ty T A x My (T) < % and B is a large mini-batch size, then
1/4
U s (log(p + 1))° coMun,r 1
1—(W—1£B}M(jo,m(ml)TﬁAle( B ) — 5 <E+Bl/4>><1'

Then after explicitly using the definition of §j51 jn, and following the argument of equation to 7
we get:

I U
HW jot+(y+m)To — W .jo+(y+m)T0||

< (1 - nc)yTo ||WIj0+MT0 - WUj0+mT0 ”

M (5 + ﬁ) T i 1
n_ (1= nC)Y™ (1 = npr)°do 1 ——— 61
C(1—L—35im) 1_(11_:775)7"0 (61)
1 Mi(E+5im) 7 1 (log(p + 1))2\/*
n A=+ Ap—— + AM, | =2
T -t - b e TR < B ) )

when ¢ — oo and thus y — oo, (1 —nC)¥" — 0. Also with large mini-batch value B, A1~ + Agﬁ +

1/4
AM; (W) is a value of the same order as - + ﬁ. Thus

I U T 1
1w o rtmy s = W sor remmo = 00 + 77
and 1
U,s 1,8 r
lw®? = whl|< o=+ )

B Details on applications

B.1 Privacy related data deletion
The notion of Approximate Data Deletion from the training dataset is proposed in |Ginart et al.| (2019):

Definition 1. A data deletion operation R4 is a d—deletion for algorithm A if, for all datasets D and for
all measurable subset S, the following inequality holds:

PrlA(D_;) € S|D_;] > 6Pr[Ra(D, A(D),i) € S|D_i],

where D is the full training dataset, D_; is the remaining dataset after the i, sample is removed, A(D)
and A(D_;) represent the model trained over D and D_; respectively. Also Ra is an approzimate model
update algorithm, which updates the model after the sample i is removed.

This definition mimics the classical definition of differential privacy (Dwork et al., |2014]):
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Definition 2. A mechanism M is e-differentially private, where € > 0 , if for all neighboring databases Dy
and Dy, i.e., for databases differing in only one record, and for all sets S € [M], where [M] is the range of
M, the following inequality holds:

Pr(M(Dy) € 8] < e Pr[M(D;) € 9).

By borrowing the notations from |Ginart et al.| (2019), we define a version of approximate data deletion,
which is slightly more strict than the one from |Ginart et al.| (2019):

Definition 3. Ry4 is an e—approximate deletion for A if for all D and measurable subset S C H:
P(A(D_) € S|D_;) < ¢“P(Ra(D, A(D), i) € S|D_.)

and
P(Ra(D, A(D),i) € S|D_:) < e“P(A(D_) € S|D_»).

To satisfy this definition for gradient descent, necessary randomness is added to the output of the BaseL
and DeltaGrad. One simple way is the Laplace mechanism (Dwork et al., 2014]), also following the idea from
Chaudhuri and Monteleonil (2009) where noise following the Laplace distribution, i.e.

2 1 ||
L = — exp(—2b
oplol o) = oo~

is added to the each coordinate of the output of the regularized logistic regression. Here p is the number of
the parameters, A is the regularization rate and % is the sensitivity of logistic regression (see [Chaudhuri
and Monteleoni| (2009)) for more details).

We can add even smaller noise to w*, wV" and w!”, which follows the distribution Lap(g) for each

coordinate of w*, wU" and w!” and is independent across different coordinates. Here § > v/Pdo and
1 Mir 1 r
0o = 1 r coMyr 271—7“( l_LMlﬁ)
n(gu — g5 — “50) 3 m

(which is an upper bound on |[wY" —w!"||), such that the randomized DeltaGrad preserves e—approximate
deletion.

Proof. We denote the model parameters after adding the random noise over w’, w/>® and w/-?, and v; as

the value of v in the i, coordinate. We have:

)

€

* * * * *
* B* WU WU wl* _whB* | Lap(

)

Given an arbitrary vector z = [z1, 22, . . ., 2|, the probability density ratio between Pdf (WU’R* =z) and
Pdf(w!"F" = z) can be calculated as
_wU*
Pdf(wVE" = g) T2 & exp(— L2
I,R* _ - Z;—WIr
Pdf(wh" =z) TP < exp(—e 2V

e(|z; — wV'|—|z; — w!}))

=TIIY_, exp( 3 )
e(jw!i —wYil)
Sﬂleexp(#)
I* U*
E(||lW° —W 1
— exp( =),
Since
[w'™ = w i< Vplw' —wY o= pllw" — W
Then

7
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Pdf (wUE" = z)

Pdf (wh B = z)

6\/]350
]

e(lw"” —w""|)

< exp( )

< exp( ) < exp(e)

U,R* _
Similarly, we can also prove 1; ZJ} (WY R*=g)

Paf W =z) = exp(e) by symmetry.

C Supplementary algorithm details

In Section [2, we only provided the details of DeltaGrad for deterministic gradient descent for the strongly
convex and smooth objective functions in batch deletion/addition scenarios. In this section, we will provide
more details on how to extend DeltaGrad to handle stochastic gradient descent, online deletion/addition
scenarios and non-strongly convex, non-smooth objective functions.

C.1 Extension of DeltaGrad for stochastic gradient descent

By using the notations from equations —, we need to approximately or explicitly compute Gp g, i.e.
the average gradient for a mini-batch in the SGD version of DeltaGrad, instead of VF' , which is the average
gradient for all samples. So by replacing w;, w';, w!;, VF, B and H with w°;, w¥5, wl'%, Gpg, B®
and H® in Algorithm |1} we get the SGD version of DeltaGrad.

C.2 Extension of DeltaGrad for online deletion/addition

In the online deletion/addition scenario, whenever the model parameters are updated after the deletion or
addition of one sample, the history information should be also updated to reflect the changes. By assuming
that only one sample is deleted or added each time, the online deletion/addition version of DeltaGrad is
provided in Algorithm [2] and the differences relative to Algorithm [1] are highlighted.

Since the history information needs to be updated every time when new deletion or addition requests
arrive, we need to do some more analysis on the error bound, which is still pretty close to the analysis in
Section [Al

In what follows, the analysis will be conducted on gradient descent with online deletion. Other similar
scenarios, e.g. stochastic gradient descent with online addition, will be left as the future work.

C.2.1 Convergence rate analysis for online gradient descent version of DeltaGrad

Additional notes on setup, preliminaries

Let us still denote the model parameters for the original dataset at the ¢y, iteration by w;. During
the model update phase for the k;, deletion request at the ¢, iteration, the model parameters updated by
BaseL and DeltaGrad are denoted by wY;(k) and w!,(k) respectively where w¥;(0) = w!,(0) = w;. We
also assume that the total number of removed samples in all deletion requests, r, is still far smaller than the
total number of samples, n.

Also suppose that the indices of the removed samples are {iy,is2,...,%,}, which are removed at the 14,
2nds 3rd, - - -5, Ten deletion request. This also means that the cumulative number of samples up to the kqp,
deletion request (k < r) isn—k for all 1 < k < r and thus the objective function at the ky, iteration will be:

iZ Ry
where Ry = {i1,42,...,95}. Plus, at the ky, deletion request, we denote by Hf the average Hessian
matrix of F'*(w) evaluated between w';(k + 1) and w!;(k):
1 1
H = — H;(w!y (k) + z(w!(k+ 1) — w!(k)))dz
T IR
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Algorithm 2: DeltaGrad (online deletion/addition)

Input : The full training set (X,Y), model parameters cached during the training phase for the full training
samples {wo, w1,...,w;} and corresponding gradients {VF (wo),VF (w1),...,VF (w;)}, the
index of the removed training sample or the added training sample i,, period Ty, total iteration
number 7', history size m, warmup iteration number jo, learning rate n

Output: Updated model parameter w',

1 Initialize w’o < wo

2 Initialize an array AG = ||
3 Initialize an array AW = ||
4 fort=0;t<T;t+ + do

5 if [((t — jo) mod Tp) == 0] ort < jo then
6 compute VF (wlt) exactly
7 compute VF (w';) — VF (w;) based on the cached gradient VF (w¢)
8 set AG [k] = VF (w'y) — VF (wy)
9 set AW [k] = w'; — wy, based on the cached parameters w;
10 k—k+1
11 compute w',11 by using exact GD update (equation )
12 Wi Wlt
13 VE(w;) < VF(w';)
14 else
15 Pass AW [—m :], AG [-m :], the last m elements in AW and AG, which are from the ji*, ji* ... jih
iterations where j1 < jo < --- < jm depend on t, v = w!; — w¢, and the history size m, to the
L-BFGFS Algorithm (See Supplement) to get the approximation of H(w;)v, i.e., B; v
16 Approximate VF (WIt) =VF(w)+B,,, (WIt - wt)
17 Compute w’; 11 by using the ”leave-1-out” gradient formula, based on the approximated VF(wIt)
18 wi — wly
19 VF(w) < 5 [n(By,, (w!y —w,) + VF(w;)) — VF;,. (w,)]
20 end
21 end

22 return wIt

Specifically,
1~ [!
HY =Y [ HW0) +alw!i() - w0)de.
i=170

Also the model parameters and the approximate gradients evaluated by DeltaGrad at the r — 14, deletion
request are used at the ry, request, and are denoted by:

{wlo(r = 1), wli(r—1),...,wli(r—1)}

and
{g" (WIO(T -1)).9° (whi(r— 1D),....q° (wft(r — 1)}
Note that g®(w!i(k)) (k < r) is not necessarily equal to VF due to the approximation brought by

DeltaGrad. But due to the periodicity of DeltaGrad, at iteration 0,1,...,jo and iteration jo + 27y (z =
1,2,...,), the gradients are explicitly evaluated, i.e.:

g (wi(k) = —— 3 VE(w! (k)
iZ Ry,

fort =0,1,...,joor t =jo+aTp (x > 1) and all k <.
Also, due to the periodicity, the sequence [Ag;,, Agj, ;. ..,Agj,,_,] used in approximating the Hessian
matrix always uses the exact gradient information, which means that:

Ay, = (3 VW, (0) - Y VAW, (k- 1)
ig Ry iZRy,
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where ¢ = 1,2,...,m — 1. So Lemma |§| on the bound on the eigenvalues of B; holds for all ¢ and
k=1,2,...,r.

But for the iterations where the gradients are not explicitly evaluated, the calculation of g¢(w’;(k))
depends on the approximated Hessian matrix B?;l and the approximated gradients calculated at the ¢

iteration at the k — 1-st deletion request. So the update rule for g%(w!,(k)) is:
1 _
9" (wa()) = L {(n— o+ DB (w (K) — whi (k1)
+gt(wli(k = 1)] = VE, (why(k))}.

Here the product B?ﬂ:l - (wli(k) — wli(k — 1)) approximates

(62)

1

T 2 VEWIR) - VEW(k- 1)

i¢Ry, 1

and g%(w!;(k — 1)) approximates n%kﬂ Zing_l VE(wli(k—1)).
Similarly, the online version of Aw (at the kq, iteration) becomes:

A’Lqu (k?) = leq (k‘) — leq (k} — 1)

where ¢ =1,2,...,m — 1.

Similarly, we use d;, j, (k) to denote the value of the upper bound d on the distance between the iterates
at the ky, deletion request and use B?;l to denote the approximated Hessian matrix in the k;, deletion
request, which approximated the Hessian matrix Hf -1

So the update rule for w';(k) becomes:

wly(k) — D iR, VE,(w!i(k)), [(t —jo) mod Ty =0]ort<jo
wlen (k) = ¢ whik) = ——{(n — k+1)[B} " (w'i(k) = whi(k — 1)) (63)

JIm

(w'
+gt(whe(k = 1)) = VE, (w'i(k))}, else.

Proof preliminaries.

On each deletion request, the BaselL model parameters are retrained from scratch on the remaining
samples. This implies that Theorem [2[still holds, if we replace wV;, w; and r with w¥;(k), wY(k — 1) and
1 respectively:

Theorem 12 (Bound between iterates deleting one datapoint). [|w",(r) — w",(r —1)||< My 2 where My =
2¢, is some positive constant that does not depend on t. Here u is the strong convexity constant, and cy is
the bound on the individual gradients.

By induction, we have:
T
Iw?s(r) = well= [lw”s(r) = w”, (0)]| < M. (64)

le
Then let us do some analysis on d;, ;, (k). We use the notation M{% for =S I (2w where M7

is a constant which does not depend on k.

2M

71
Lemma 11. If |w! (k) —w!,(k—1)||< 1—ﬂ—2<’“ o
where M, is defined in Theorem [13

T, forallk <r, thend,, ;,(r) < djmjb(O)—l—Qr-M{%
M

Proof. Recall that d;, j, (k) = max(|[w’, (k) — w!.(k)||);j.<y<z<j,- Then for two arbitrary iterations y, z, let
us bound ||w’, (k) — w!, (k)| as below:

I, (k) —w' . (k)|
= W (k) = WL (k) + Wy (k= 1) = who(k 1) + Wl (k— 1) = w!, (k= 1)
< Wy (k) — Wy (k= 1) W (k) — W (k= 1)+ [w (k= 1) = why (k = 1)]|.
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Then by using the bound on ||w';(k) — w!,(k — 1)||, the above formula leads to:

2M;
<2. Ty 3 + Wl (k—1) —w!, (k- 1)

=50 = =5=05)

2M; 2My
By using that 17@72&5—1)(2““) < 17i172(:_1)(2“u) and applying it recursively for k = 1,2,...,r,
T A (R C i A G
we have:
2M;
oy () =)< 2 i, lw?=(0) = w'y (0)]]-
n n n

Then by using the definition of d;, ;, (k), the following inequality holds:

2M,
djmjb (T) < djmjb-‘rTo—l(O) +2r- 1 _ rtl _ 2727’—1) (2L+p)'
n n o

O

Recalling the definition of M7 %, this is exactly the required result.

2M, 2M,
. . — I I T
We also mention that, since Py 2(2,1)(2““) < Py 2(:},1)(2““), then ||[w'¢(k)—w'i(k—1)||< M]
w Im

1
_k+1  2(k—1) _rtl  2(r—1) n

n n

for any k <.

Theorem 13. Suppose that at the ky, deletion request, ||w’;, (k)—w'; (k—1)||< M7L, whereq=1,2,...,m

and My = 2% Let e = mf# for the upper and lower bounds K1, Ko on the eigenvalues of the quasi-
Hessian from Lemma [0, and for the Lipshitz constant ¢y of the Hessian. For 1 < z+1 < y < m we
have:

_ _ -1
”H?z T H?y 1H§ C()djzyjy (k — 1) + COMl E
and

B L 1
1Ag;. — B}t Aw; [|< [(1+e)? 7 = 1] - eo(dy. 5, + M] —) " Sjrgm (k= 1)

where sj, ;, (k —1) = max (||Aw,(k — 1)H)a=j1,jz,...,jm = max (le’sa(k‘ —1) —wh, (k- Q)H)a:jl,jz,.“,jm'
Recall that d is defined as the mazimum gap between the steps of the algorithm for the iterations from j, to
jy :

d;. j,(k — 1) = max (|Jw'o(k — 1) — w'y(k — 1)|)) (65)

J= Sagbgjy :

Proof. Let us bound the difference between the averaged Hessians ||H§€z_1 — ny_lﬂ, where 1 < z <y < 'm,
using their definition, as well as using Assumption ] on the Lipshitzness of the Hessian. First we can get
the following equality:
k—1 k—1
H;, " —H;

1
= |l | [H(w';, (k= 1) +a(w'j, (k) = w'j, (k —1)))]dz

- / [H(w' ;. (k= 1)+ a(w'; (k) — w';_(k = 1)))lde]| (66)
0

= 1[G = 1)+ o, () e = 1)

—H(w'; (k= 1) +a(w';. (k) = w;_(k = 1))))dz]
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Then we can bound this as:

< e / w5, O — 1) + 2wy, (k) — wi;, (k1))

—[w'j (k—1) + w(WIgz(k) —w'j (k= 1)]|dz
< c0||w’j (k—1) —w'; (k1)

HW gy (k) = whj, (k= 1) = (w'; (k) = w';_(k = 1))

< CO||W s (k=1)—w'; (k- )||

Pl () = w s (k= D)+, (k) = w, (k= 1)
1 1

< cody, . (k—1)+ CoM{”E < codjy jo+1o-1(k — 1) + CoMfE

On the last line, we have used the definition of d;_ ;,, and the assumption on the boundedness of [|w?;_(k) —
1
w. (k= 1.
Then by following the rest of the proof of Theorem [I}, we get:

L 1
1Ag;. — By, Aw; [|< [(1+e)?*7" = 1] - co(dy, 5, (k — 1) + M —) " Sjrgm (k= 1).

O

Similarly, the online version of Corollary [1] also holds by following the same derivation as the proof of
Corollary (1] (except that r, &;, ;.. and dj, ;. +1,—1 is replaced by 1, &, ;.. (k —1) and d;, j, +1,—1(k — 1)
respectively), i.e

Corollary 3 (Approximation accuracy of quasi-Hessian to mean Hessian (online deletion)). Suppose that
at the ky, deletion request, |w'; (k) — w!; (k — 1)[|< M7L and ||w' (k) — wy(k — 1)||< M7 L where s =
1,2,....,m. Then for j,, <t < jm+Tp—1,

Im

1
|Hy ™" — BEY < ¢, 5, (k= 1) == Adj, 5, 411 (k — 1) + AM] —. (67)
n

Recall that A = M + ¢, where ¢ is the Lipschitz constant of the Hessian, c1 is the ”strong
independence” constant from Assumptzon@ and dj, j, +1,—1(k — 1) is the mazimal gap between the iterates
of the GD algorithm on the full data from j1 to jm + To — 1 after the k — 1-st deletion.

Based on this, let us derive a bound on [[VE;(w';(r))[, lg*(W'+(r)) — 755 Yigr, VE(w':(r))| and
g (we(r))]l.

Lemma 12. Suppose we are at an iteration t such that j, <t < j,, + Ty — 1. If the following inequality
holds for all k < r:

1
lw' (k) — w'y(k = 1)[|< My
then the following inequality holds for alli=1,2,...,n
1
|VE;(w'(r —1))]|< My —Lr + 5.

Proof. By adding and subtracting VF;(w!;(r — 2)) inside ||VF;(w!(r — 1))|, we get:

IVEi(w!i(r — 1))
= |VEj(w!i(r = 1)) = VE(w!i(r — 2)) + VF;(w!,(r — 2))|
< VE(W!(r = 1)) = VE(w' i (r = 2)) |+ VFi(w' (r — 2))]|
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The last inequality uses the triangle inequality. Then by using the Cauchy mean value theorem, the upper
bound on the eigenvalue of the Hessian matrix (i.e. Assumption [2)) and the bound on ||w!;(k) —w!,(k—1)||,
the formula above is bounded as (recall H; is an integrated Hessian):

= BT (r = 1) (W = 2) =Wl = 1)) - (wha(r = 1) = wha(r = 2) [ VR o7~ 2)|
< LM+ [VE(wy(r — 2))].

By using this recursively, we get:

r—1
1
<klel — L+ ||[VE(w!(0)]< erﬁLTJrCQ.

O
Lemma 13. If at a given iteration t such that j,, <t < jn,+To—1, for all k < r, the following inequalities
hold: 1
[y (k) = w' (k= 1)< My
and “
§j17j7n(k - 1) S 57
then we have

1

1
p— > VE (' (r = 1)) = g (w's(r = )| < rM] —p

igRr—l

Proof. First of all, n%m doigR VFE;(w!i(r—1)) can be rewritten as below by using the Cauchy mean-value
theorem:

1 1
n—r 1 ig%:_l VE(w!i(r—1)) = 71_7r+1[i€%;_2 VE(W!,(r—1)) = VEF,_ (wli(r —1))]
= n%m{(n —r+2)H; 72 x (whi(r—1) — wli(r —2)]
+ Y VE(wW'i(r—2) - VE,  (wi(r— 1)}
iZRr_2

By subtracting the above formula from equation , i.e., the update rule for the approximate gradient,
the norm of the approximation error between true and approximate gradients is:

log 3 VA®Lr - 1) - g - 1)l
iZRr 1
= 2 - B2 x (W= 1) Wi 2)
+ Y VEMW(r=2) = (n—r+2)g" (Wi (r—2))]
iZRr_2

Then by using the triangle inequality, Corollary [3| on the approximation accuracy of the quasi-Hessian
(where the bound is in terms of ¢), and the bound on ||w!;(r—1)—w/,(r—2)||, the formula above is bounded
as:

n—r+2 . .
< I B R - 1) = W - 2)]
1
L1 L I -2 — 2 _9
+“‘T+1H¢e§_2v (Wl =2)) = (= 1+ 2)g" (o = 2) (68)
n—r+2 1 n—r+2 1 S ,
_nfr+1§h7j’"(r ) 'n nfr+1”n77n+2 Z VEFi(w¢(r —2)) = g"(we(r —2))||

iZRr_2
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n—r+2u n—r+2 1 I I

< ——— (M7 — VF; —-2))—g° -2

<) T, D VA= 2) g el = )
iER o

By using that &;, ;. (r —2) < &, the formula above is bounded as:
-1

We can use this recursively. Note that VF(w!;(0)) = g*(w!;(0)). In the end, we get the following
inequality:

<

r—1 r—1
-k 1 1 -k
RS VD P
2 n n2k71n—r

Also for r < n, =E <2 (in fact we assumed r/n < § for a sufficiently small §, so this holds). So we get

S m—pr —
the bound rM{%M.
O

Note that for ”n%m digR VE(wli(r—1))—g*(w!i(r—1))||, we get a tighter bound when ¢ — co by

using equation (68]), Lemma (i.e. dj, j,(r) < dj, j,(0)+2r- M7 1) and Lemmawithout using &;, 4, (r —
1) < &, which starts by bounding ;, ;. (k — 1) where k <=7, j1 = jo + 2T and j,, = jo + (z +m — 1)Tj:

1
§irrjm (b — 1) = Adj, j, +10-1(k — 1) + AM] -
1 1
< Adj, j,,+1,-1(0) +2(k - 1)A - erﬁ + AMfﬁ (69)
) 1
< AL = )™+ 0 do i, -1 (0) + A2k — DM,

which can be plugged into Equation 7 ie.

1 a
| Y VR - 1) - g = 1)
n—r+1
i¢R,_1
n—r+2 rl
< mfm,jm (r—2)Mj o

n—r+2” 1
n—r+1"n—r+2

S VR (- 2)) g (Wi~ 2))|

iRy s
Sn—k+1 1 (70)
<> g Candm (k= 1My
k=1
r—1
n—k+1 i 1 1
: ,; (A = )T 3 (0) + A2 — DM] ] M

) 1 1
< 2A(L = )T 0 dg gy 1 (0)rM] — + 2A(rM] )2

The last step uses that 22+ < 2 and 37,21 (2k — 1) < Y4_,(2k — 1) = 2. So when t — co and thus
z =00, 355 Xign, VE(W (1) — g*(whi(r))ll= o()-
Then based on Lemma and the bound on ||g¢(w!;(r))| becomes:

lg* (W' (r = 1))

1 1
= [lg"(w's(r — 1)) — p—— > VE(wh(r—1)+ p—— > VE(w(r—1))
ieerl igRr—l
apel 1 I 1 I (71)
< [lg*(w t(T—l))—m Z VE;(w t(T—l))H"'Hm Z VE(w(r = 1))
igRr71 Z4€1%7"—1

1 1 1
:erﬁu—l—M{ELr—l—cQ:(r,u—&—Lr)M{g—&—cQ
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Main results

Theorem 14 (Bound between iterates on full data and incrementally updated ones (online deletions)).
Suppose that for any k <r, |w'y(k) — w'y(k—1)||< M] L. At the ry, deletion request, consider an iteration
t indexed with j,, for which j, < t < jm + To — 1, and suppose that we are at the x-th iteration of
full gradient updates, so j1 = jo + 210, jm = jo + (m — 1 + z)Ty. Suppose that we have the bounds

[ A B§;1||§ &g (= 1) = Adj, j, 411 (r — 1) + A(M] L) (where we recalled the definition of &) and

1
S (1 = 1) = Ady a1 = 1) + AT ) < &

n

for all iterations x. Then

1
w1 (r) — whipa (r = 1)< Mf;

Recall that ¢y is the Lipshitz constant of the Hessian, My and A are defined in Theorem[19 and Corollary|3
respectively, and do not depend on t,

Then by using the same derivation as the proof of Theorem [ we get the following results at the ry,
deletion request.

Theorem 15 (Bound between iterates on full data and incrementally updated ones (all iterations, online
deletion)). At the deletion request r, if for all k < r, |w' (k) — w'y(k — 1)||< M{L holds, then for any
jm<t<jm+T0_]-;

1
lw'e(r) — w'e(r = 1)< My~

and
— 7 — Tl
(| H; t- Bjm1||§ & jm (1 = 1) := Adj, ;. 41o—1(r — 1) + AM] -
and . 1
I 7
g 2 VAL = 1) = ¢"(wr = 1)< rMi o p
iZR._1
hold

Then by induction (the base case is similar to Theorem [4]), we know that the following theorem holds for
all iterations ¢:

Theorem 16 (Bound between iterates on full data and incrementally updated ones (all iterations, all deletion
requests, online deletion)). At the 1y, deletion request, for any j, <t < jm +To — 1,

1
lw'e(r) — w'e(r = 1)< My~

and
IR 1
[H, ™ = B} < 8o (0 = 1) 1= Adyy gy (r = 1) + AM] -
and ) .
Hm | Z VE;(w'y(r—1)) — g*(w'y(r = 1))||< T’Mfgﬂ
iZR, 1
hold

Then by induction (from the 7y, deletion request to the 14 deletion request), the following inequality
holds:

1
[w!e(r) = whe(0)]|= [w'e(r) — we[< - My~
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Then by using equation , the following inequality holds:

W' (r) = w!i(r = D= W (r) = wi + we —w!o(r = 1)

< WV +(r) = willHllwe — wo(r = D) (72)

1
<Ml -1 MZ =Ml
n n n

where M> is a constant which does not depend on ¢ or k.
In the end, we get a similar result for the bound on ||[w’;(r) — w9 (r)|:

Theorem 17 (Convergence rate of DeltaGrad (online deletion)). At the ryj, deletion request, for all iterations
t, the result w!(r) of DeltaGrad, Algorithm@ approzimates the correct iteration values w¥(r) at the rate

).

r
[ (r) = w'e(r)]|= o~

n
So [Jw"(r) — w!y(r)| is of a lower order than =

The proof of Theorem

Proof. Note that the approximated update rules for w!; at the r, and the (r — 1), deletion request are:

n o rflwftr—wltr—
T {(n =+ DB} (W) — whi(r — 1)) -

+gt(whe(r = 1)) = VF;, (w'4(r))}

W1t+1(7“) = WIt(T) -

and

N n—r 2wl (r —1) —wl(r —
T {(n =+ DB AW — 1) — whi(r —2) -

+gt(wli(r —2))] = VF;,_ (whe(r = 1))}.

whii(tr—1)=wl(r—1) -

Note that since

g (whi(r—1)) = {(n—r+2)[B] *(wi(r —1) - wi(r - 2))

n—r+1

+gt(wi(r —2))] = VE, _ (wh(r - 1))},
then equation can be rewritten as:

WItH(r -1)= Wlt(r —-1)- #7’—#1{(” —r+ 2)[B’" 2(W (r—=1)—wli(r—2))
+g(whi(r—2))] = VF, _ (whi(r—1))} (75)

=w'i(r—1) —ng*(w'e(r - 1)).

Then by subtracting equation from equation 7 the result becomes:

w1 (r) = whi(r—1)
I

= (w/i(r) = w's(r = 1)) = —{(n —r + DB} (Wi (r) = w's(r = 1))

+g°(whe(r = 1)) = VE, (whe(r))} +ng® (w'e(r — 1))
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Then by adding and subtracting H, ™' and n%m D igR VE(w!(r — 1)) in the formula above and
rearranging the result properly, it becomes:

whipi(r) = whii(r—1)

=" T B E ) ()~ w(r - 1)
= DG (W () = W - 1) (76)
+ n%?%l 4 Z VF(w!i(r—1)) - n%m | Z VF(w!i(r—1))

i¢R,_1 iZ€R,_1

+g°(whe(r = 1)) = VE, (whe(r))} +ng® (w'e(r = 1)).

Then by using the fact that

_ 1
H; (w!i(r) —w!i(r = 1)) + p—— Z VF(w!y(r—1))
iZRr 1
1
= — F(
n—r+1l€;1v W t( )
and
(Y VFE(w'(r) - VE( =) VFw!(
i@R, 1 igR,
Equation becomes:
Wl (r) —wlepa(r = 1)
n—r+1,_,._ r_
- <I—nﬁ<B- L H)) () — wi(r = 1)
(77)
Z VF(w!i(r—1))
l€R7 71€Rr 1

+(n =1+ 1g"(w'i(r = 1)) +ng®(w'e(r - 1)).

Also note that by using the Cauchy mean-value theorem, the following equation holds:

Y VE(wh(r)— > VE(w(r-1)

iZ€R, iZR. 1

= > VE(MW ()= Y VE(wW'(r—1)) = VE, (w'(r — 1))
iR, iZR,
Z / H;(w!i(r — 1) + 2(w!i(r) — w!i(r — 1))dz)(whi(r) — w!i(r — 1)) = VE;,_(w!i(r — 1)),
i€¢R,.

which can be plugged into equation , ie.

w1 (r) = whpi(r—1)

= (1~ n”_ii“a%“ CHY) (i () — whi(r— 1))
S Z/ HL(w!(r — 1) + (wh (1) — W/ (r — 1)))da] (78)
iZR,

. (Wlt(r) — Wlt(r —-1))-VF; (W +(r—1))
+(n—r+1)g*(whi(r— 1)} +ng(whi(r — 1)),
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which can be rearranged as:

wlhii(r) —whia(r—1)
n—r+1

= (L= ——— (B} —H] )(w!(r) - w/s(r 1))

=S [ H = 1)+ ) — W = 1)) ] "
igR, 70

A(W!y(r) = whi(r = 1)) = VE, (whi(r = 1)} = ——g"(w!i(r = 1)),

Then by taking the matrix norm on both sides of equation and using that | H;(w!;(r—1)+z(w!(r)—
wli(r —1)))||> u and HB;;I —H; <&, 4, (r— 1), equation can be bounded as:

I 1() W= D
< (L= ) o(r) =W = )]
O D = D) — W= D)

+ |V, (Wil = D) g (W (r = 1)

+

Then by using Lemma |12| and equation , the formula above becomes:

Les, i NW(r) = whi(r = 1)

n—r+1
Sﬂ‘ﬁ#*‘%

n

n—r

+

-1l n -1l -1
(Ml EL(T - 1) + CQ) + E(Ml E(T — 1)/14 + M1 gL(T — ].) + 02).

By using the bound on &, ;. () and applying the above formula recursively across all iterations, the
formula above becomes:

1 n -1
Sn‘u_wﬂ(n_r(M1ﬁL(r—1)+62)

n—r 2
n—ro i 1opr Cs

2 1
C 2 e -1 - )+ 20)
(n_r_l)ﬂ(( 1n( (r=1)+(r—1Dp) + 2c2)

2My
the formula above can be rewritten as:

Then by using that M; = 2% and M{% = 1_2_2(:,1)(2““),
ol G

n n

g HREUQRL )+ pM (1t - 2 (2E)
_ n n n 7
— (n—r—l)u 1_%_2(2—1)(2LJ”)
220 1
SR T ET T Sy

This finishes the proof.

The proof of Theorem
Proof. Recall that the update rule for w¥(r) is:

1

n—r

WUt+1(7‘) = WUt(T) -n

Y VEwYi(r)

iZR,
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and the update rule for w!(r) is (where the gradients are explicitly evaluated):

wia(r) = wly(r) - ——[(n—r+ DB (whi(r) = w!i(r = 1)) + g*(w!i(r = 1)) = VF, (W' (r))].

n—r

Then by subtracting w1 (r) from w', (r), we get:

[Whia (r) =W (7))
= ) W) — (4 DB W) — W 1)
W~ )] = VB (W)} + 1 37 VR ()
igR,
Then by bringing in H; ' and n%m Yier._, VF(w!y(r — 1)) into the formula above, we get:
(n—r+1)n

+H{ T x (wli(r) = whi(r = 1)) 4+ g*(w!(r — 1))

= [[w'e(r) = w(r) - (B}, —H™) (w!i(r) —we(r — 1))

1 1
S 2 VR ) 4 e 3T VEW (- 1))
i€Rr_1 I€ER,_1
+ nir[VFir(W (F) = VE, (wh(r — 1)) + VE, (wl(r — 1))] + nir S VEMW )]

iZR,

Then by using the triangle inequality and the result from equation 7 the formula above can be bounded
as:

< fwh () —wV () — P I gt ety () — Wl (- 1))

n—r

+ H 7 < (wl(r) = wlh(r = 1) + n—;r—i-l > VE(wW(r—1)

1ER,_1

+ n_T[VFz'T(W i(r) = VE, (Wh(r — 1)) + VE, (w!i(r —1))]
P Z VE(wW (r)[+2A(1 — pn)? 0 dg (1)1, (0 )TM1 +2A(rMy — ) :
iZR,

Note that the first matrix norm in this formula is the same as equation (33 . ) by replacmg n, r, wli, wV,
wy, B, Hy and VF(wy) with n—r+1, 1, w!y (1), w4 (r), wli(r—1), B L H; 'and — 7“+1 ZzeR VE(whi(r—
1)) reps.. So by following the same derivation, the formula above can be bounded as:

< |@- L3 H W) - wUi)]

nfrigRr
v ||% (B~ ) () W) |
Z/ H;(w!i(r— 1)+ 2(wY(r) — wli(r —1)))dz
1€R

1
= [ = 1)+ (w0 = W = D)W ) = W= )]
D gy <wUt<r> - 1)] |

+2A(1 — un)joﬂTOdo,(m_l)To(0)er +2A(rM7] — ) )

Then by using the following facts:
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L T—nH{7 < 1 —np

2. from Theorem [I6] on the approximation accuracy of the quasi-Hessian to mean Hessian, we have the
error bound [H} ' — B V< &, (r — 1);

3. we bound the difference of integrated Hessians using the strategy from Equation ;

4. from Equation (72), we have the error bound [[w¥(r) — w/y(r — 1)||< M~ (and this requires no
additional assumptions),

the expression can be bounded as follows:

n—r + 1 n cOMQT?’]
<A =np+ ggjmm(m,n% (r—1)+ T)HWIt _ WUt”
My(n —7r+1)ry - I
e )"0 dg - 1ym, (0)r My —

1
+ 2A(rM7=)?,
n

which is very similar to equation (36) (except the difference in the coefficient). So by following the
derivation after equation , we know that:

Iw'e(r) = we(r)l|l= o(~)

when ¢t — oo.
O

C.3 Extension of DeltaGrad for non-strongly convex, non-smooth objective
functions

For the original version of the L-BFGS algorithm, strong convexity is essential to make the secant condi-
tion hold. In this subsection, we present our extension of DeltaGrad to non-strongly convex, non-smooth
objectives.

To deal with non-strongly convex objectives, we assume that convexity holds in some local regions. When
constructing the arrays AG and AW, only the model parameters and their gradients where local convexity
holds are used.

For local non-smoothness, we found that even a small distance between w, and w!; can make the
estimated gradient VF(w!;) drift far away from VF(w;). To deal with this, we explicitly check if the norm
of Bj, (w; — wl;) (which equals to VF(w!;) — VF(wy)) is larger than the norm of L(w; — w!;) for a
constant L. In our experiments, L is configured as 1. The details of the modifications above are highlighted
in Algorithm

D Supplementary experiments

In this section, we present some supplementary experiments that could not be presented in the paper due
to space limitations.

D.1 Experiments with large deletion rate

In this experiment, instead of deleting at most 1% of training samples each time as we did in Section 4] in
the main paper, we vary the deletion rate from 0 to up to 20% on MNIST dataset and still compare the
performance between DeltaGrad (with Tp as 5 and jo as 10) and BaseL. All other hyper-parameters such as
the learning rate and mini-batch size remain the same as in Section [4| in the main paper.

The experimental results in Figure [1| show that even with the largest deletion rate, i.e. 20%, DeltaGrad
can still be 1.67x faster than BaseL (2.27s VS 1.53s) and the error bound between their resulting model
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Algorithm 3: DeltaGrad (general models)

© 00 N0 AW N

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32

Input

: The full training set (X,Y), model parameters cached during the training phase for the full training
samples {wo, w1, ..., w:} and corresponding gradients {VF (wo),VF (w1),...,VF (w¢)}, the
removed training sample or the added training sample R, period Tp, total iteration number T,
history size m, warmup iteration number jo, learning rate n

Output: Updated model parameter w’;

Initialize w'o < wo
Initialize an array AG = ||
Initialize an array AW =]
Initialize last_t = jo
is_explicit = False
for t =0;t <T;t++ do
if (t —lasty) mod Ty == 0 ort < jo then
‘ is_explicit = True
else
end
if is_explicit == True ort < jo then
lastt =1
compute VI (wI t) exactly
compute VF (w';) — VF (w;) based on the cached gradient VF (w¢)
/* check local convexity */
if < VF (wlf,) — VF(wf,),wa, —w; >< 0 then
compute w!, 1 by using exact GD update (equation )
continue
end
set AG [k] = VF (w'y) — VF (wy)
set AW [k] = w!, — wy, based on the cached parameters wy
k+—k+1
compute w',;1 by using exact GD update (equation @)
else
Pass AW [—m :], AG [-m :], the last m elements in AW and AG, which are from the ji*, ji* ... jih
iterations where j1 < jo < -+ < jm depend on t, v = w!; — w¢, and the history size m, to the
L-BFGFS Algorithm (See Supplement) to get the approximation of H(wy)v, i.e., B;, v
/* check local smoothness */
if || B;j,, v||> ||v|] then
‘ go to line
end
Approximate VF (wlt) = VF (w:) + B, (WIt — Wt)
Compute w'; 1 by using the ”leave-r-out” gradient formula, based on the approximated VF(w?,)
end
end

return w' +
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Figure 1: Running time and distance with varied deletion rate up to 20%

parameters (i.e. w!* VS wU*) are still acceptable (on the order of 1072), far smaller than the error bound
between w'* and w* (on the order of 107!). Such a small difference between w’* and wV* also results
in almost the same prediction performance, i.e. 87.460 4+ 0.0011% and 87.458 + 0.0012% respectively. This
experiment thus provides some justification for the feasibility of DeltaGrad even when the number of the
removed samples is not far smaller than the entire training dataset size.
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Figure 2: Running time and distance comparison with varying mini-batch size under fixed
jo =10 and varying Ty (Tp =20 VS Tp =10 VS Ty = 5)

D.2 Influence of hyper-parameters on performance

To begin with, the influence of different hyper-parameters used in SGD and DeltaGrad is explored. We
delete one sample from the training set of MNIST by running regularized logistic regression with the same
learning rate and regularization rate as in Section [d] and varying mini-batch sizes (1024 - 60000), Ty (Tp = 20,
10, 5) and jo (jo = 5, 10, 50). The experimental results are presented in Figure For different mini-batch
sizes, we also used different epoch numbers to make sure that the total number of running iterations/steps
in SGD are roughly the same. In what follows, we analyze how the mini-batch size, the hyper-parameters
Ty and jg influence the performance, thus providing some hints on how to choose proper hyper-parameters
when DeltaGrad is used.

Influence of the mini-batch size. It is clear from Figure 2H3] that with larger mini-batch sizes,
DeltaGrad can gain more speed with longer running time for both Basel. and DeltaGrad. As discussed in
Section {4 to compute the gradients, other GPU-related overhead (the overhead to copy data from CPU
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Figure 4: Comparison of DeltaGrad and PrIU

DRAM to GPU DRAM, the time to launch the kernel on GPU) cannot be ignored. This can become more
significant when compared against the smaller computational overhead for smaller mini-batch data. Also
notice that, when Ty = 5, with increasing B, the difference between w¥ and w! becomes smaller and smaller,
which matches our conclusion in Theorem i.e. with larger B, the difference o(> + B%) is smaller.
Influence of Ty. By comparing the three sub-figures in Figure 2 the running time slightly (rather than
significantly) decreases with increasing Ty for the same mini-batch size. This is explained by the earlier
analysis in Section 4] on the non-ideal performance for GPU computation over small matrices. Interestingly,
when Ty = 10 or Ty = 20, ||[w! — w3 does not decrease with larger mini-batch sizes. This is because in

Formula (61]), one component of the bound of ||[w!* — w5 is
My (% + 5i) < 1
o (1 =nC)Y" (1 = nu)’°do,mm, 1 —
C(l-% - zm) Cl- ()T

(while the other component is o(( 7 + B%))) Here do n,—1 increases with larger T and the term (1—nC')¥To
4

is not arbitrarily approaching 0 since yTp cannot truly go to infinity. So when Ty = 20 and Ty = 10, this

component becomes the dominating term in the bound of ||w’*¥ —w%5||. So to make the bound o((Z + -1-))

r
n

hold, so that we can adjust the bound of ||w!** —w"¥|| by varying B, proper choice of Ty is important. For
example, Ty = 5 is a good choice for the MNIST dataset. This can achieve speed-ups comparable to larger
Ty without sacrificing the closeness between w’° and w%5.

Influence of j,. By comparing the three sub-figures in Figure [3] with increasing jo, long “burn-in”
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iterations are expected, thus incurring more running time. This, however, does not significantly reduce the
distance between w/* and w5, It indicates that we can select smaller jo, e.g. 5 or 10 for more speed-up.

Discussions on tuning the hyper-parameters for DeltaGrad. Through our extensive experiments,
we found that for regularized logistic regression, setting Tp as 5 and jo as 5—20 would lead to some of the most
favorable trade-offs between running time and the error |wY — w!-%||. But in terms of more complicated
models, e.g. 2-layer DNN, higher jo (even half of the total iteration number) and smaller 7 (2 or 1) are
necessary. Similar experiments were also conducted on adding training samples, in which similar trends were
observed.

D.3 Comparison against the state-of-the-art work

To our knowledge, the closest work to ours is [Wu et al.| (2020), which targets simple ML models, i.e. linear
regression and regularized logistic regression with an ad-hoc solution (called PrIU) rather than solutions for
general models. Their solutions can only deal with the deletion of samples from the training set without
supporting the addition of samples. In our experiments, we compared DeltaGrad (with Ty = 5 and jy = 10)
against PrIU by running regularized logistic regression over MNIST and covtype with the same mini-batch
size (16384), the same learning rate and regularization rate, but with varying deletion rates.

Table 1: Memory usage of DeltaGrad and PrIU(GB)

. MNIST covtype
Deletion rate 5 o1 e Grad | PrIU | DeltaGrad
2x107° 26.61 2.74 9.30 2.56
5x107° 27.02 2.74 9.30 2.56
1x 1072 27.13 2.74 9.30 2.55
2%x 1077 27.75 2.74 9.31 2.56
5x 10771 29.10 2.74 10.67 2.56
1x107° 29.10 2.74 10.67 2.56

The running time and the distance term ||[wY — w!|| of both PrIU and DeltaGrad with varying deletion
rate are presented in Figure[d First, it shows that DeltaGrad is always faster than PrIU, with more significant
speed-ups on MNIST. The reason is that the time complexity of PrIU is O(rp) for each iteration where p
represents the total number of model parameters while r represents the reduced dimension after Singular
Value Decomposition is conducted over some p X p matrix. This is a large integer for large sparse matrices,
e.g. MNIST.

As a result, O(rp) is larger than the time complexity of DeltaGrad. Also, the memory usage of PrIU
and DeltaGrad is shown in Table |1} PrIU needs much more DRAM (even 10x in MNIST) than DeltaGrad.
The reason is that to prepare for the model update phase, PrIU needs to collect more information during
the training phase over the full dataset. This is needed in the model update phase and is quadratic in the
number of the model parameters p. The authors of [Wu et al.| (2020) claimed that their solution cannot
provide good performance over sparse datasets in terms of running time, error term w¥ — w'! and memory
usage. In contrast, both the time and space overhead of DeltaGrad are smaller, which thus indicates the
potential of its usage in the realistic, large-scale scenarios.

D.4 Experiments on large ML models

In this section, we compare DeltaGrad with Basel. using the state-of-the-art ResNet152 network (He
et al.l [2016)) (ResNet for short hereafter) with all but the top layer frozen, for which we use the pre-trained
parameters from Pytorch torchvision libraryﬂ The pre-trained layers with fixed parameters are regarded
as the feature transformation layer, applied over each training sample as the pre-processing step before the
training phase. Those transformed features are then used to train the last layer of ResNet, which is thus
equivalent to training a logistic regression model.

This experiment is conducted on CIFAR-10 dataset (Krizhevsky et al.l 2009), which is composed of
60000 32x32 color images (50000 of them are training samples while the rest of are test samples). We run

Thttps://pytorch.org/docs/stable/torchvision/models.html
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Figure 5: Comparison of DeltaGrad and BaseL on the CIFAR-10 dataset with pre-trained
ResNet152 network

SGD with mini-batch size 10000, fixed learning rate 0.05 and L2 regularization rate 0.0001. Similar to the
experimental setup introduced in Section [4|in the main paper, the deletion rate is varied from 0 to 1% and
the model parameters are updated by using BaseL and DeltaGrad (with Ty as 5 and jo as 20) respectively
after the deletion operations. The experimental results are presented in Figure [5] again showing significant
speed-ups for DeltaGrad relative to BaseL (up to 3x speed-ups when the deletion rate is 0.005%) with far
smaller error bound (up to 4 x 1073) than the baseline error bound (up to 2x 1072). Since it is quite common
to reuse sophisticated pre-trained models in practice, we expect that the use of DeltaGrad in this manner is
applicable in many cases.

D.5 Applications of DeltaGrad to robust learning

As Section [5] in the main paper reveals, DeltaGrad has many potential applications. In this section,
we explored how DeltaGrad can accelerate the evaluations of the effect of the outliers in robust statistical
learning. Here the effect of outliers is represented by the difference of the model parameters before and after
the deletion of the outliers (see [Yu and Yao (2017)).

In the experiments, we start by training a model on the training dataset (RCV1 here) along with some
randomly generated outliers. Then we remove those outliers and update the model on the remaining training
samples by using DeltaGrad and BaseL.. We also evaluate the effect of the fraction of outlier: the ratio between
the number of the outliers and the training dataset size is also defined as the Deletion rate. It is varied from
1% to 10%. According to the experimental results shown in Figure@ when there are up to 10% outliers in the
training dataset, DeltaGrad is at least 2.18x faster than BaseL in evaluating the updated model parameters
by only sacrificing little computational accuracy (no more than 5 x 1073), thus reducing the computational
overhead on evaluating the effect of the outliers in robust learning.
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