
Appendix for DeltaGrad: Rapid retraining of machine learning

models

Yinjun Wu, Edgar Dobriban, Susan B. Davidson

Contents

A Mathematical details 2
A.1 Additional notes on setup, preliminaries . 2

A.1.1 Classical results on GD convergence, SGD convergence 2
A.1.2 Notations for DeltaGrad with SGD . 3
A.1.3 Classical results for random variables . 3

A.2 Results for deterministic gradient descent . 4
A.2.1 Quasi-Newton . 4
A.2.2 Proof that Quasi-Hessians are well-conditioned . 5
A.2.3 Proof preliminaries . 6
A.2.4 Main recursions . 10
A.2.5 Proof of Theorem 2 . 11
A.2.6 Proof of Theorem 3 . 12
A.2.7 Proof of Theorem 4 . 13
A.2.8 Proof of Theorem 5 . 16

A.3 Results for stochastic gradient descent . 20
A.3.1 Quasi-Newton . 20
A.3.2 Proof preliminaries . 20
A.3.3 Main recursions . 26
A.3.4 Proof of Theorem 8 . 27
A.3.5 Proof of Theorem 9 . 28
A.3.6 Proof of Theorem 10 . 29
A.3.7 Proof of Theorem 11 . 32

B Details on applications 33
B.1 Privacy related data deletion . 33

C Supplementary algorithm details 35
C.1 Extension of DeltaGrad for stochastic gradient descent . 35
C.2 Extension of DeltaGrad for online deletion/addition . 35

C.2.1 Convergence rate analysis for online gradient descent version of DeltaGrad 35
C.3 Extension of DeltaGrad for non-strongly convex, non-smooth objective functions 47

D Supplementary experiments 47
D.1 Experiments with large deletion rate . 47
D.2 Influence of hyper-parameters on performance . 49
D.3 Comparison against the state-of-the-art work . 51
D.4 Experiments on large ML models . 51
D.5 Applications of DeltaGrad to robust learning . 52

1

A Mathematical details

The main result for DeltaGrad with GD is Theorem 5, proved in Section A.2.8.

A.1 Additional notes on setup, preliminaries

A.1.1 Classical results on GD convergence, SGD convergence

Lemma 1 (GD convergence, folklore, e.g., Boyd and Vandenberghe (2004)). Gradient descent over a strongly
convex objective function with fixed step size ηt = η ≤ 2

L+µ has exponential convergence rate, i.e.:

F (wt)− F (w∗) ≤ ctL
2
||w0 −w∗||2 (1)

where c := (L− µ)/(L+ µ) < 1.

Recall also that the eigenvalues of the ”contraction operator” I− ηtH (w) are bounded as follows.

Lemma 2 (Classical bound on eigenvalues of the ”contraction operator”). Under the convergence conditions
of gradient descent with fixed step size, i.e. ηt = η ≤ 2

µ+L , the following inequality holds for any parameter
w:

‖I− ηH (w) ‖≤ 1. (2)

This lemma follows directly, because the eigenvalues of I − ηH are bounded between −1 ≤ 1 − ηL ≤
1− ηµ ≤ 1.

Lemma 3 (SGD convergence, see e.g., Bottou et al. (2018)). Suppose that the stochastic gradient estimates
are correlated with the true gradient, and bounded in the following way. There exist two scalars J1 ≥ J2 > 0
such that for arbitrary Bt, the following two inequalities hold:

∇F (wt)
T E

1

Bt

∑
i∈Bt

∇Fi (wt) ≥ J2‖∇F (wt) ‖2, (3)

‖E 1

Bt

∑
i∈Bt

∇Fi (wt) ‖≤ J1‖∇F (wt) ‖.

Also, assume that for two scalars J3, J4 ≥ 0, we have:

V ar

(
1

Bt

∑
i∈Bt

∇Fi (wt)

)
≤ J3 + J4‖∇F (wt) ‖2. (4)

By combining equations (3)-(4), the following inequality holds:

E‖ 1

Bt

∑
i∈Bt

∇Fi (wt) ‖2≤ J3 + J5‖∇F (wt) ‖2

where J5 = J4 + J2
1 ≥ J2

2 ≥ 0.
Then stochastic gradient descent with fixed step size ηt = η ≤ J2

LJ5
has the convergence rate:

E [F (wt)− F (w∗)] ≤ ηLJ3

2µJ2
+ (1− ηµJ2)

t−1

(
F (w1)− F (w∗)− ηLJ3

2µJ2

)
→ ηLJ3

2µJ2
.

If the gradient estimates are unbiased, then E 1
Bt

∑
i∈Bt ∇Fi (wt) = 1

n

∑n
i=1 ∇Fi (wt) = ∇F (wt) and

thus J1 = J2 = 1. Moreover, J3 ∼ 1/m, where m is the minibatch size, because J2 is the variance of the
stochastic gradient.

So the convergence condition for fixed step size becomes ηt = η ≤ 1
LJ5

, in which J5 = J4+J2
1 = J4+1 ≥ 1.

So ηt = η ≤ 1
LJ5
≤ 1

L suffices to ensure convergence.

2

A.1.2 Notations for DeltaGrad with SGD

The SGD parameters trained over the full dataset, explicitly trained over the remaining dataset and incre-
mentally trained over the remaining dataset are denoted by wS , wU,S and wI,S respectively. Then given
the mini-batch size B, mini-batch Bt, the number of removed samples from each mini-batch ∆Bt and the
set of removed samples R, the update rules for the three parameters are:

wS
t+1 = wS

t − η
1

B

∑
i∈Bt

∇Fi(wS
t) = wS

t − ηGB,S(wS
t), (5)

wU,S
t+1 = wU,S

t − η
1

B −∆Bt

∑
i∈Bt,i6∈R

∇Fi(wU,S
t)

= wU,S
t − ηGUB−∆B,S(wU,S

t),

(6)

wI,S
t+1 =


wI,S

t − η
B−∆Bt

∑
i∈Bt,i6∈R∇F (wI,S

t)
(t− j0) mod T0 = 0
or t ≤ j0

wI,S
t − η

B−∆Bt
{B[Bjm(wI,S

t − wS
t) + 1

B

∑
i∈Bt ∇Fi(w

S
t)] −∑

i∈R,i∈Bt ∇F (wI,S
t)}

otherwise

(7)

in which GB,S(wS
t) and GUB−∆B,S(wU,S

t) represent the average gradients over the minibatch Bt before
and after removing samples.

We assume that the minibatch randomness of wU,S and wI,S is the same as wS . By following Lemma 3,

we assume that the gradient estimates of SGD are unbiased, i.e. E
(

1
Bt

∑
i∈Bt ∇Fi (w)

)
= 1

n

∑n
i=1∇Fi (w) =

∇F (w) for any w, which indicates that:

E

(
1

B

∑
i∈Bt

∇Fi(wS
t)

)
=

1

n

n∑
i=1

∇Fi
(
wS

t

)
= ∇F

(
wS

t

)
,

E

 1

B −∆Bt

∑
i∈Bt,i6∈R

∇Fi(wU,S
t)

 =
1

n−∆n

∑
i 6∈R

∇Fi
(
wU,S

t

)
= ∇FU

(
wU,S

t

)
.

A.1.3 Classical results for random variables

To analyze DeltaGrad with SGD, Bernstein’s inequality (Oliveira, 2009; Tropp, 2012, 2016, e.g.,) is necessary.
Both its scalar version and matrix version are stated below.

Lemma 4 (Bernstein’s inequality for scalars). Consider a list of independent random variables, S1,S2, . . . ,Sk
satisfying E(Si) = 0 and |Si|≤ J , and their sum Z =

∑k
i=1 Si. Then the following inequality holds:

Pr(‖Z‖≥ x) ≤ exp

(
−x2∑k

i=1 E(S2
i) + Jx

3

)
,∀x ≥ 0.

Lemma 5 (Bernstein’s inequality for matrices). Consider a list of independent d1 × d2 random matrices,

S1,S2, . . . ,Sk satisfying E(Si) = 0 and ‖Si‖≤ J , and their sum Z =
∑k
i=1 Si. Define the deterministic

”varianc surrogate”:

V (Z) = max

(
‖
k∑
i=1

E(SiS
∗
i)‖, ‖

k∑
i=1

E(S∗iSi)‖

)
. (8)

3

Then the following inequalities hold:

Pr(‖Z‖≥ x) ≤ (d1 + d2) exp

(
−x2

V (Z) + Jx
3

)
,∀x ≥ 0, (9)

E(‖Z‖) ≤
√

2V (Z) log(d1 + d2) +
1

3
J log (d1 + d2) . (10)

A.2 Results for deterministic gradient descent

The main result for DeltaGrad with GD is Theorem 5, proved in Section A.2.8.

A.2.1 Quasi-Newton

By following equations 1.2 and 1.3 in Byrd et al. (1994), the Quasi-Hessian update can be written as:

Bt+1 = Bt −
Bt∆wt∆w

T
t Bt

∆wTt Bt∆wt
+

∆gt∆g
T
t

∆gTt ∆wt
. (11)

We have used the indices k to index the Quasi-Hessians Bjk . This allows us to see that they correspond
to the appropriate parameter gap ∆wjk and gradient gap ∆gjk . The indices jk depend on the iteration
number t in the main algorithm, and they are updated by removing the “oldest” entry, and adding T0 at
every period.

DeltaGrad uses equation (11) on the prior updates:

Bjk+1
= Bjk −

Bjk∆wjk∆wTjkBjk

∆wTjkBjk∆wjk
+

∆gjk∆gTjk
∆gTjk∆wjk

, (12)

where the initialized matrix Bj0 is Bj0 = ∆gTi0∆wj0 /[∆w
T
i0

∆wj0]I.
We use formulas 3.5 and 2.25 from Byrd et al. (1994) for the Quasi-Newton method, with the caveat that

they use slightly different notation.
For the update rule of Bjk , i.e.:

Bjk+1
= Bjk −

Bjk∆wjk∆wTjkBjk

∆wTjkBjk∆wjk
+

∆gjk∆gTjk
∆gTjk∆wjk

. (13)

There is an equivalent expression for the inverse of Bjk as below:

B−1
jk+1

=

(
I−

∆wjk∆gTjk
∆gTjk∆wjk

)
B−1
jk

(
I−

∆gjk∆wTjk
∆gTjk∆wjk

)
+

∆wjk∆wTjk
∆gTjk∆wjk

. (14)

See Algorithm 1 for an overview of the L-BFGS algorithm.

Algorithm 1: Overview of L-BFGS algorithm

Input : The sequence of the model parameter differences ∆W = {∆w0,∆w1, . . . ,∆wm−1}, the sequence of
the gradient differences ∆G = {∆g0,∆g1, . . . ,∆gm−1}, a vector v, history size m

Output: Approximate results of H(wm)v at point wm, and for some v, such that ∆wi ≈ wi − wi−1 for all i
1 Compute ∆WT∆W

2 Compute ∆WT∆G, get its diagonal matrix D and its lower triangular submatrix L

3 Compute σ = ∆gTm−1∆wm−1/
(
∆wTm−1∆wm−1

)
4 Compute the Cholesky factorization for σ∆WT∆W + LDLT to get JJT

5 Compute p =

[
−D

1
2 D− 1

2LT

0 JT

]−1
[

D
1
2 0

D− 1
2LT JT

]−1 [
∆GTv
σ∆WTv

]
6 return σv−

[
∆G σ∆W

]
p

4

A.2.2 Proof that Quasi-Hessians are well-conditioned

We show that the Quasi-Hessian matrices computed by L-BFGS are well-conditioned.

Lemma 6 (Bounds on Quasi-Hessians). The Quasi-Hessian matrices Bjk are well-conditioned. There exist
two positive constants K1 and K2 (depending on the problem parameters µ,L, etc) such that for any t, any
vector z, and all k ∈ {0, 1,. . .,m}, the following inequality holds:

K1‖z‖2≤ zTBjkz ≤ K2‖z‖2.

Proof. We start with the lower bound. Based on equation (14), ‖B−1
jk
‖ can be bounded by:

‖B−1
jk+1
‖ ≤ ‖I−

∆wjk∆gTjk
∆gTjk∆wjk

‖·‖B−1
jk
‖·‖I−

∆gjk∆wTjk
∆gTjk∆wjk

‖+‖
∆wjk∆wTjk
∆gTjk∆wjk

‖. (15)

in which by using the mean value theorem, ‖I−
∆wjk∆gTjk
∆gTjk

∆wjk
‖ can be bounded as:

‖I−
∆wjk∆gTjk
∆gTjk∆wjk

‖≤ 1 +
‖∆wjk∆gTjk‖
∆gTjk∆wjk

= 1 +
‖∆wjk(Hjk∆wjk)T ‖

∆wTjkHjk∆wjk
≤ 1 +

‖∆wjq‖‖Hjk‖‖∆wjq‖
µ‖∆wjq‖2

≤ 1 +
L

µ
.

(16)

In addition, ‖
∆wjk∆wTjk
∆gTjk

∆wjk
‖ can be bounded as:

‖
∆wjk∆wTjk
∆gTjk∆wjk

‖= ‖
∆wjk∆wTjk

∆wTjkHjk∆wjk
‖≤ ‖

∆wTjk∆wjk
µ∆wTjk∆wjk

‖= 1

µ
. (17)

So by combining Equation (16) and Equation (17), Equation (15) can be bounded by:

‖B−1
jk+1
‖ ≤ (1 +

L

µ
)2‖B−1

jk
‖+ 1

µ
≤ (1 +

L

µ
)2k‖B−1

j0
‖+

1− (1 + L
µ)2k

1− (1 + L
µ)2

1

µ

= (1 +
L

µ
)2kL

µ
+

1− (1 + L
µ)2k

1− (1 + L
µ)2

1

µ
.

which thus implies that ‖Bjk‖≥ K1 := 1

(1+L
µ)2k Lµ+

1−(1+L
µ

)2k

1−(1+L
µ

)2
1
µ

where 0 ≤ k ≤ m. Recall that m is small,

(set as m = 2 in the experiments). So the lower bound will not approach zero.
Then based on Equation (11), we derive an upper bound for ‖Bjk‖ as follows:

zTBjk+1
z = zTBjkz−

zTBjk∆wjk∆wTjkBjkz

∆wTjkBjk∆wjk
+

zT∆gjk∆gTjkz

∆gTjk∆wjk

≤ zTBjkz +
zT∆gjk∆gTjkz

∆gTjk∆wjk
= zTBjkz +

zTHjk∆wjk∆wTjkHjkz

∆wTjkHjk∆wjk

≤ zTBjkz +
zTHjkz∆wTjkHjk∆wjk

∆wTjkHjk∆wjk
= zTBjkz + zTHjkz

≤ zTBjkz + L‖z‖2.

The first inequality uses the fact that zTBjk∆wjk∆wTjkBjkz =
(
zTBjk∆wjk

)2 ≥ 0 and ∆wTjkBjk∆wjk
≥ 0, due to the positive definiteness of Bjk . The second inequality uses the Cauchy-Schwarz inequality for
the Quasi-Hessian, i.e.: (

aTHjkb
)2 ≤ (aTHjka

) (
bTHjkb

)
.

By applying the formula above recursively, we get zTBjk+1
z ≤ (k + 1)L‖z‖2 where 0 ≤ k ≤ m. Again,

as m is bounded, so we have (k + 1)L ≤ K2 := (m+ 1)L. This finishes the proof.

5

A.2.3 Proof preliminaries

First of all, we provide the bound on δt, which is defined as:

Lemma 7 (Upper bound on δt). By defining

δt = − η

n− r

(
r

n

n∑
i=1

∇Fi
(
wUt

)
−
∑
i∈R
∇Fi

(
wUt

))
,

we then have ‖δt‖≤ 2c2
rη
n .

Proof. Based on the definition of δt, we can rearrange it a little bit as:

‖δt‖= ‖−
ηr

n (n− r)

n∑
i=1

∇Fi
(
wU

t

)
+

η

n− r
∑
i∈R
∇Fi

(
wU

t

)
‖

= ‖− ηr

n (n− r)
[

n∑
i=1

∇Fi
(
wU

t

)
−
∑
i∈R
∇Fi

(
wU

t

)
] + (

η

n− r
− ηr

n(n− r)
)
∑
i∈R
∇Fi

(
wU

t

)
‖

= ‖− ηr

n (n− r)
∑
i 6∈R

∇Fi
(
wU

t

)
+
η

n

∑
i∈R
∇Fi

(
wU

t

)
‖.

Then by using the triangle inequality and Assumption 3 (bounded gradients), the formula above can be
bounded as:

≤ ηr

n (n− r)
∑
i 6∈R

‖∇Fi
(
wU

t

)
‖+ η

n

∑
i∈R
‖∇Fi

(
wU

t

)
‖≤ ηr

n
c2 +

ηr

n
c2 =

2ηr

n
c2

Notice that Algorithm 1 requires 2m vectors as the input, i.e. [∆wj0 , ∆wj1 ,. . . ,∆wjm−1
] and [∆gj0 ,∆gj1 ,

. . . , ∆gjm−1] to approximate the product of the Hessian matrix H(wt) and the input vector ∆wt at the tth
iteration where jm−1 ≤ t ≤ jm−1 + T0.

Note that by multiplying ∆wjk on both sides of the Quasi-Hessian update Equation (12), we have the
classical secant equation that characterizes Quasi-Newton methods as below:

Bjk+1
∆wjk = ∆gjk . (18)

Then we give a bound on the quantity ‖∆gjk −Bjq∆wjk‖ where the intermediate index q is in between
the ”correct” index k + 1 and the final index m, so m ≥ q ≥ k + 1. This characterizes the error by using
a different Quasi-Hessian at some iteration. Its proof borrows ideas from Conn et al. (1991). Unlike Conn
et al. (1991), our proof relies on a preliminary estimate on the bound on ‖wt −wI

t‖, which is at the level
of O(rn). The proof of the bound will be presented later.

Theorem 1. Suppose that the preliminary estimate is: ‖wjk − wI jk‖≤ 1
1
2−

r
n

M1
r
n , where k = 1, 2, . . . ,m

and M1 = 2c2
µ . Let e = L(L+1)+K2L

µK1
, for the upper and lower bounds K1,K2 on the eigenvalues of the quasi-

Hessian from Lemma 6, for the upper bounds c2 on the gradient from Assumption 3 and for the Lipshitz
constant c0 of the Hessian. For 1 ≤ k + 1 ≤ q ≤ m, we have:

‖Hjk −Hjq‖≤ c0djk,jq + c0
1

1
2 −

r
n

M1
r

n

and

‖∆gjk −Bjq∆wjk‖≤
[
(1 + e)q−k−1 − 1

]
· c0(djk,jq +

1
1
2 −

r
n

M1
r

n
) · sj1,jm ,

where sj1,jm = max (‖∆wa‖)a=j1,j2,...,jm
and d is defined as the maximum gap between the steps of the

algorithm over the iterations from jk to jq:

djk,jq = max (‖wa −wb‖)jk≤a≤b≤jq . (19)

6

Proof. Let vq = ∆gjk −Bjq+1∆wjk , bq = ‖vq‖ and f = c0(dj1,jm+T0−1 + 1
1
2−

r
n

M1
r
n)sj1,jm .

Let us bound the difference between the averaged Hessians ‖Hjk −Hjq‖, where 1 ≤ k < q ≤ m, using
their definition, as well as using Assumption 4 on the Lipshitzness of the Hessian:

‖Hjk −Hjq‖

= ‖
∫ 1

0

[H(wjk + x(wI
jk −wjk))]dx−

∫ 1

0

[H(wjq + x(wI
jq −wjq))]dx‖

= ‖
∫ 1

0

[H(wjk + x(wI
jk −wjk))−H(wjq + x(wI

jq −wjq))]dx‖

≤ c0
∫ 1

0

‖wjk + x(wI
jk −wjk)− [wjq + x(wI

jq −wjq)]‖dx

≤ c0‖wjk −wjq‖+
c0
2
‖wI

jk −wjk − (wI
jq −wjq)‖

≤ c0‖wjk −wjq‖+
c0
2
‖wjq −wI

jq‖+
c0
2
‖wI

jk −wjk‖

≤ c0djk,jq +
c0

1
2 −

r
n

M1
r

n
≤ c0dj1,jm+T0−1 +

c0
1
2 −

r
n

M1
r

n
.

(20)

On the last line, we used the definition of djk,jq , and the assumption on the boundedness of ‖wI
jk −wjk‖.

Then, when q = k, according to Equation (18), the secant equation ∆gjk = Bjk+1
∆wjk holds. So

‖∆gjk −Bjk+1
∆wjk‖= 0, which proves the claim when q = k. So vq = bq = 0.

Next, let uq = ∆gjq − Bjq∆wjq . This quantity is closely related to vq−1 = ∆gjk − Bjq∆wjk , and the
difference is that in uq, the ∆g,∆w terms are defined at q, as opposed to the base one at k. Then |uTq ∆wjk |,
where q > k, can be bounded as:

|uTq ∆wjk |
= |∆gTjq∆wjk −∆gTjk∆wjq + ∆gTjk∆wjq −∆wTjqBjq∆wjk |

≤ |∆gTjq∆wjk −∆gTjk∆wjq |+|∆wTjqvq−1|

≤ |∆gTjq∆wjk −∆gTjk∆wjq |+‖∆wjq‖·bq−1

= |∆wTjqHjq∆wjk −∆wTjkHjk∆wjq |+‖∆wjq‖·bq−1

= |∆wTjq
(
Hjq −Hjk

)
∆wjk |+‖∆wjq‖·bq−1

≤ ‖∆wjq‖·‖Hjq −Hjk‖·‖∆wjk‖+‖∆wjq‖·bq−1

≤ (f + bq−1) ‖∆wjq‖,

(21)

in which the first inequality uses the triangle inequality, the second inequality uses the Cauchy-Schwarz
inequality, and the subsequent equality uses the Cauchy mean value theorem. Finally, the third inequality
uses Assumption 4 and equation (20). We also use the following bounds, which hold by definition (notice
that k, q ≤ m):

‖wjk − wjq‖≤ djk,jq ‖∆wjq‖≤ sj1,jm .

The argument on the upper bound of bq will proceed by induction. The claim is true for the base case
q = k. Assuming that the claim is true for q − 1, we want to prove it for q, which is bounded as below:

bq = ‖∆gjk −

(
Bjq −

Bjq∆wjq∆w
T
jq

Bjq

∆wTjqBjq∆wjq
+

∆gjq∆g
T
jq

∆gTjq∆wjq

)
∆wjk‖. (22)

By using the triangle inequality, we obtain the following upper bound:

≤ bq−1 + ‖

(
∆gjq∆g

T
jq

∆gTjq∆wjq
−

Bjq∆wjq∆w
T
jq

Bjq

∆wTjqBjq∆wjq

)
∆wjk‖.

7

Now we come to a key and nontrivial step of the argument. By bringing fractions to the common de-
nominator in the second term, adding and subtracting ∆gjq∆g

T
jq

∆wTjq∆gjq and ∆gjq (Bjq∆wjq)
T∆wTjq∆gjq ,

and rearranging to factor out the term −uq in the numerator of each summand, the formula above can be
rewritten as:

= bq−1 +
‖[−∆gjq∆g

T
jq

∆wTjquq + ∆gjqu
T
q ∆wTjq∆gjq + uq∆w

T
jq

Bjq∆w
T
jq

∆gjq]∆wjk‖
∆gTjq∆wjq∆w

T
jq

Bjq∆wjq
.

Next, using the Cauchy mean value theorem, and the fact that the smallest eigenvalues of Hjq ,Bjq are lower
bounded by µ,K1 respectively, the formula above is bounded as:

≤ bq−1 +
‖[−∆gjq∆g

T
jq

∆wTjquq + ∆gjqu
T
q ∆wTjq∆gjq + uq∆w

T
jq

Bjq∆w
T
jq

∆gjq]∆wjk‖
µK1‖∆wjq‖4

≤ bq−1 + (‖∆gjq‖2·‖∆wTjquq∆wjk‖+‖∆gjq‖·‖u
T
q ∆wTjq∆gjq∆wjk‖

+ ‖uq∆wTjqBjq∆wjk∆wTjq∆gjq‖)/µK1‖∆wjq‖4.

Now we want to bound the last three terms one by one. First of all, ‖∆gjq‖2‖∆wTjquq∆wjk‖ can be bounded
as:

‖∆gjq‖2·‖∆wTjquq∆wjk‖= ‖Hjq∆wjq‖2·|∆wTjquq|·‖∆wjq‖

≤ L‖∆wjq‖3·|∆wTjquq|≤ L (f + bq−1) ‖∆wjq‖4,

in which the first equality uses the Cauchy mean value theorem, the subsequent inequality uses Assump-
tion 3 and the last inequality uses equation (21), the upper bound on |∆wTjquq|.

Then for ‖∆gjq‖·‖uTq ∆wTjq∆gjq∆wjk‖, we have a very similar argument. The only difference is that we

factor out the scalar ∆wTjq∆gjq , and bound it by L‖∆wjq‖2, i.e.:

‖∆gjq‖·‖uTq ∆wTjq∆gjq∆wjk‖

= ‖Hjq∆wjq‖·|∆wTjq∆gjq |·|u
T
q ∆wjk |

≤ L2 (f + bq−1) ‖∆wjq‖4,

in which the first equality uses Cacuhy mean value theorem and the fact that ∆wTjq∆gjq is a scalar and

the last inequality uses Assumption 3 and Equation (21).
In terms of the bound on ‖uq∆wTjqBjq∆wjk∆wTjq∆gjq‖, it is derived as:

‖uq∆wTjqBjq∆wjk∆wTjq∆gjq‖

= ‖uq∆wTjqBjq∆wjk∆wTjq∆gjq‖

≤ ‖uq∆wTjq‖·|∆w
T
jqBjq∆wjk |·‖∆gjq‖

≤ (f + bq−1) ‖∆wjq‖·|∆wTjqBjq∆wjk |·‖Hjq∆wjq‖

≤ (f + bq−1) ‖∆wjq‖·K2‖∆wjq‖2·L‖∆wjq‖
= K2L (f + bq−1) ‖∆wjq‖4,

in which the first inequality uses the Cauchy Schwarz inequality, the second inequality uses equation (21)
and the third inequality uses Assumption 6.

In summary, for all j ≥ t+ 1, Equation (22) is bounded by:

bq ≤ bq−1 +
L(L+ 1) +K2L

µK1‖∆wjq‖4
(f + bq−1) ‖∆wjq‖4

= (1 + e)bq−1 + ef.

8

By recursion and using the fact that bk = 0, this can be bounded as:

≤ (1 + e)
q−k

bk+1 +

q−k−1∑
i=0

(1 + e)
i
e · f

=
(1 + e)q−k − 1

e
· ef = [(1 + e)q−k − 1]f.

(23)

This proves the required claim bq ≤ [(1 + e)q−k − 1]f and finishes the proof.

Corollary 1 (Approximation accuracy of quasi-Hessian to mean Hessian). Suppose that ‖wjs − wI js‖≤
1

1
2−

r
n

M1
r
n and ‖wt −wI t‖≤ 1

1
2−

r
n

M1
r
n where s = 1, 2, . . . ,m. Then for jm ≤ t ≤ jm + T0 − 1,

‖Ht −Bjm‖≤ ξj1,jm := Adj1,jm+T0−1 +A
1

1
2 −

r
n

M1
r

n
, (24)

where recall again that c0 is the Lipschitz constant of the Hessian, dj1,jm+T0−1 is the maximal gap between
the iterates of the GD algorithm on the full data from j1 to jm + T0 − 1 (see equation (19)), which goes to

zero as t→∞) and A = c0
√
m[(1+e)m−1]

c1
+ c0 in which e is a problem dependent constant defined in Theorem

1, c1 is the “strong independence” constant from (5).

Proof. Based on Theorem 1, bq−1 = ‖Hjq∆wjk −Bjq∆wjk‖≤
[
(1 + e)q−k−1 − 1

]
f .

Then based on the “strong linear independence” in Assumption 5, the matrix ∆Wj1,j2,...,jm = [
∆wj1
sj1,jm

,
∆wj2
sj1,jm

, . . . ,
∆wjm
sj1,jm

] has its smallest singular value lower bounded by c1 > 0. Then ‖Hjm − Bjm‖ can be

bounded as below:

‖Hjm −Bjm‖≤
1

c1
‖(Hjm −Bjm) ∆Wj1,j2,...,jm‖

≤
√
m[(1 + e)m − 1]

c0
c1

(
dj1,jm+T0−1 +

1
1
2 −

r
n

M1
r

n

) (25)

The second inequality uses the bound ‖M‖≤
√
mmaxi‖mi‖, where M is a matrix with the m columns mi.

So by combining the results from equation (25), we can upper bound ‖Ht − Bjm‖ where jm ≤ t ≤
jm + T0 − 1, i.e.:

‖Ht −Bjm‖= ‖Ht −Hjm + Hjm + Bjm‖
≤ ‖Ht −Hjm‖+‖Hjm −Bjm‖

≤ c0(djm,t +M1
r

n
) +
√
m[(1 + e)m − 1]

c0
c1

(
dj1,jm+T0−1 +

1
1
2 −

r
n

M1
r

n

)
≤ Adj1,jm+T0−1 +A

1
1
2 −

r
n

M1
r

n

(26)

This finishes the proof.

Note that in the upper bound on ‖Ht − Bjm‖, there is one term dj1,jm+T0−1. So we need to do some
analysis of this term:

Lemma 8 (Contraction of the GD iterates). Recall the definition of djk,jq from Theorem 1:

djk,jq = max (‖wa −wb‖)jk≤a≤b≤jq .

Then djk,jq ≤ djk−z,jq−z for any positive integers z and djk,jq ≤ (1− µη)jkd0,jq−jk for any 0 ≤ jk ≤ jq.

9

Proof. To prove the two inequalities, we should look at djk,jq and djk−z,jq−z where z is a positive integer.
For any given jk ≤ a ≤ b ≤ jq, the upper bound on ‖wa − wb‖ can be derived as below:

‖wa −wb‖= ‖wa−1 − η∇F (wa−1)− (wb−1 − η∇F (wb−1)‖
= ‖wa−1 −wb−1 − η(∇F (wa−1)−∇F (wb−1))‖
= ‖wa−1 −wb−1−

η
1

n

(∫ 1

0

n∑
i=1

Hi(wa−1 + x(wb−1 −wa−1))dx

)
(wa−1 −wb−1)‖

= ‖

(
I− η

n

(∫ 1

0

n∑
i=1

Hi(wa−1 + x(wb−1 −wa−1))dx

))
(wa−1 −wb−1)‖.

The derivation above uses the update rule of gradient descent and Cauchy mean-value theorem. Then
according to Cauchy Schwarz inequality and strong convexity, it can be further bounded as ‖wa − wb‖≤
(1− ηµ)‖wa−1 −wb−1‖.

This can be used iteratively, which ends up with the following inequality:

‖wa −wb‖≤ (1− ηµ)z‖wa−z −wb−z‖ (27)

which indicates that djk,jq ≤ (1− ηµ)zdjk−z,jq−z and thus djk,jq ≤ djk−z,jq−z. So by replacing z with jk,
we will have: djk,jq ≤ (1− µη)jkd0,jq−jk .

A.2.4 Main recursions

We bound the difference between wI
t and wU

t. The proofs of the theorems stated below are in the following
sections.

Our proof starts out with the usual approach of trying to show a contraction for the gradient updates,
see e.g., Bottou et al. (2018). First we bound ‖wt −wU

t‖, i.e.:

Theorem 2 (Bound between iterates on full and the leave-r-out dataset). ‖wt −wUt‖≤M1
r
n where M1 =

2
µc2 is some positive constant that does not depend on t.

To show that the preliminary estimate on the bound on ‖wI
t −wt‖ used in Theorem 1 and Corollary 1

holds, the proof is provided as below:

Theorem 3 (Bound between iterates on full data and incrementally updated ones). Consider an iteration
t indexed with jm for which jm ≤ t < jm + T0 − 1, and suppose that we are at the x-th iteration of
full gradient updates, so j1 = j0 + xT0, jm = j0 + (m − 1 + x)T0. Suppose that we have the bounds
‖Ht−Bjm‖≤ ξj1,jm = Adj1,jm+T0−1 + 1

1
2−

r
n

AM1
r
n (where we recalled the definition of ξ) and ξj1,jm ≤

µ
2 for

all iterations x. Then

‖wI t+1 −wt+1‖≤
2rc2/n

(1− r/n)µ− ξj0,j0+(m−1)T0

≤ 1
1
2 −

r
n

M1
r

n
.

Recall that c0 is the Lipshitz constant of the Hessian, M1 and A are defined in Theorem 2 and Corollary 1
respectively, which do not depend on t,

For this theorem, note that this inequality depends on the condition ‖Ht−Bjm‖≤ ξj1,jm while in Theorem
1, to prove ‖Ht−Bjm‖≤ ξj1,jm , we need to use the inequality in Theorem 3, i.e. ‖wI

t+1−wt+1‖≤ 1
1
2−

r
n

M1
r
n .

In what follows, we will show that both inequalities hold for all the iterations t without relying on other
conditions.

We can select hyper-parameters T0, j0 such that

A(1− ηµ)j0−m+1d0,(m−1)T0
+

1
1
2 −

r
n

AM1
r

n
< min(

µ

2
, (1− r

n
)µ− c0M1r(n− r)

2n2
),

10

e.g. when m = 2 and T0 = 5, which is what we used in our experiments. It is enough that

j0 > max(
log(1

Ad0,5
[µ2 −

1
1
2−

r
n

AM1
r
n)]

log(1− ηµ)
,

log(1
Ad0,5

[(1− r
n)µ− 1

1
2−

r
n

AM1
r
n)]

log(1− ηµ)
) +m− 1.

This holds for small enough r/n:

j0 >
log(1

Ad0,5
[µ2 −

1
1
2−

r
n

AM1
r
n)]

log(1− ηµ)
+m− 1

Then the following two theorems hold.

Theorem 4 (Bound between iterates on full data and incrementally updated ones (all iterations)). For any
jm < t < jm + T0 − 1, ‖wI t −wt‖≤ 1

1
2−

r
n

M1
r
n and ‖Ht −Bjm‖≤ ξj1,jm .

Then we have the following bound for ‖wU
t −wI

t‖, which is our main result.

Theorem 5 (Convergence rate of DeltaGrad). For all iterations t, the result wI t of DeltaGrad, Algorithm
1, approximates the correct iteration values wUt at the rate

‖wUt −wI t‖= o(
r

n
).

So ‖wUt −wI t‖ is of a lower order than r
n .

This is proved in Section A.2.8.

A.2.5 Proof of Theorem 2

Proof. By subtracting the GD update from equation (1), we have:

wU
t+1 −wt+1 = wU

t −wt

− η

(
1

n− r

(
n∑
i=1

∇Fi
(
wU

t

)
−
∑
i∈R
∇Fi

(
wU

t

))
− 1

n

n∑
i=1

∇Fi (wt)

)
(28)

in which the right-hand side can be rewritten as:

wU
t −wt − η

(
∇F (wU

t)−∇F (wt)
)

− η

(
1

n− r

(
n∑
i=1

∇Fi
(
wU

t

)
−
∑
i∈R
∇Fi

(
wU

t

))
− 1

n

n∑
i=1

∇Fi
(
wU

t

))
= wU

t −wt − η
(
∇F (wU

t)−∇F (wt)
)

− η

n− r

(
r

n

n∑
i=1

∇Fi
(
wU

t

)
−
∑
i∈R
∇Fi

(
wU

t

))
= wU

t −wt − η
(
∇F (wU

t)−∇F (wt)
)

+ δt.

Then by applying Cauchy mean value theorem, the triangle inequality, Cauchy schwarz inequality and
Lemma 7 respectively, we have:

‖wt+1 −wU
t+1‖

≤ ‖wt −wU
t − η(

∫ 1

0

H
(
wt + x

(
wU

t −wt

))
dx)

(
wt −wU

t

)
‖+‖δt‖

≤ ‖I− η
∫ 1

0

H
(
wt + x

(
wU

t −wt

))
dx‖‖wt −wU

t‖+
2c2rη

n

11

Then by applying the triangle inequality over integrals and Lemma 2, the formula can be further bounded
as:

≤ ‖
∫ 1

0

(I− ηH
(
wt + x

(
wU

t −wt

))
dx)‖‖wt −wU

t‖+
2c2rη

n

≤ (1− ηµ)‖wt −wU
t‖+

2c2rη

n

Then by applying this formula iteratively, we get:

‖wt+1 −wU
t+1‖≤

1

ηµ

2c2rη

n
=

2c2
µ

r

n
:= M1

r

n

A.2.6 Proof of Theorem 3

Proof. The updates for the iterations jm ≤ t ≤ jm +T0− 1 follow the Quasi-Hessian update. We proceed in
a similar way as before, by expanding the recursion as below:

‖wI
t+1 −wt+1‖

= ‖wI
t − (wt − η∇F (wt))

− η

n− r
(n
[
Bjm

(
wI

t −wt

)
+∇F (wt)

]
−
∑
i∈R
∇Fi

(
wI

t

)
)‖

= ‖(I− η n

n− r
Bjm)(wI

t −wt)−
rη

n− r
∇F (wt) +

η

n− r
∑
i∈R
∇Fi(wI

t)‖

(29)

By rearranging the formula above and using the triangle inequality, we get:

= ‖(I− η n

n− r
Bjm)(wI

t −wt)−
rη

n− r
∇F (wt)

+
η

n− r
∑
i∈R

(Ht,i × (wI
t −wt) +∇Fi(wt))‖

≤ ‖(I− η n

n− r
Bjm)(wI

t −wt) +
η

n− r
∑
i∈R

Ht,i × (wI
t −wt)‖

+ ‖ rη

n− r
∇F (wt)‖+‖

η

n− r
∑
i∈R
∇Fi(wt)‖

(30)

in which we use Ht,i to denote
∫ 1

0
Hi(wt +x(wI

t−wt))dx (recall that Hi represents the Hessian matrix
evaluated at the ith sample). Then the terms in the first absolute value are rewritten as:

[I− η n

n− r
(Bjm −Ht + Ht)](w

I
t −wt) +

η

n− r
∑
i∈R

Ht,i × (wI
t −wt)

= [I− η n

n− r
(Bjm −Ht)](w

I
t −wt)−

η

n− r
∑
i 6∈R

Ht,i × (wI
t −wt)

which uses the fact that Ht =
∑n
i=1 Ht,i =

∑
i6∈R Ht,i +

∑
i∈R Ht,i. Then Formula (30) can be further

bounded as:

≤ ‖[I− η

n− r
∑
i 6∈R

Ht,i](w
I
t −wt)‖+

nη

n− r
‖(Bjm −Ht)(w

I
t −wt)‖

+ ‖ rη

n− r
∇F (wt)‖+‖

η

n− r
∑
i∈R
∇Fi(wt)‖

≤ (1− ηµ+ η
n

n− r
ξj1,jm)‖wI

t −wt‖+
rηc2
n− r

+
ηrc2
n− r

(31)

12

Then according to Lemma 8, dj1,jm+T0−1 = dj0+xT0,j0+(x+m)T0−1 decreases with increasing x, and thus

ξj1,jm = Adj1,jm+T0−1 + 1
1
2−

r
n

AM1
r
n is also decreasing with increasing x. So the formula above can be further

bounded as:

≤ (1− ηµ+ η
n

n− r
ξj0,j0+(m−1)T0

)‖wI
t −wt‖+

2rηc2
n− r

This shows a recurrent inequality for ‖wI
t−wt‖. Next, notice that the conditions for deriving the above

inequality hold for all jm ≤ t ≤ jm + T0 − 1.
Then, when we reach t = jm, we have an iteration where the gradient is computed exactly. For these

iterations we have wI
t+1 = wI

t − η
n−r

∑
i 6∈R∇F (wI

t) as well as wt+1 = wt − η∇F (wt). Using the same

argument as in the bound for wt −wU
t we can get:

‖wt+1 −wI
t+1‖≤ [1− ηµ] ‖wt −wI

t‖+
2c2rη

n
.

Therefore, we effectively have ξ = 0 for these iterations. We then continue with t ← t − 1, and use the
appropriate bound among the two derived above. This recursive process works until we reach t = 1.

As long as ξj0,j0+(m−1)T0
≤ µ

2 , −ηµ+η n
n−r ξj0,j0+(m−1)T0

< −ηµ+η n
n−r

µ
2 < 0. Then we get the following

inequality:

‖wI
t −wt‖ ≤

2ηrc2n−r
ηµ− η n

n−r ξj0,j0+(m−1)T0

=
2rc2/n

(1− r/n)µ− ξj0,j0+(m−1)T0

As long as ξj0,j0+(m−1)T0
≤ µ

2 , then

‖wI
t −wt‖≤

2rc2/n

(1− r/n)µ− ξj0,j0+(m−1)T0

≤ 2rc2/n

(1− r/n)µ− µ
2

=
1

1
2 −

r
n

M1
r

n
.

The last step uses the fact that M1 = 2c2
µ .

A.2.7 Proof of Theorem 4

Architecture of the proof. To visualize the recursive proof process, we draw a picture as:

13

‖wUt − wt‖t ≤ j0

j0 < t ≤ j0 + T0

{j1, j2, . . . , jm}
= {j0 −m+ 1, j0 −m+ 2, . . . , j0 − 2, j0 − 1, j0}

j0 + T0 < t ≤ j0 + 2T0

{j1, j2, . . . , jm}
= {j0 −m + 2, . . . , j0 − 2, j0 − 1, j0, j0 + T0}

‖wI t − wt‖

‖wI t − wt‖ ‖Ht−1−Bjm‖

‖Ht−1−Bjm‖‖wI t − wt‖

.

‖Ht−1−Bjm‖‖wI t − wt‖
j0 + (x + m − 1)T0 < t ≤ j0 + (x + m)T0

{j1, j2, . . . , jm}
= {j0+xT0, j0+(x+1)T0, . . . , j0+(x+m−1)T0}

.

Theorem 2

Corollary 1

Theorem 3

Corollary 1
Corollary 1

Theorem 3

Corollary 1

Corollary 1

Corollary 1

Corollary 1

Theorem 3

Corollary 1

Proof. First of all, in terms of the bound on ξj1,jm which is required in Theorem 3, i.e. ξj1,jm ≤
µ
2 , we do

the analysis below to show that we can adjust the value of j0 and T0 such that it can hold for all t. When
j1 ≥ j0, i.e. j1 = j0 + xT0, then

{j2, j3, . . . , jm} = {j0 + (x+ 1)T0, j0 + (x+ 2)T0, . . . , j0 + (x+m− 1)T0},

thus ξj1,jm = ξj0+xT0,j0+(x+m−1)T0
= Adj0+xT0,j0+(x+m)T0−1 + 1

1
2−

r
n

AM1
r
n . Here dj0+xT0,j0+(x+m)T0−1 de-

creases with x, and so does ξj1,jm = ξj0+xT0,j0+(x+m−1)T0
. So the following inequality holds:

dj0+xT0,j0+(x+m)T0−1 ≤ dj0,j0+mT0−1 ≤ (1− µη)j0d0,mT0−1.

When j1 < j0, there are only m different choices for {j1, j2, . . . , jm}, in which the smallest j1 used for
approximation is j0 −m+ 1. Then, the following inequality holds:

dj1,jm ≤ (1− ηµ)j1d0,jm−j1 ≤ (1− ηµ)j0−m+1d0,jm−j1 .

For those j1, j2, . . . , jm, we have jm − j1 ≤ (m− 1)T0 and thus

dj1,jm ≤ (1− ηµ)j1d0,jm−j1 ≤ (1− ηµ)j0−m+1d0,jm−j1 ≤ (1− ηµ)j0−m+1d0,(m−1)T0
.

So ξj1,jm is bounded by A(1− ηµ)j0−m+1d0,(m−1)T0
+ 1

1
2−

r
n

AM1
r
n . To make sure ξj1,jm ≤

µ
2 , we can adjust

j0,m, T0 to make A(1− ηµ)j0−m+1d0,(m−1)T0
+ 1

1
2−

r
n

AM1
r
n smaller than µ

2 .

14

Then when t ≤ j0, the gradient is evaluated explicitly, which means that wU
t = wI

t, so the bound clearly
holds, i.e., from Theorem 2, we have ‖wU

t−wt‖≤ M1r
n and thus ‖wI

t−wt‖= ‖wU
t−wt‖≤ M1r

n ≤ 1
1
2−

r
n

M1
r
n .

When j0 < t < j0 +T0, in order to compute wI
t, we need to use the history information {∆wj1 , ∆wj2 ,. . . ,

∆wjm}, {∆gj1 ,∆gj2 , . . . , ∆gjm} and the corresponding quasi-Hessian matrices {Bj1 ,Bj2 , . . . , Bjm} where
{j1, j2, . . . , jm} = {j0−m+ 1, j0−m+ 2, . . . , j0} (we suppose m < j0, which is a natural assumption). Since
‖wI

t − wt‖≤ M1r
n for any t ≤ j0, the conditions of Corollary 1 (used here with the j1, . . . , jm described

above) hold up to j0, so when t = j0 + 1, ‖Ht−1 −Bjm‖≤ ξj1,jm where

ξj1,jm = ξj0−m+1,j0 = Adj1,jm+T0−1 +AM1
r

n
= Adj0−m+1,j0+T0

+AM1
r

n
.

Plus, according to Theorem 3, ‖wI
t−wt‖≤ 2rc2/n

(1−r/n)µ−ξj1,jm
= 2rc2/n

(1−r/n)µ−ξj0−m+1,j0
. When ξj0−m+1,j0 ≤

µ
2 ,

then

‖wI
t −wt‖≤

2rc2/n

(1− r/n)µ− ξj1,jm
=

2rc2/n

(1− r/n)µ− µ
2

=
1

1
2 −

r
n

M1
r

n
.

So the bound on ‖wI
t −wt‖ holds for all t ≤ j0 + 1. Then according to the conditions of Corollary 1, when

t = j0 +2, ‖Ht−1−Bjm‖≤ ξj1,jm holds. This can proceed recursively until t = j0 +T0, in which the gradients
are explicitly evaluated according to Theorem 3, i.e.:

‖wI
j0+T0

−wj0+T0
‖≤ 2rc2/n

(1− r/n)µ− ξj1,jm
=

2rc2/n

(1− r/n)µ− µ
2

=
1

1
2 −

r
n

M1
r

n
.

Next when j0 + T0 < t < j0 + 2T0, jm is updated as j0 + T0 while {j1, j2, . . . , jm−1} is updated as
{j0 −m+ 2, j0 −m+ 3, . . . , j0} and we know that ‖wI

jk −wjk‖≤ 1
1
2−

r
n

M1
r
n . So based on Corollary 1, the

following inequality holds:

‖Ht −Bjm‖≤ ξj1,jm = ξj0−m+2,j0+T0
= Adj1,jm+T0−1 +AM1

r

n

= Adj0−m+2,j0+2T0 +AM1
r

n
This process can proceed recursively.
When j0 + xT0 < t < j0 + (x+ 1)T0, we know that:

‖Ht −Bjm‖≤ ξj1,jm = Adj1,jm+T0−1 +AM1
r

n
.

Then based on Theorem 3, ‖wI
t − wt‖≤ 1

1
2−

r
n

M1
r
n . Then at iteration j0 + (x + 1)T0, we update

j1, j2, . . . , jm as: jm ← j0 + (x+ 1)T0 and ji−1 ← ji (i = 2, 3, . . . ,m) and thus

‖wI
jk −wjk‖≤

1
1
2 −

r
n

M1
r

n

still holds for all k = 1, 2, . . . ,m.
So when j0 + (x+ 1)T0 < t < j0 + (x+ 2)T0, Corollary 1 and Theorem 3 are applied alternatively. Then

the following two inequalities hold for all iterations t satisfying j0 + (x+ 1)T0 < t < j0 + (x+ 2)T0:

‖Ht −Bjm‖≤ ξj1,jm = Adj1,jm+T0−1 +AM1
r

n
,

‖wI
jk −wjk‖≤

1
1
2 −

r
n

M1
r

n
.

So in the end, we know that:

‖wI
t −wt‖≤

1
1
2 −

r
n

M1
r

n

and
‖Ht −Bjm‖≤ ξj1,jm

hold for all t.

15

A.2.8 Proof of Theorem 5

Proof. The proof is by induction.
When t ≤ j0, the gradient is evaluated explicitly, which means that wU

t = wI
t, so the bound clearly

holds.
From iteration T0 to iteration t, the difference between wI

t and wU
t can be bounded as follows. In

these equations, we use the definition of the update formula wI
t+1 = wI

t − η
n−r [n(Bjm(wI

t − wt)) −∑
i∈R∇F (wI

t)]. By rearranging terms appropriately, we get:

‖wI
t+1 −wU

t+1‖ = ‖wI
t −wU

t −
nη

n− r
[
Bjm(wI

t −wt) +∇F (wt)
]

+
η

n− r
∑
i∈R
∇Fi(wI

t) +
η

n− r
∑
i6∈R

∇Fi(wU
t)‖

(32)

Then by bringing in Ht into the expression above, it is rewritten as:

= ‖wI
t −wU

t −
nη

n− r
[
(Bjm −Ht) (wI

t −wt) + Ht × (wI
t −wt) +∇F (wt)

]
+

η

n− r
∑
i∈R

(∇Fi(wI
t)−∇Fi(wt) +∇Fi(wt)) +

η

n− r
∑
i 6∈R

∇Fi(wU
t)‖

(33)

In the formula above, we will try to make sure there is no confusion between Ht(w) (Hessian as a function
evaluated at w) and Ht × (w) (Hessian times a vector). Then by applying the Cauchy mean value theorem
over each individual ∇Fi(wI

t)−∇Fi(wt) and by denoting the corresponding Hessian matrix as Ht,i (note
that

∑n
i=1 Ht,i = nHt), the expression becomes:

= ‖wI
t −wU

t −
nη

n− r
[
(Bjm −Ht) (wI

t −wt) + Ht × (wI
t −wt) +∇F (wt)

]
+

η

n− r
∑
i∈R

(Ht,i × (wI
t −wt) +∇Fi(wt)) +

η

n− r
∑
i6∈R

∇Fi(wU
t)‖

Then by using the fact that
∑
i∈R∇Fi(wt) +

∑
i 6∈R∇Fi(wt) = n∇F (wt) and

∑
i∈R Ht,i +

∑
i6∈R Ht,i =

nHt, the expression can be rearranged as:

= ‖wI
t −wU

t −
η

n− r
∑
i 6∈R

Ht,i × (wI
t −wt)−

nη

n− r
[
(Bjm −Ht) (wI

t −wt)
]

− η

n− r
∑
i 6∈R

∇Fi(wt) +
η

n− r
∑
i 6∈R

∇Fi(wU
t)‖

in which η
n−r

∑
i∈R∇Fi(wt) is canceled out. Then by adding and subtracting wU

t in the first part, we
get:

= ‖wI
t −wU

t −
η

n− r
∑
i 6∈R

Ht,i × (wI
t −wU

t)−
nη

n− r
[
(Bjm −Ht) (wI

t −wU
t)
]

− η

n− r
∑
i 6∈R

Ht,i × (wU
t −wt)−

nη

n− r
[
(Bjm −Ht) (wU

t −wt)
]

− η

n− r
∑
i 6∈R

∇Fi(wt) +
η

n− r
∑
i 6∈R

∇Fi(wU
t)‖

16

We apply Cauchy mean value theorem over − η
n−r

∑
i 6∈R∇Fi(wt) + η

n−r
∑
i 6∈R∇Fi(wU

t), i.e.:

− η

n− r
∑
i 6∈R

∇Fi(wt) +
η

n− r
∑
i 6∈R

∇Fi(wU
t)

=
η

n− r
[
∑
i 6∈R

∫ 1

0

Hi(wt + x(wU
t −wt))dx](wU

t −wt).

In addition, note that Ht,i =
∫ 1

0
Hi(wt + x(wI

t −wt))dx. So the formula above becomes:

= ‖wI
t −wU

t −
η

n− r
∑
i 6∈R

Ht,i × (wI
t −wU

t)−
nη

n− r
[
(Bjm −Ht) (wI

t −wU
t)
]

− η

n− r
∑
i 6∈R

(

∫ 1

0

Hi(wt + x(wI
t −wt))dx)(wU

t −wt)−
nη

n− r
[
(Bjm −Ht) (wU

t −wt)
]

+
η

n− r
∑
i 6∈R

(

∫ 1

0

Hi(wt + x(wU
t −wt))dx)(wU

t −wt)‖.

Then by applying the triangle inequality and rearranging the expression appropriately, the expression
can be bounded as:

≤ ‖(I− η

n− r
∑
i 6∈R

Ht,i)(w
I
t −wU

t)‖+‖
nη

n− r
[
(Bjm −Ht) (wI

t −wU
t)
]
‖

+ ‖ η

n− r
[
∑
i6∈R

∫ 1

0

Hi(wt + x(wU
t −wt))dx−

∫ 1

0

Hi(wt + x(wI
t −wt))dx](wU

t −wt)‖

+ ‖ nη

n− r
[
(Bjm −Ht) (wU

t −wt)
]
‖,

in which the first term is the main contraction component which always appears in the analyses of gradient
descent type algorithms. The remaining terms are error terms due to the various sources of error: using a
quasi-Hessian, not having a quadratic objective (implicitly assumed by the local models at each step), using
the iterate wI for our update instead of the correct wU .

Then by using the following facts:

1. ‖I− ηHt,i‖≤ 1− ηµ;

2. from Theorem 4 on the approximation accuracy of the quasi-Hessian to mean Hessian, we have the
error bound ‖Ht −Bjm‖≤ ξj1,jm ;

3. we can bound the difference of integrated Hessians using the strategy from equation (20);

4. from Theorem 2, we have the error bound ‖wU
t−wt‖≤M1

r
n (and this requires no additional assump-

tions),

the expression above can be bounded as follows:

≤ (1− ηµ+
nη

n− r
ξj1,jm)‖wI

t −wU
t‖+

ηc0
2
‖wU

t −wI
t‖‖wU

t −wt‖

+
nη

n− r
ξj1,jm‖wU

t −wt‖

≤ (1− ηµ+
nη

n− r
ξj1,jm +

c0M1rη

2n
)‖wI

t −wU
t‖+

M1rη

n− r
ξj1,jm

(34)

17

Recall from Corollary 1 that ξj1,jm = ξj0+xT0,j0+(m+x−1)T0
= Adj0+xT0,j0+(m+x)T0−1 + A 1

1
2−

r
n

M1
r
n de-

creases with the increasing x. So the formula above can be bounded as:

≤ (1− ηµ+
nη

n− r
ξj0,j0+(m−1)T0

+
c0M1rη

2n
)‖wI

t −wU
t‖+

M1rη

n− r
ξj1,jm . (35)

Also by plugging the formula for ξ into the formula above and using Lemma 8 (contraction of GD
updates), we get:

≤ (1− ηµ+
nη

n− r
ξj0,j0+(m−1)T0

+
c0M1rη

2n
)‖wI

t −wU
t‖

+
M1rη

n− r
(Adj0+xT0,j0+(m+x)T0−1 +A

1
1
2 −

r
n

M1
r

n
)

≤ (1− ηµ+
nη

n− r
ξj0,j0+(m−1)T0

+
c0M1rη

2n
)‖wI

t −wU
t‖

+
M1rη

n− r
(A(1− ηµ)j0+xT0d0,mT0−1 +A

1
1
2 −

r
n

M1
r

n
)

(36)

Now, we will argue that it is pssible to choose hyperparameters such that ξj0,j0+(m−1)T0
≤ (1 − r

n)µ −
c0M1r(n−r)

2n2 . Then 1−ηµ+ nη
n−r ξj0,j0+(m−1)T0

+ c0M1rη
2n is a constant for all t and smaller than 1. By denoting

µ− n
n−r ξj0,j0+(m−1)T0

− c0M1r
2n as C, the formula above can be written as:

= (1− ηC)‖wI
t −wU

t‖+
M1rη

n− r
(A(1− ηµ)j0+xT0d0,mT0−1 +A

1
1
2 −

r
n

M1
r

n
).

This can be used recursively until iteration jm = j0 + (x+m)T0 − 1, i.e.:

≤ (1− ηC)t−(j0+(x+m−1)T0)−1‖wI
j0+(x+m−1)T0+1 −wU

j0+(x+m−1)T0+1‖

+
1− (1− ηC)t−(j0+(x+m−1)T0)

ηC

M1rη

n− r
(A(1− ηµ)j0+xT0d0,mT0−1 +A

1
1
2 −

r
n

M1
r

n
)

≤ (1− ηC)t−(j0+(x+m−1)T0)−1‖wI
j0+(x+m−1)T0+1 −wU

j0+(x+m−1)T0+1‖

+
M1r

C(n− r)
(A(1− ηµ)j0+xT0d0,mT0−1 +A

1
1
2 −

r
n

M1
r

n
)

We can set t = j0 + (y +m)T0 and for any y = 1, 2, . . . , x− 1, the formula above can be rewritten as:

‖wI
j0+(y+m)T0

−wU
j0+(y+m)T0

‖
≤ (1− ηC)T0−1‖wI

j0+(y+m−1)T0+1 −wU
j0+(y+m−1)T0+1‖

+
M1r

C(n− r)
(A(1− ηµ)j0+yT0d0,mT0−1 +A

1
1
2 −

r
n

M1
r

n
)

Then at the iteration t = j0 + (y +m− 1)T0, the gradient is explicitly evaluated, which means that:

‖wI
j0+(y+m−1)T0+1 −wU

j0+(y+m−1)T0+1‖≤ (1− ηµ)‖wI
j0+(y+m−1)T0

−wU
j0+(y+m−1)T0

‖.

Since C = µ− n
n−r ξj0,j0+(m−1)T0

− c0M1r
2n , then 1− ηµ < 1− ηC and thus

‖wI
j0+(y+m−1)T0+1 −wU

j0+(y+m−1)T0+1‖≤ (1− ηC)‖wI
j0+(y+m−1)T0

−wU
j0+(y+m−1)T0

‖,

which can be plugged into the formula above:

‖wI
j0+(y+m)T0

−wU
j0+(y+m)T0

‖
≤ (1− ηC)T0‖wI

j0+(y+m−1)T0
−wU

j0+(y+m−1)T0
‖

+
M1r

C(n− r)
(A(1− ηµ)j0+yT0d0,mT0−1 +A

1
1
2 −

r
n

M1
r

n
).

18

This can be used recursively over y = x− 1, x− 2, . . . , 2, 1:

‖wI
j0+(y+m)T0

−wU
j0+(y+m)T0

‖
≤ (1− ηC)yT0‖wI

j0+mT0
−wU

j0+mT0
‖

+

y∑
p=1

(1− ηC)(y−p)T0
M1r

C(n− r)
(A(1− ηµ)j0+pT0d0,mT0−1 +A

1
1
2 −

r
n

M1
r

n
)

= (1− ηC)yT0‖wI
j0+mT0

−wU
j0+mT0

‖

+

y∑
p=1

(1− ηC)(y−p)T0
M1r

C(n− r)
(A(1− ηµ)j0+pT0d0,mT0−1)

+

y∑
p=1

(1− ηC)(y−p)T0
AM2

1 r
2

C(n− r)(n/2− r)
,

(37)

in which
y∑
p=1

(1− ηC)(y−p)T0
M1r

C(n− r)
(A(1− ηµ)j0+pT0d0,mT0−1)

=
AM1rη

C(n− r)
(1− ηC)yT0(1− ηµ)j0d0,mT0−1

y∑
p=1

(1− ηC)−pT0(1− ηµ)pT0 .

Recall that since 1− ηC > 1− ηµ, then the formula above can be bounded as:

y∑
p=1

(1− ηC)(y−p)T0
M1r

C(n− r)
(A(1− ηµ)j0+pT0d0,mT0−1)

≤ AM1rη

C(n− r)
(1− ηC)yT0(1− ηµ)j0d0,mT0−1

1

1− (1−ηµ
1−ηC)T0

.

Also
∑y
p=1(1− ηC)(y−p)T0 AM2

1 r
2

C(n−r)(n/2−r) can be simplified to:

y∑
p=1

(1− ηC)(y−p)T0
AM2

1 r
2

C(n− r)(n/2− r)
=

y−1∑
p=0

(1− ηC)pT0
AM2

1 r
2

C(n− r)(n/2− r)

≤ 1

1− (1− ηC)T0

AM2
1 r

2

C(n− r)(n/2− r)
.

So equation (37) can be further bounded as:

‖wI
j0+(y+m)T0

−wU
j0+(y+m)T0

‖
≤ (1− ηC)yT0‖wI

j0+mT0
−wU

j0+mT0
‖

+
AM1r

C(n− r)
(1− ηC)yT0(1− ηµ)j0d0,mT0−1

1

1− (1−ηµ
1−ηC)T0

+
1

1− (1− ηC)T0

AM2
1 r

2

C(n− r)(n/2− r)
.

(38)

When t→∞ and thus y →∞, (1− ηC)yT0 → 0 and thus

‖wI
j0+(y+m)T0

−wU
j0+(y+m)T0

‖= o(
r

n
).

19

A.3 Results for stochastic gradient descent

A.3.1 Quasi-Newton

We modify Equations (13) and (12) to SGD versions:

BS
jk+1

= BS
jk −

BS
jk∆wSjk∆wS

T
jk

BS
jk

∆wS
T
jk

BS
jk∆wSjk

+
∆gSjk∆gSjk

T

∆gSjk
T

∆wSjk
(39)

BS−1

jk+1
=

(
I−

∆wSjk∆gS
T
jk

∆gS
T
jk

∆wSjk

)
BS−1

jk

(
I−

∆gSjk∆wS
T
jk

∆gS
T
jk

∆wSjk

)
+

∆wSjk∆wS
T
jk

∆gS
T
jk

∆wSjk
(40)

This iteration has the same initialization as Bjk and B−1
jk

but relies on the history information collected

from the SGD-based training process [∆wSj0 , ∆wSj1 ,. . . ,∆wSjm−1] and [∆gSj0 ,∆g
S
j1 , . . . , ∆gSjm−1

] where

∆wSjx = wS
jx − wI,S

jx and ∆gSjx = GB,S(wI,S
jx) − GB,S(wS

jx) (x = 0, 1, 2, . . .m − 1). By the same
argument as the proof of Lemma 6, the following inequality holds:

K1‖z‖2≤ zTBS
jkz ≤ K2‖z‖2 (41)

where K1 := 1

(1+L
µ)2m L

µ+
1−(1+L

µ
)2m

1−(1+L
µ

)2
1
µ

and K2 := (m+ 1)L, which are both positive values representing a

lower bound and an upper bound on the eigenvalues of BS
jk .

A.3.2 Proof preliminaries

Similar to the argument for the GD-version of DeltaGrad, we can give an upper bound on δt,S :

Lemma 9 (Upper bound on δt,S). Define δt,S = GB,S(wU,St) − GUB−∆B,S(wU,St). Then ‖δt,S‖≤ 2c2
∆Bt
B .

Moreover, with probability higher than 1− t× 2 exp(−2
√
B),

‖δt′,S‖≤ 2c2(
r

n
+

1

B1/4
)

uniformly over all iterations t′ ≤ t.

Proof. Recall that

GB,S(wU,S
t) =

1

B

∑
i∈Bt

∇Fi(wU,S
t)

and

GUB−∆B,S(wU,S
t) =

1

B −∆Bt

∑
i∈Bt,i6∈R

∇Fi(wU,S
t).

By subtracting GB,S(wU,S
t) from GUB−∆B,S(wU,S

t), we have:

‖GUB−∆B,S(wU,S
t)−GB,S(wU,S

t)‖

= ‖ 1

B

∑
i∈Bt

∇Fi(wU,S
t)−

1

B −∆Bt

∑
i∈Bt,i6∈R

∇Fi(wU,S
t)‖

= ‖ 1

B

∑
i∈Bt,i∈R

∇Fi(wU,S
t) + (

1

B
− 1

B −∆Bt
)
∑

i∈Bt,i6∈R

∇Fi(wU,S
t)‖

Then by using the triangle inequality and the fact that ‖∇Fi(wU,S
t)‖≤ c2 (Assumption 3), the formula

above can be bounded by 2∆Btc2
B .

Because of the randomness from SGD, the r removed samples can be viewed as uniformly distributed
among all n training samples. Each sample is included in a mini-batch according to the outcome of a
Bernoulli(r/n) random variable Si. Within a single mini-batch Bt′ at the iteration t′, we get E(

∑
i∈Bt′

Si) =

20

E(∆Bt′) = B r
n and Var(

∑
i∈Bt′

Si) = B r
n (1− r

n). So in terms of the random variable ∆Bt′
B , its expectation

and variance will be E(∆Bt′
B) = r

n and Var(∆Bt′
B) = r

Bn (1− r
n).

Then based on Hoeffding’s inequality, the following inequality holds:

Pr(|∆Bt
′

B
− r

n
|≤ ε) ≥ 1− 2 exp(−2ε2B).

Then by setting ε = 1
B1/4 the formula above can be written as:

Pr(|∆Bt
′

B
− r

n
|≥ 1

B1/4
) ≤ 2 exp(−2

√
B)

Then by taking the union for all the iterations before t, we get: with probability higher than 1 − t ×
2 exp(−2

√
B),

|∆Bt
′

B
− r

n
|≤ 1

B1/4

and thus

∆Bt′

B
≤ r

n
+

1

B1/4
(42)

for all t′ ≤ t.

In what follows, we use Ψ1 to represent Ψ1 := 2 exp(−2
√
B), which goes to 0 with large B.

Next we provide a bound for the sum of random sampled Hessian matrices within a minibatch in SGD.

Theorem 6 (Hessian matrix bound in SGD). With probability higher than

1− 2p exp

− log(2p)
√
B

4 + 2
3

(
log2(2p)

B

)1/4

 ,

for a given iteration t, ‖
(

1
B

∑
i∈Bt Hi(w

S
t)
)
−H(wSt)‖≤ L

(
log2(2p)

B

)1/4

where p represents the number of

model parameters.

Proof. We consider using the matrix Bernstein inequality, Lemma 5. We define the random matrix Si =
Hi(w)−H(w)

B (i ∈ Bt). Due to the randomness from SGD, we know that E(Si) = E(Hi(w)−H(w)
B) = 0.

Using the sum Z as required in Lemma 5, Z =
(

1
B

∑
i∈Bt Hi(w)

)
−H(w). Also note that H(w) and Hi(w)

are both p× p matrices, so d1 = d2 = p in Lemma 5.

Furthermore, for each Si = Hi(w)−H(w)
B , its norm is bounded by 2L

B based on the smoothness condition,

which means that J = 2L
B in Lemma 5. Then we can explicitly calculate the upper bound on E(SiS

∗
i) and

V (Z):

‖E(SiS
∗
i)‖≤ E(‖SiS∗i ‖) ≤ E(‖Si‖‖S∗i ‖) ≤ J2 =

4L2

B2
,

V (Z) ≤
∑
i∈Bt

4L2

B2
=

4L2

B
.

Thus by plugging the above expression into equation (9) and (10), we get:

P (‖Z‖≥ x) = Pr(‖

(
1

B

∑
i∈Bt

Hi(w)

)
−H(w)‖≥ x)

≤ (d1 + d2) exp

(
−x2

4L2

B + 2Lx
3B

)
= 2p exp

(
−x2

4L2

B + 2Lx
3B

)
,∀x ≥ 0

(43)

21

E(‖Z‖) = E

(
‖

(
1

B

∑
i∈Bt

Hi(w)

)
−H(w)‖

)

≤
√

8L2

B
log(d1 + d2) +

2L

3B
log(d1 + d2) =

√
8L2

B
log(2p) +

2L

3B
log(2p).

(44)

Then by setting x = L
(

log2(2p)
B

)1/4

, Equation (43) becomes:

Pr(‖Z‖≥ L
(

log2(2p)

B

)1/4

)

= Pr

(
‖

(
1

B

∑
i∈Bt

Hi(w)

)
−H(w)‖≥ L

(
log2(2p)

B

)1/4
)

≤ (2p) exp

 −L
2log(2p)√

B

4L2

B + 2L2

3B

(
log2(2p)

B

)1/4

 = (2p) exp

− log(2p)
√
B

4 + 2
3

(
log2(2p)

B

)1/4

 .

(45)

For large mini-batch size B, both L
(

log2(2p)
B

)1/4

and (2p) exp

(
− log(2p)

√
B

4+ 2
3

(
log2(2p)

B

)1/4

)
are approaching 0.

In what follows, we use Ψ2 to denote the probability Ψ2 := (2p) exp

(
− log(2p)

√
B

4+ 2
3

(
log2(2p)

B

)1/4

)
.

Based on this result, we can derive an SGD version of Theorem 1 as below, which also relies on a
preliminary estimate on the bound on ‖wI,S

t −wS
t‖:

Theorem 7 (Error in mean Hessian, and in secant equation with incorrect quasi-Hessian for SGD). Suppose
that ‖wSt′ −wI,St′‖≤M1

1
1
2−

r
n−

1

B1/4

(rn + 1
B1/4) and

‖

 1

B

∑
i∈Bt′

Hi(w
S
t′)

−H(wSt′)‖≤ L
(

log2(2p)

B

)1/4

hold for any t′ ≤ t where M1 = 2c2
µ , µ is from Assumption 2 and c2 is from Assumption 3. Let e =

L(L+1)+K2L
µK1

for the upper and lower bounds K1,K2 on the eigenvalues of the quasi-Hessian from equation

(41) and for the Lipshitz constant c0 of the Hessian. For any t1, t2 such that 1 ≤ t1 < t2 ≤ t, we have:

‖HS
t1 −HS

t2‖≤ 2L

(
log2(2p)

B

)1/4

+ c0dt1,t2 + 3c0M1
1

1
2 −

r
n −

1
B1/4

(
r

n
+

1

B1/4
).

For any j1, j2, . . . , jm such that jm ≤ t′ ≤ jm + T0 − 1 and t′ ≤ t, we have:

‖∆gSjk −BS
jq∆w

S
jk‖

≤
[
(1 + e)jq−jk−1 − 1

]
· [2L

(
log2(2p)

B

)1/4

+ c0djk,jq +
3c0M1

1
2 −

r
n −

1
B1/4

(
r

n
+

1

B1/4
)] · sjm,j1 .

Here sjm,j1 = max
(
‖∆wSa‖

)
a=j1,j2,...,jm

, djk,jq = max
(
‖wSa −wSb‖

)
jk≤a≤b≤jq

, HS
t is the average of the

Hessian matrix evaluated between wSt and wI,St for the samples in mini-batch Bt:

HS
t =

1

B

∑
i∈Bt

∫ 1

0

Hi(w
S
t + x(wU,St −wSt))dx.

22

Proof. First of all, let us bound ‖HS
t1 −

∫ 1

0
H(wS

t1 + x(wI,S
t1 − wS

t1))dx‖ by adding and subtracting
1
B

∑
i∈Bt1

Hi(w
S
t1) and H(wS

t1) inside the norm:

‖HS
t1 −

∫ 1

0

H(wS
t1 + x(wI,S

t1 −wS
t1))dx‖

= ‖
∫ 1

0

1

B

∑
i∈Bt1

Hi(w
S
t1 + x(wI,S

t1 −wS
t1))dx−

∫ 1

0

H(wS
t1 + x(wI,S

t1 −wS
t1))dx‖

= ‖
∫ 1

0

1

B

∑
i∈Bt1

(Hi(w
S
t1 + x(wI,S

t1 −wS
t1))−Hi(w

S
t1))dx+

1

B

∑
i∈Bt1

Hi(w
S
t1)

−
∫ 1

0

(H(wS
t1 + x(wI,S

t1 −wS
t1))−H(wS

t1))dx−H(wS
t1)‖.

Then by using the triangle inequality and Assumption 4, the formula above can be bounded as:

≤
∫ 1

0

1

B

∑
i∈Bt1

‖Hi(w
S
t1 + x(wI,S

t1 −wS
t1))−Hi(w

S
t1)‖dx

+

∫ 1

0

‖H(wS
t1 + x(wI,S

t1 −wS
t1))−H(wS

t1)‖dx

+ ‖
∫ 1

0

1

B

∑
i∈Bt1

Hi(w
S
t1)−H(wS

t1)‖

≤ 1

B
(
∑
i∈Bt1

∫ 1

0

c0x‖wI,S
t1 −wS

t1‖dx) +

∫ 1

0

c0x‖wI,S
t1 −wS

t1‖dx

+ ‖ 1

B

∑
i∈Bt1

Hi(w
S
t1)−H(wS

t1)‖

≤ c0‖wI,S
t1 −wS

t1‖+‖
1

B

∑
i∈Bt1

Hi(w
S
t1)−H(wS

t1)‖.

(46)

Then based on the above results, we can compute the bound on ‖HS
t1 −HS

t2‖, for which we use the
triangle inequality first:

‖HS
t1 −HS

t2‖

= ‖HS
t1 −

∫ 1

0

H(wS
t1 + x(wI,S

t1 −wS
t1))dx‖

+ ‖
∫ 1

0

H(wS
t1 + x(wI,S

t1 −wS
t1))dx−

∫ 1

0

H(wS
t2 + x(wI,S

t2 −wS
t2))dx‖

+ ‖
∫ 1

0

H(wS
t2 + x(wI,S

t2 −wS
t2))dx−HS

t2‖.

(47)

Then by using the result from Formula (46), this term can be further bounded as:

≤ c0‖wI,S
t1 −wS

t1‖+‖
∫ 1

0

1

B

∑
i∈Bt1

Hi(w
S
t1)−H(wS

t1)‖

+ c0‖wI,S
t2 −wS

t2‖+‖
∫ 1

0

1

B

∑
i∈Bt2

Hi(w
S
t2)−H(wS

t2)‖

+ ‖
∫ 1

0

H(wS
t1 + x(wI,S

t1 −wS
t1))dx−

∫ 1

0

H(wS
t2 + x(wI,S

t2 −wS
t2))dx‖.

23

Since

‖

 1

B

∑
i∈Bt′

Hi(w
S
t′)

−H(wS
t′)‖≤ L

(
log2(2p)

B

)1/4

for any t′ ≤ t, then the formula above can be bounded as:

≤ 2L

(
log2(2p)

B

)1/4

+ c0‖wS
t1 −wS

t2‖+
c0
2
‖wS

t1 −wI,S
t1‖

+
c0
2
‖wI,S

t2 −wS
t2‖+c0‖wI,S

t1 −wS
t1‖+c0‖wI,S

t2 −wS
t2‖

= 2L

(
log2(2p)

B

)1/4

+ 3c0M1
1

1
2 −

r
n −

1
B1/4

(
r

n
+

1

B1/4
) + c0dt1,t2 .

This finishes the proof of the first inequality. Then by defining

f =

(
2L

(
log2(2p)

B

)1/4

+ 3c0M1
1

1
2 −

r
n −

1
B1/4

(
r

n
+

1

B1/4
) + c0djk,jq

)
sjm,j1

and using the same argument as Equation (21)-(23) (except that ∆w and ∆g are replaced with ∆wS and
∆gS), the following inequality thus holds:

bjq = ‖∆gSjk −

(
BS

jq −
BS

jq∆w
S
jq∆w

ST
jqB

S
jq

∆wS
T
jqB

S
jq∆w

S
jq

+
∆gSjq∆g

ST
jq

∆gS
T
jq∆w

S
jq

)
∆wSjk‖

≤ [(1 + e)jq−jk − 1]f

(48)

and thus
‖∆gSjk −BS

jq∆w
S
jk‖≤ [(1 + e)jq−jk−1 − 1]f,

which finishes the proof.
For simplicity, we denote MS

1 := M1
1

1
2−

r
n−

1

B1/4

. So the preliminary estimate of the bound on ‖wS
t′ −

wI,S
t′‖ becomes: ‖wS

t′ −wI,S
t′‖≤MS

1 (rn + 1
B1/4)

Similarly, we get a SGD-version of Corollary 1:

Corollary 2 (Approximation accuracy of Quasi-Hessian to mean Hessian). Suppose that ‖wSt′ −wI,St′‖≤
MS

1 (rn + 1
B1/4) and

‖

 1

B

∑
i∈Bt′

Hi(w
S
t′)

−H(wSt′)‖≤ L
(

log2(2p)

B

)1/4

hold for any t′ ≤ t. M1 and MS
1 are provided in Theorem 7, i.e. M1 = 2c2

µ and MS
1 = M1

1
1
2−

r
n−

1

B1/4

. Then

for any t′ and jm such that jm ≤ t′ ≤ jm + T0 − 1 and t′ ≤ t, the following inequality holds:

‖HS
t′ −BS

jm‖≤ ξSj1,jm

:= A(dj1,jm+T0−1 + 3MS
1 (
r

n
+

1

B1/4
) +

2

c0
L

(
log2(2p)

B

)1/4

)

where recall again that c0 is the Lipschitz constant of the Hessian, dj1,jm+T0−1 is the maximal gap between

the iterates of the SGD algorithm on the full data from j1 to jm + T0 − 1 and A = c0
√
m[(1+e)m−1]

c1
+ c0 in

which e is a problem dependent constant defined in Theorem 7, c1 is the ”strong independence” constant
from Assumption (5).

24

This proof is similar to the proof of Corollary 1. First of all, H, B, ξj1,jm in Corollary 1 are replaced

with HS , BS , ξSj1,jm . Second, Theorem 7 holds and thus the following inequality holds:

‖HS
t′ −HS

jm‖≤ 2L

(
log2(2p)

B

)1/4

+ c0dt′,jm + 3c0M
S
1 (
r

n
+

1

B1/4
)

by using strong independence from Assumption 5, ‖HS
jm −BS

jm‖ can be bounded as:

‖HS
jm −BS

jm‖≤
√
m[(1 + e)m − 1]

c0
c1
·

(
dj1,jm+T0−1 + 3MS

1 (
r

n
+

1

B1/4
) +

2

c0
L

(
log2(2p)

B

)1/4
)

(49)

Then by combining the two formulas above, we know that Corollary 2 holds. Note that the definition of
ξSj1,jm can be rewritten as below:

ξSj1,jm = A(dj1,jm+T0−1 + 3MS
1 (
r

n
+

1

B1/4
) +

2

c0
L

(
log2(2p)

B

)1/4

)

=: Adj1,jm+T0−1 +A1
r

n
+A2

1

B1/4

(50)

in which A1 := 3AMS
1 and A2 := 3AMS

1 + 2AL(log(2p))1/2

c0
.

We can do a similar analysis to Lemma 8 by simply replacing wt and F (∗) with wS
t and GB,S :

Lemma 10. Let us use the definition of dk,q from Theorem 7:

dk,q = max
(
‖wSa −wSb‖

)
k≤a≤b≤q

where k < q ≤ t, then dk,q ≤ (1 − ηµ)kd0,q−j + 2c2

(
(log(p+1))2

B

)1/4

holds with probability higher than

1− t(p+ 1) exp

(
− log(p+1)

√
B

4+ 2
3

(
(log(p+1))2

B

)1/4

)
.

Proof. According to Lemma 5, we can define a random matrix Si = 1
B (∇Fi(wS

a)−∇F (wS
a) where recall

that ∇F (wS
a) = 1

n

∑n
i=1∇Fi,a(wS

a) (i ∈ Bt). Due to the randomness from SGD, we know that E(Si) = 0.
Based on the definition of Z in Lemma 5, Z = 1

B

∑
i∈Bt ∇Fi(w

S
a) − ∇F (wS

a). Also note that ∇Fi(wS
a)

and ∇F (wS
a) are both p× 1 matrices, so d1 = p and d2 = 1 in Lemma 5.

Moreover according to Assumption 3, ‖∇Fi(wS
a)‖≤ c2. Then we know that V (Z) ≤ 4c22

B and ‖Si‖≤ 2c2
B .

So according to Lemma 5, the following inequality holds:

P (‖Z‖≥ x) = Pr(‖ 1

B

∑
i∈Bt

∇Fi(wS
a)−∇F (wS

a)‖≥ x)

≤ (d1 + d2) exp

(
−x2

4c22
B + 2c2x

3B

)
= (p+ 1) exp

(
−x2

4c22
B + 2c2x

3B

)
,∀x ≥ 0

(51)

By setting x = c2

(
(log(p+1))2

B

)1/4

, the formula above is evaluated as:

Pr(‖ 1

B

∑
i∈Bt

∇Fi(wS
a)−∇F (wS

a)‖≥ c2
(

(log(p+ 1))2

B

)1/4

)

≤ (p+ 1) exp

− log(p+ 1)
√
B

4 + 2
3

(
(log(p+1))2

B

)1/4



25

So by taking the union for the first t iterations, then with probability higher than 1−t(p+1) exp

(
− log(p+1)

√
B

4+ 2
3

(
(log(p+1))2

B

)1/4

)
,

the following inequality holds for all t′ ≤ t:

‖ 1

B

∑
i∈Bt′

∇Fi(wS
a)−∇F (wS

a)‖≤ c2
(

(log(p+ 1))2

B

)1/4

(52)

Then by using the similar arguments to Lemma 8, we get:

‖wS
a−wS

b‖≤ (1−ηµ)z‖wS
a−z−wS

b−z‖+
2c2
µ

(
(log(p+ 1))2

B

)1/4

= (1−ηµ)z‖wS
a−z−wS

b−z‖+M1

(
(log(p+ 1))2

B

)1/4

and thus dk,q ≤ (1−ηµ)kd0,q−k+M1

(
(log(p+1))2

B

)1/4

holds with probability higher than 1−t(p+1) exp

(
− log(p+1)

√
B

4+ 2
3

(
(log(p+1))2

B

)1/4

)
.

In what follows, we use Ψ3 to denote (p+ 1) exp

(
− log(p+1)

√
B

4+ 2
3

(
(log(p+1))2

B

)1/4

)
.

Then by using the definition of ξSj1,jm , the following inequality holds with probability higher than 1− tΨ3

for any x such that for j0 + (x+m− 1)T0 ≤ t, the following inequality holds:

ξSj1,jm = ξSj0+xT0,j0+(x+m−1)T0
≤ (1− ηµ)xT0Adj0,j0+mT0−1

+A1
r

n
+A2

1

B1/4
+AM1

(
(log(p+ 1))2

B

)1/4 (53)

A.3.3 Main recursions

We bound the difference between wI,S
t and wU,S

t. First we bound ‖wS
t −wU,S

t‖:

Theorem 8 (Bound between iterates on full and the leave-r-out dataset). When

∆Bt′

B
≤ r

n
+

1

B1/4

holds for all t′ < t, ‖wSt −wU,St‖≤ 2c2
µ (rn + 1

B1/4). Since with probability higher than 1− t×Ψ1,

∆Bt′

B
≤ r

n
+

1

B1/4

holds for all t′ < t. Then with the same probability, ‖wSt′+1 − wU,St′+1‖≤ M1(rn + 1
B1/4) for all iterations

t′ < t, where recall that M1 = 2c2
µ .

Similarly, we can bound the difference between wI
t and wt.

Theorem 9 (Bound between iterates on full data and incrementally updated ones). Suppose that for at
some iteration t and any given t′ ≤ t such that j′m ≤ t′ ≤ j′m + T0 − 1, we have the following bounds:

1. ‖HS
t′ −BS

j′m
‖≤ ξSj′1,j′m = Adj′1,j′m+T0−1 +A 3

1
2−

r
n

M1(rn + 1
B1/4) +A 2

c0
L
(

log2(2p)
B

)1/4

;

2. ∆Bt′
B ≤ r

n + 1
B1/4 ;

3. Formula (53) holds for any x such that j0 + (x+m− 1)T0 ≤ t;

4. ξSj0,j0+(m−1)T0
+A×M1

(
(log(p+1))2

B

)1/4

≤ µ
2 ,

26

then

‖wI,St′+1 −wSt′+1‖≤
2c2

(1
2 −

r
n −

1
B1/4)µ

(
r

n
+

1

B1/4
) = MS

1 (
r

n
+

1

B1/4
)

for any t′ ≤ t Recall that c0 is the Lipshitz constant of the Hessian, M1 and A are defined in Theorem 8 and
Corollary 2 respectively, and do not depend on t.

in particular for all t, the following inequality holds:

‖wI,St+1 −wSt+1‖≤
2c2

(1
2 −

r
n −

1
B1/4)µ

(
r

n
+

1

B1/4
) = MS

1 (
r

n
+

1

B1/4
).

Similarly, we will show that both inequalities ‖HS
t −BS

jm‖≤ ξSj1,jm and ‖wI,S
t+1 −wS

t+1‖≤MS
1 (rn +

1
B1/4) hold for all iterations t.

Theorem 10 (Bound between iterates on full data and incrementally updated ones (all iterations)). Suppose
that there are T iterations in total for each training phase, then with probability higher than 1− T × (Ψ1 +
Ψ2+Ψ3), for any t where jm < t < jm+T0−1, ‖wI,St−wSt‖≤ 1

1
2−

r
n−

1

B1/4

M1(rn+ 1
B1/4) and ‖HS

t−BS
jm‖≤

ξSj1,jm , where ξSj1,jm is defined in Corollary 2, Ψ1 is defined in Lemma 9, Ψ2 is defined in Theorem 6 and Ψ3

is defined in Lemma 10.

Then we have the following bound for ‖wU
t −wI

t‖.

Theorem 11 (Main result: Bound between true and incrementally updated iterates for SGD). Suppose that
there are T iterations in total for each training phase, then with probability higher than 1−T×(Ψ1+Ψ2+Ψ3),
the result wI,St of Algorithm 1 approximates the correct iteration values wU,St at the rate

‖wU,St −wI,St‖≤ o((
r

n
+

1

B1/4
)).

So ‖wU,St −wI,St‖ is of a lower order than (rn + 1
B1/4).

A.3.4 Proof of Theorem 8

Proof. By subtracting wS
t −wU,S

t, taking the matrix norm and using the update rule in equation (5) and
(6), we get:

‖wS
t+1 −wU,S

t+1‖
= ‖wS

t − ηGB,S(wS
t)−

(
wU,S

t − ηGUB−∆B,S(wU,S
t)
)
‖

= ‖wS
t −wU,S

t − η
(
GB,S(wS

t)−GUB−∆B,S(wU,S
t)
)
‖

= ‖wS
t −wU,S

t − η(GB,S(wS
t)−GB,S(wU,S

t)

+GB,S(wU,S
t)−GUB−∆B,S(wU,S

t))‖
= ‖wS

t −wU,S
t − η

(
GB,S(wS

t)−GB,S(wU,S
t)
)

+

η
(
GB,S(wU,S

t)−GUB−∆B,S(wU,S
t)
)
‖

(54)

By Cauchy mean-value theorem and the triangle inequality, the above formula becomes:

≤ ‖wS
t −wU,S

t − η(
1

B

∫ 1

0

∑
i∈Bt

Hi

(
wS

t + x
(
wU,S

t −wS
t

))
dx)

(
wS

t −wU,S
t

)
‖+η‖δt,S‖

= ‖

(
I− η(

1

B

∫ 1

0

∑
i∈Bt

Hi

(
wS

t + x
(
wU,S

t −wS
t

))
dx)

)(
wS

t −wU,S
t

)
‖+η‖δt,S‖

Then by using the Lemma 3 and Lemma 9, the formula above can be bounded as:

≤ (1− ηµ)‖wS
t −wU,S

t‖+η2c2
∆Bt
B

27

Then by using Lemma 9 and using the formula above recursively, we get that with probability higher
than 1− t ·Ψ1, ‖wS

t′ −wU,S
t′‖≤ 2c2

µ (rn + 1
B1/4) holds for all iterations t′ ≤ t, which finishes the proof.

A.3.5 Proof of Theorem 9

Proof. For any t′ ≤ t, by subtracting wS
t′ by wI,S

t′ and taking the same argument as equation (29)-(31)
(except that wt′ , wI

t′ , H, B, n, r are replaced with wS
t′ , wI,S

t′ , HS , BS , B, ∆Bt′), the following equality
holds due to the bound on ‖HS

t′ −BS
jm‖:

‖wI,S
t′+1 −wS

t′+1‖

≤ (1− ηµ+ η
B

B −∆Bt
ξSj1,jm)‖wI,S

t −wS
t‖+

2∆Btηc2
B −∆Bt

.
(55)

Since ∆Bt
B ≤ r

n + 1
B1/4 for all iterations between 0 and t, the following two inequalities hold:

2∆Btηc2
B −∆Bt

=
2ηc2
B

∆Bt
− 1
≤ 2ηc2

1
r
n+ 1

B1/4

− 1
=

2ηc2

1− r
n −

1
B1/4

(
r

n
+

1

B1/4
), (56)

B

B −∆Bt
=

1

1− ∆Bt
B

≤ 1

1− (rn + 1
B1/4)

. (57)

Moreover, since Formula (53) holds and ξSj0,j0+(m−1)T0
+A×M1

(
(log(p+1))2

B

)1/4

≤ µ
2 , then:

ξSj1,jm = ξSj0+xT0,j0+(x+m−1)T0
≤ (1− ηµ)xT0Adj0,j0+mT0−1

+A1
r

n
+A2

1

B1/4
+AM1

(
(log(p+ 1))2

B

)1/4

≤ Adj0,j0+mT0−1 +A1
r

n
+A2

1

B1/4
+AM1

(
(log(p+ 1))2

B

)1/4

= ξj0,j0+mT0−1 +AM1

(
(log(p+ 1))2

B

)1/4

≤ µ

2
.

Then the Formula (55) can be bounded as:

‖wI,S
t′+1 −wS

t′+1‖

≤ (1− ηµ+ η
B

B −∆Bt
(ξSj0,j0+(m−1)T0

+A×M1

(
(log(p+ 1))2

B

)1/4

)‖wI,S
t′ −wS

t′‖+
2∆Btηc2
B −∆Bt

≤ (1− ηµ+ η
ξSj0,j0+(m−1)T0

+A×M1

(
(log(p+1))2

B

)1/4

1− (rn + 1
B1/4)

)‖wI,S
t′ −wS

t′‖+
2ηc2

1− r
n −

1
B1/4

(
r

n
+

1

B1/4
),

which uses equation (56) and (57). Then applying the formula recursively from iteration t to 0, we can
get:

‖wI,S
t′+1 −wS

t′+1‖

≤ 1

η(µ−
ξS
j0,j0+(m−1)T0

+2c2
(

(log(p+1))2

B

)1/4

1−(rn+ 1

B1/4
)

)

2ηc2

1− r
n −

1
B1/4

(
r

n
+

1

B1/4
).

28

Then since ξSj0,j0+(m−1)T0
≤ µ

2 , the formula above can be further bounded as:

=
2c2

(1− r
n −

1
B1/4)µ− ξSj0,j0+(m−1)T0

−A×M1

(
(log(p+1))2

B

)1/4
(
r

n
+

1

B1/4
)

≤ 2c2

(1
2 −

r
n −

1
B1/4)µ

(
r

n
+

1

B1/4
).

A.3.6 Proof of Theorem 10

The proof is the same as the proof of Theorem 4 except that w, wI , n, r, ξj1,jm , H, B need to be replaced

by wS , wI,S , B, r, ξSj1,jm , HS , BS and the main theorems that the proof depends on will be replaced by
Theorem 9 and Corollary 2. But we need some careful explanations for the probability, which is shown as:

Proof. We define the following event at a given iteration k:

Ω0(k) = {‖wS
k −wU,S

k‖≤M1(
r

n
+

1

B1/4
)},

Ω1(k) = {‖wS
k −wI,S

k‖≤MS
1 (
r

n
+

1

B1/4
)},

Ω2(k) = {‖HS
k−1 −BS

jm‖≤ ξSj1,jm} (jm ≤ k − 1 ≤ jm + T0 − 1),

Ω3(k) = {‖

 1

B

∑
i∈Bk−1

Hi(w
S
k−1)

−H(wS
k−1)‖≤ L

(
log2(2p)

B

)1/4

},

Ω4(k) = {ξSj0+xT0,j0+(x+m−1)T0
≤ (1− ηµ)j0+xT0Ad0,mT0−1

+A1
r

n
+A2

1

B1/4
+AM1

(
(log(p+ 1))2

B

)1/4

} where j0 + (x+m− 1)T0 ≤ k − 1 ≤ j0 + (x+m)T0 − 1,

Ω5(k) = {∆Bk−1

B
≤ r

n
+

1

B1/4
}.

For all t, according to Corollary 2, the following equation holds:

Pr(

t⋂
k=1

Ω2(k)|
t−1⋂
k=1

Ω1(k),

t⋂
k=1

Ω3(k)) = 1.

in which the co-occurrence of multiple events is denoted by
⋂

or “,”. So this formula means that the
probability that Ω2(k) is true for all k ≤ t given that the events Ω1(k) and Ω3(k) are true at the same time
for all k ≤ t is 1.

Similarly, according to Theorem 9, Pr(
⋂t
k=1 Ω1(k)

∣∣∣⋂tk=1 Ω2(k),
⋂t
k=1 Ω4(k),

⋂t
k=1 Ω5(k)) = 1. Then we

know that:

Pr(

t⋂
k=1

Ω1(k)
∣∣∣ t⋂
k=1

Ω2(k),

t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k)) · Pr(

t⋂
k=1

Ω2(k)|
t−1⋂
k=1

Ω1(k),

t⋂
k=1

Ω3(k))

= Pr(

t⋂
k=1

Ω1(k),

t⋂
k=1

Ω2(k)
∣∣∣ t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t−1⋂
k=1

Ω1(k),

t⋂
k=1

Ω3(k)) = 1,

which can be multiplied by

Pr(

t−1⋂
k=1

Ω1(k)
∣∣∣ t−1⋂
k=1

Ω2(k),

t−1⋂
k=1

Ω4(k),

t−1⋂
k=1

Ω5(k)).

29

The result is then multiplied by

Pr(

t−1⋂
k=1

Ω2(k)|
t−2⋂
k=1

Ω1(k),

t−1⋂
k=1

Ω3(k)) = 1.

Then the following equality holds:

Pr(

t⋂
k=1

Ω1(k),

t⋂
k=1

Ω2(k)
∣∣∣ t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t−2⋂
k=1

Ω1(k),

t⋂
k=1

Ω3(k)) = 1

which uses the fact that
⋂t
k=1 Ωy(k)

⋂⋂t−1
k=1 Ωy(k) =

⋂t
k=1 Ωy(k) (y = 1, 2, 3, 4, 5). So by repeating this until

the iteration j0, then the following equality holds:

Pr(

t⋂
k=1

Ω1(k),

t⋂
k=1

Ω2(k)
∣∣∣ t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

j0⋂
k=1

Ω1(k),

t⋂
k=1

Ω3(k)) = 1 (58)

When t ≤ j0, we know that wI,S
t = wU,S

t and MS
1 ≥M1, which means that if Ω0(k) holds, then Ω1(k)

holds when wI,S
t = wU,S

t, and thus

Pr(

j0⋂
k=1

Ω1(k)|
j0⋂
k=1

Ω0(k)) = 1.

Then according to Theorem 8, we know that:

Pr(

j0⋂
k=1

Ω0(k)
∣∣∣ j0⋂
k=1

Ω5(k)) = 1.

By multiplying the above two formulas, we get:

Pr(

j0⋂
k=1

Ω1(k)|
j0⋂
k=1

Ω0(k)) · Pr(

j0⋂
k=1

Ω0(k)
∣∣∣ j0⋂
k=1

Ω5(k))

= Pr(

j0⋂
k=1

Ω1(k),

j0⋂
k=1

Ω0(k)
∣∣∣ j0⋂
k=1

Ω5(k)) = 1

Note that since the probability of two joint events is smaller than that of either of the events, the following
inequality holds:

Pr(

j0⋂
k=1

Ω1(k),

j0⋂
k=1

Ω0(k)
∣∣∣ j0⋂
k=1

Ω5(k)) ≤ Pr(

j0⋂
k=1

Ω1(k)
∣∣∣ j0⋂
k=1

Ω5(k)) ≤ 1.

So we know that:

Pr(

j0⋂
k=1

Ω1(k)
∣∣∣ j0⋂
k=1

Ω5(k)) = 1.

which can be multiplied by Formula (58) and thus the following equality holds:

Pr(

t⋂
k=1

Ω1(k),
t⋂

k=1

Ω2(k)
∣∣∣ t⋂
k=1

Ω4(k),
t⋂

k=1

Ω5(k),
t⋂

k=1

Ω3(k)) = 1 (59)

30

Then we can compute the probability of the negation of the joint event (
⋂t+1
k=1 Ω1(k),

⋂t
k=1 Ω2(k)):

Pr(

t⋂
k=1

Ω1(k),

t⋂
k=1

Ω2(k))

= Pr(

t⋂
k=1

Ω1(k),

t⋂
k=1

Ω2(k)
∣∣∣ t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t⋂
k=1

Ω3(k)) · Pr(

t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t⋂
k=1

Ω3(k))

+ Pr(

t⋂
k=1

Ω1(k),

t⋂
k=1

Ω2(k)
∣∣∣ t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t⋂
k=1

Ω3(k)) · Pr(

t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t⋂
k=1

Ω3(k))

≤ Pr(

t⋂
k=1

Ω1(k),

t⋂
k=1

Ω2(k)
∣∣∣ t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t⋂
k=1

Ω3(k)) + Pr(

t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t⋂
k=1

Ω3(k))

= Pr(

t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t⋂
k=1

Ω3(k)).

The last two steps use the fact that

Pr(

t⋂
k=1

Ω1(k),

t⋂
k=1

Ω2(k)
∣∣∣ t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t⋂
k=1

Ω3(k)) = 0

and

Pr(
t⋂

k=1

Ω1(k),

t⋂
k=1

Ω2(k)
∣∣∣ t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t⋂
k=1

Ω3(k)) ≤ 1.

By further using the property of the probability of the union of multiply events, the formula above is
bounded as:

Pr(

t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t⋂
k=1

Ω3(k)) ≤ Pr(

t⋂
k=1

Ω4(k)
⋃ t⋂

k=1

Ω5(k)
⋃ t⋂

k=1

Ω3(k))

≤ Pr(

t⋂
k=1

Ω4(k)) + Pr(

t⋂
k=1

Ω5(k)) + Pr(

t⋂
k=1

Ω3(k)).

Then by using Theorem 6, Formula (53), Lemma 9 and taking the union between iteration 0 and t, we
get:

Pr(

t⋂
k=1

Ω3(k)) ≤ t×Ψ2,

Pr(

t⋂
k=1

Ω4(k)) ≤ tΨ3,

Pr(

t⋂
k=1

Ω5(k)) ≤ t×Ψ1.

Then we can know that:

Pr(

t⋂
k=1

Ω1(k),

t⋂
k=1

Ω2(k)) ≥ 1− t(Ψ2 + Ψ3 + Ψ1)

31

and thus

Pr(

t⋂
k=1

Ω1(k)) ≥ Pr(

t⋂
k=1

Ω1(k),

t⋂
k=1

Ω2(k)) ≥ 1− t(Ψ2 + Ψ3 + Ψ1).

This finishes the proof.
Similarly, from Formula (59), we know that for all T iterations:

Pr(

t⋂
k=1

Ω1(k),

t⋂
k=1

Ω2(k),

t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k)
∣∣∣ t⋂
k=1

Ω4(k),

t⋂
k=1

Ω5(k),

t⋂
k=1

Ω3(k)) = 1. (60)

Through the same argument, we know that:

Pr(

T⋂
k=1

Ω1(k),

T⋂
k=1

Ω2(k),

T⋂
k=1

Ω4(k),

T⋂
k=1

Ω5(k)) ≥ 1− T (Ψ2 + Ψ3 + Ψ1).

A.3.7 Proof of Theorem 11

The proof is the same as the proof of Theorem 4 except that w, wI , n, r, ξj1,jm , H, B need to be replaced

by wS , wI,S , B, r, ξSj1,jm , HS , BS and the main theorems that the proof depends on will be replaced by
Theorem 9 and Corollary 2. We will show some key steps below.

First of all, according to the proofs of Theorem 10, we know that the following inequalities hold with
probability higher than 1− T (Ψ2 + Ψ3 + Ψ1):

‖wS
k −wI,S

k‖≤
1

1
2 −

r
n −

1
B1/4

M1(
r

n
+

1

B1/4
);

‖HS
k −BS

jm‖≤ ξSj1,jm ;

ξSj0+xT0,j0+(x+m−1)T0
≤ (1− ηµ)j0+xT0Ad0,mT0−1 +A1

r

n
+A2

1

B1/4
+AM1

(
(log(p+ 1))2

B

)1/4

≤ ξj0,j0+(m−1)T0
+AM1

(
(log(p+ 1))2

B

)1/4

;

∆Bk
B
≤ r

n
+

1

B1/4
.

Then by subtracting wI,S
t by wU,S

t and following the arguments from Formula (32) to (34), the following
inequality holds for ‖wI,S

t −wU,S
t‖ with probability higher than 1− T × (Ψ2 + Ψ1 + Ψ3):

‖wI,S
t −wU,S

t‖

≤ (1− ηµ+
Bη

B −∆Bt
ξSj1,jm)‖wI,S

t −wU,S
t‖

+
ηc0
2
‖wU,S

t −wI,S
t‖‖wU,S

t −wS
t‖+

Bη

B −∆Bt
ξSj1,jm‖w

U,S
t −wS

t‖

≤
(

1− ηµ+
Bη

B −∆Bt
ξSj1,jm +

c0M1η

2
(
r

n
+

1

B1/4
)

)
‖wI,S

t −wU,S
t‖+

Bη

B −∆Bt
ξSj1,jmM1(

r

n
+

1

B1/4
).

By using the fact that ∆Bt
B ≤ r

n + 1
B1/4 and ξj1,jm ≤ ξj0,j0+(m−1)T0

+A×M1

(
(log(p+1))2

B

)1/4

, the formula

32

above can be bounded as:

‖wI,S
t −wU,S

t‖

≤
(

1− ηµ+
Bη

B −∆Bt
ξSj1,jm +

c0M1η

2
(
r

n
+

1

B1/4
)

)
‖wI,S

t −wU,S
t‖+

Bη

B −∆Bt
ξSj1,jmM1(

r

n
+

1

B1/4
)

≤ [1− ηµ+
η

1− r
n −

1
B1/4

(ξSj0,j0+(m−1)T0
+A×M1

(
(log(p+ 1))2

B

)1/4

)

+
c0M1η

2
(
r

n
+

1

B1/4
)]‖wI,S

t −wU,S
t‖+

η

1− r
n −

1
B1/4

ξSj0+xT0,j0+(x+m−1)T0
M1(

r

n
+

1

B1/4
).

Since ξSj0,j0+(m−1)T0
+A×M1

(
(log(p+1))2

B

)1/4

≤ µ
2 and B is a large mini-batch size, then

1− (ηµ− η

1− r
n −

1
B1/4

(ξSj0,j0+(m−1)T0
+A×M1

(
(log(p+ 1))2

B

)1/4

)− c0M1η

2
(
r

n
+

1

B1/4
)) < 1.

Then after explicitly using the definition of ξSj1,jm and following the argument of equation (35) to (38),
we get:

‖wI
j0+(y+m)T0

−wU
j0+(y+m)T0

‖
≤ (1− ηC)yT0‖wI

j0+mT0 −wU
j0+mT0‖

+
M1(rn + 1

B1/4)

C(1− r
n −

1
B1/4)

(1− ηC)yT0(1− ηµ)j0d0,mT0−1
1

1− (1−ηµ
1−ηC)T0

+
1

1− (1− ηC)T0

M1(rn + 1
B1/4)

C(1− r
n −

1
B1/4)

(A1
r

n
+A2

1

B1/4
+AM1

(
(log(p+ 1))2

B

)1/4

)

(61)

when t → ∞ and thus y → ∞, (1 − ηC)yT0 → 0. Also with large mini-batch value B, A1
r
n + A2

1
B1/4 +

AM1

(
(log(p+1))2

B

)1/4

is a value of the same order as r
n + 1

B1/4 . Thus

‖wI
j0+(y+m)T0

−wU
j0+(y+m)T0

‖= o(
r

n
+

1

B1/4
)

and

‖wU,S
t −wI,S

t‖≤ o(
r

n
+

1

B1/4
).

B Details on applications

B.1 Privacy related data deletion

The notion of Approximate Data Deletion from the training dataset is proposed in Ginart et al. (2019):

Definition 1. A data deletion operation RA is a δ−deletion for algorithm A if, for all datasets D and for
all measurable subset S, the following inequality holds:

Pr[A(D−i) ∈ S|D−i] ≥ δPr[RA(D,A(D), i) ∈ S|D−i],

where D is the full training dataset, D−i is the remaining dataset after the ith sample is removed, A(D)
and A(D−i) represent the model trained over D and D−i respectively. Also RA is an approximate model
update algorithm, which updates the model after the sample i is removed.

This definition mimics the classical definition of differential privacy (Dwork et al., 2014):

33

Definition 2. A mechanism M is ε-differentially private, where ε ≥ 0 , if for all neighboring databases D0

and D1, i.e., for databases differing in only one record, and for all sets S ∈ [M], where [M] is the range of
M , the following inequality holds:

Pr[M(D0) ∈ S] ≤ eεPr[M(D1) ∈ S].

By borrowing the notations from Ginart et al. (2019), we define a version of approximate data deletion,
which is slightly more strict than the one from Ginart et al. (2019):

Definition 3. RA is an ε−approximate deletion for A if for all D and measurable subset S ⊂ H:

P (A(D−i) ∈ S|D−i) ≤ eεP (RA(D,A(D), i) ∈ S|D−i)

and
P (RA(D,A(D), i) ∈ S|D−i) ≤ eεP (A(D−i) ∈ S|D−i).

To satisfy this definition for gradient descent, necessary randomness is added to the output of the BaseL
and DeltaGrad. One simple way is the Laplace mechanism (Dwork et al., 2014), also following the idea from
Chaudhuri and Monteleoni (2009) where noise following the Laplace distribution, i.e.

Lap(x| 2

nελ
) =

1
2
nελ

exp(− |x|2
nελ

),

is added to the each coordinate of the output of the regularized logistic regression. Here p is the number of
the parameters, λ is the regularization rate and 2

nλ is the sensitivity of logistic regression (see Chaudhuri
and Monteleoni (2009) for more details).

We can add even smaller noise to w∗, wU ∗ and wI∗, which follows the distribution Lap(δε) for each

coordinate of w∗, wU ∗ and wI∗ and is independent across different coordinates. Here δ >
√
pδ0 and

δ0 =
1

η(1
2µ−

r
n−rµ−

c0M1r
2n)2

M1r

n− r
(A

1
1
2 −

r
n

M1
r

n
)

(which is an upper bound on ‖wU ∗−wI∗‖), such that the randomized DeltaGrad preserves ε−approximate
deletion.

Proof. We denote the model parameters after adding the random noise over wR, wU,R and wI,R, and vi as
the value of v in the ith coordinate. We have:

w∗ −wR∗,wU ∗ −wU,R∗,wI∗ −wI,R∗ ∼ Lap(δ
ε

)

Given an arbitrary vector z = [z1, z2, . . . , zp], the probability density ratio between Pdf(wU,R∗ = z) and

Pdf(wI,R∗ = z) can be calculated as

Pdf(wU,R∗ = z)

Pdf(wI,R∗ = z)
=

Πp
i=1

ε
δ exp(− ε|z−wU∗|

δ)

Πp
i=1

ε
δ exp(−ε |zi−wI∗

i |
δ)

= Πp
i=1 exp(

ε(|zi −wU ∗|−|zi −wI∗
i |)

δ
)

≤ Πp
i=1 exp(

ε(|wI∗
i −wU ∗

i |)
δ

)

= exp(
ε(‖wI∗ −wU ∗‖1)

δ
)

Since
‖wI∗ −wU ∗‖1≤

√
p‖wI∗ −wU ∗‖2=

√
p‖wI∗ −wU ∗‖

Then,

34

Pdf(wU,R∗ = z)

Pdf(wI,R∗ = z)
≤ exp(

ε(‖wI∗ −wU ∗‖)
δ

)

≤ exp(
ε
√
pδ0

δ
) ≤ exp(ε)

Similarly, we can also prove Pdf(wU,R∗=z)
Pdf(wI,R∗=z)

≥ exp(ε) by symmetry.

C Supplementary algorithm details

In Section 2, we only provided the details of DeltaGrad for deterministic gradient descent for the strongly
convex and smooth objective functions in batch deletion/addition scenarios. In this section, we will provide
more details on how to extend DeltaGrad to handle stochastic gradient descent, online deletion/addition
scenarios and non-strongly convex, non-smooth objective functions.

C.1 Extension of DeltaGrad for stochastic gradient descent

By using the notations from equations (5)-(7), we need to approximately or explicitly compute GB,S , i.e.
the average gradient for a mini-batch in the SGD version of DeltaGrad, instead of ∇F , which is the average
gradient for all samples. So by replacing wt, wU

t, wI
t, ∇F , B and H with wS

t, wU,S
t, wI,S

t, GB,S , BS

and HS in Algorithm 1, we get the SGD version of DeltaGrad.

C.2 Extension of DeltaGrad for online deletion/addition

In the online deletion/addition scenario, whenever the model parameters are updated after the deletion or
addition of one sample, the history information should be also updated to reflect the changes. By assuming
that only one sample is deleted or added each time, the online deletion/addition version of DeltaGrad is
provided in Algorithm 2 and the differences relative to Algorithm 1 are highlighted.

Since the history information needs to be updated every time when new deletion or addition requests
arrive, we need to do some more analysis on the error bound, which is still pretty close to the analysis in
Section A.

In what follows, the analysis will be conducted on gradient descent with online deletion. Other similar
scenarios, e.g. stochastic gradient descent with online addition, will be left as the future work.

C.2.1 Convergence rate analysis for online gradient descent version of DeltaGrad

Additional notes on setup, preliminaries
Let us still denote the model parameters for the original dataset at the tth iteration by wt. During

the model update phase for the kth deletion request at the tth iteration, the model parameters updated by
BaseL and DeltaGrad are denoted by wU

t(k) and wI
t(k) respectively where wU

t(0) = wI
t(0) = wt. We

also assume that the total number of removed samples in all deletion requests, r, is still far smaller than the
total number of samples, n.

Also suppose that the indices of the removed samples are {i1, i2, . . . , ir}, which are removed at the 1st,
2nd, 3rd, . . . ,, rth deletion request. This also means that the cumulative number of samples up to the kth
deletion request (k ≤ r) is n−k for all 1 ≤ k ≤ r and thus the objective function at the kth iteration will be:

F k(w) =
1

n− k
∑
i 6∈Rk

Fi(w).

where Rk = {i1, i2, . . . , ik}. Plus, at the kth deletion request, we denote by Hk
t the average Hessian

matrix of F k(w) evaluated between wI
t(k + 1) and wI

t(k):

Hk
t =

1

n− k
∑
i6∈Rk

∫ 1

0

Hi(w
I
t(k) + x(wI

t(k + 1)−wI
t(k)))dx

35

Algorithm 2: DeltaGrad (online deletion/addition)

Input : The full training set (X,Y), model parameters cached during the training phase for the full training
samples {w0,w1, . . . ,wt} and corresponding gradients {∇F (w0) ,∇F (w1) , . . . ,∇F (wt)}, the
index of the removed training sample or the added training sample ir, period T0, total iteration
number T , history size m, warmup iteration number j0, learning rate η

Output: Updated model parameter wI
t

1 Initialize wI
0 ← w0

2 Initialize an array ∆G = []
3 Initialize an array ∆W = []
4 for t = 0; t < T ; t+ + do
5 if [((t− j0) mod T0) == 0] or t ≤ j0 then
6 compute ∇F

(
wI

t

)
exactly

7 compute ∇F
(
wI

t

)
−∇F (wt) based on the cached gradient ∇F (wt)

8 set ∆G [k] = ∇F
(
wI

t

)
−∇F (wt)

9 set ∆W [k] = wI
t −wt, based on the cached parameters wt

10 k ← k + 1

11 compute wI
t+1 by using exact GD update (equation (1))

12 wt ← wI
t

13 ∇F (wt)← ∇F (wI
t)

14 else

15 Pass ∆W [−m :], ∆G [−m :], the last m elements in ∆W and ∆G, which are from the jth1 , j
th
2 , . . . , j

th
m

iterations where j1 < j2 < · · · < jm depend on t, v = wI
t −wt, and the history size m, to the

L-BFGFS Algorithm (See Supplement) to get the approximation of H(wt)v, i.e., Bjmv
16 Approximate ∇F

(
wI

t

)
= ∇F (wt) + Bjm

(
wI

t −wt

)
17 Compute wI

t+1 by using the ”leave-1-out” gradient formula, based on the approximated ∇F (wI
t)

18 wt ← wI
t

19 ∇F (wt)← η
n−1

[n(Bjm(wI
t −wt) +∇F (wt))−∇Fir (wt)]

20 end

21 end

22 return wI
t

Specifically,

H0
t =

1

n

n∑
i=1

∫ 1

0

Hi(w
I
t(0) + x(wI

t(1)−wI
t(0)))dx.

Also the model parameters and the approximate gradients evaluated by DeltaGrad at the r − 1st deletion
request are used at the rth request, and are denoted by:

{wI
0(r − 1),wI

1(r − 1), . . . ,wI
t(r − 1)}

and
{ga

(
wI

0(r − 1)
)
, ga

(
wI

1(r − 1)
)
, . . . , ga

(
wI

t(r − 1)
)
}.

Note that ga(wI
t(k)) (k ≤ r) is not necessarily equal to ∇F due to the approximation brought by

DeltaGrad. But due to the periodicity of DeltaGrad, at iteration 0, 1, . . . , j0 and iteration j0 + xT0 (x =
1, 2, . . . ,), the gradients are explicitly evaluated, i.e.:

ga(wI
t(k)) =

1

n− k
∑
i 6∈Rk

∇Fi(wI
t(k))

for t = 0, 1, . . . , j0 or t = j0 + xT0 (x ≥ 1) and all k ≤ r.
Also, due to the periodicity, the sequence [∆gj0 ,∆gj1 , . . . ,∆gjm−1

] used in approximating the Hessian
matrix always uses the exact gradient information, which means that:

∆gjq =
1

n− k
[
∑
i6∈Rk

∇Fi(wI
jq (k))−

∑
i 6∈Rk

∇Fi(wI
jq (k − 1))]

36

where q = 1, 2, . . . ,m − 1. So Lemma 6 on the bound on the eigenvalues of Bjq holds for all q and
k = 1, 2, . . . , r.

But for the iterations where the gradients are not explicitly evaluated, the calculation of ga(wI
t(k))

depends on the approximated Hessian matrix Bk−1
jm

and the approximated gradients calculated at the tth
iteration at the k − 1-st deletion request. So the update rule for ga(wI

t(k)) is:

ga(wI
t(k)) =

1

n− k
{(n− k + 1)[Bk−1

jm
(wI

t(k)−wI
t(k − 1))

+ ga(wI
t(k − 1))]−∇Fik(wI

t(k))}.
(62)

Here the product Bk−1
jm
· (wI

t(k)−wI
t(k − 1)) approximates

1

n− k + 1

∑
i6∈Rk−1

∇Fi(wI
t(k))−∇Fi(wI

t(k − 1))

and ga(wI
t(k − 1)) approximates 1

n−k+1

∑
i6∈Rk−1

∇Fi(wI
t(k − 1)).

Similarly, the online version of ∆w (at the kth iteration) becomes:

∆wjq (k) = wI
jq (k)−wI

jq (k − 1)

where q = 1, 2, . . . ,m− 1.
Similarly, we use dja,jb(k) to denote the value of the upper bound d on the distance between the iterates

at the kth deletion request and use Bk−1
jm

to denote the approximated Hessian matrix in the kth deletion

request, which approximated the Hessian matrix Hk−1
t .

So the update rule for wI
t(k) becomes:

wI
t+1(k) =


wI

t(k)− η
n−k

∑
i6∈Rk ∇Fi(w

I
t(k)), [(t− j0) mod T0 = 0] or t ≤ j0

wI
t(k)− η

n− k
{(n− k + 1)[Bk−1

jm
(wI

t(k)−wI
t(k − 1))

+ ga(wI
t(k − 1))]−∇Fik(wI

t(k))}, else.

(63)

Proof preliminaries.
On each deletion request, the BaseL model parameters are retrained from scratch on the remaining

samples. This implies that Theorem 2 still holds, if we replace wU
t, wt and r with wU

t(k), wU
t(k− 1) and

1 respectively:

Theorem 12 (Bound between iterates deleting one datapoint). ‖wUt(r)−wUt(r− 1)‖≤M1
1
n where M1 =

2
µc2 is some positive constant that does not depend on t. Here µ is the strong convexity constant, and c2 is
the bound on the individual gradients.

By induction, we have:

‖wU
t(r)−wt‖= ‖wU

t(r)−wU
t(0)‖≤M1

r

n
. (64)

Then let us do some analysis on dja,jb(k). We use the notation Mr
1

1
n for

2M1
n

1− r+1
n −

2(r−1)
n (2L+µ

µ)
, where Mr

1

is a constant which does not depend on k.

Lemma 11. If ‖wI t(k)−wI t(k−1)‖≤
2M1
n

1− k+1
n −

2(k−1)
n (2L+µ

µ)
for all k ≤ r, then dja,jb(r) ≤ dja,jb(0)+2r ·Mr

1
1
n

where M1 is defined in Theorem 12.

Proof. Recall that dja,jb(k) = max(‖wI
y(k)−wI

z(k)‖)ja<y<z<jb . Then for two arbitrary iterations y, z, let
us bound ‖wI

y(k)−wI
z(k)‖ as below:

‖wI
y(k)−wI

z(k)‖
= ‖wI

y(k)−wI
z(k) + wI

y(k − 1)−wI
z(k − 1) + wI

z(k − 1)−wI
y(k − 1)‖

≤ ‖wI
y(k)−wI

y(k − 1)‖+‖wI
z(k)−wI

z(k − 1)‖+‖wI
z(k − 1)−wI

y(k − 1)‖.

37

Then by using the bound on ‖wI
t(k)−wI

t(k − 1)‖, the above formula leads to:

≤ 2 ·
2M1

n

1− k+1
n −

2(k−1)
n (2L+µ

µ)
+ ‖wI

z(k − 1)−wI
y(k − 1)‖.

By using that
2M1
n

1− k+1
n −

2(k−1)
n (2L+µ

µ)
≤

2M1
n

1− r+1
n −

2(r−1)
n (2L+µ

µ)
and applying it recursively for k = 1, 2, . . . , r,

we have:

‖wI
y(r)−wI

z(r)‖≤ 2r ·
2M1

n

1− r+1
n −

2(r−1)
n (2L+µ

µ)
+ ‖wI

z(0)−wI
y(0)‖.

Then by using the definition of dja,jb(k), the following inequality holds:

dja,jb(r) ≤ dja,jb+T0−1(0) + 2r ·
2M1

n

1− r+1
n −

2(r−1)
n (2L+µ

µ)
.

Recalling the definition of Mr
1

1
n , this is exactly the required result.

We also mention that, since
2M1
n

1− k+1
n −

2(k−1)
n (2L+µ

µ)
≤

2M1
n

1− r+1
n −

2(r−1)
n (2L+µ

µ)
, then ‖wI

t(k)−wI
t(k−1)‖≤Mr

1
1
n

for any k ≤ r.

Theorem 13. Suppose that at the kth deletion request, ‖wI jq (k)−wI jq (k−1)‖≤Mr
1

1
n , where q = 1, 2, . . . ,m

and M1 = 2c2
µ . Let e = L(L+1)+K2L

µK1
for the upper and lower bounds K1,K2 on the eigenvalues of the quasi-

Hessian from Lemma 6, and for the Lipshitz constant c0 of the Hessian. For 1 ≤ z + 1 ≤ y ≤ m we
have:

‖Hk−1
jz
−Hk−1

jy
‖≤ c0djz,jy (k − 1) + c0M

r
1

1

n

and

‖∆gjz −Bk−1
jy

∆wjz‖≤
[
(1 + e)y−z−1 − 1

]
· c0(djz,jy +Mr

1

1

n
) · sj1,jm(k − 1)

where sj1,jm(k − 1) = max (‖∆wa(k − 1)‖)a=j1,j2,...,jm
= max

(
‖wI,Sa(k − 1)−wI,Sa(k − 2)‖

)
a=j1,j2,...,jm

.

Recall that d is defined as the maximum gap between the steps of the algorithm for the iterations from jz to
jy:

djz,jy (k − 1) = max
(
‖wIa(k − 1)−wIb(k − 1)‖

)
jz≤a≤b≤jy

. (65)

Proof. Let us bound the difference between the averaged Hessians ‖Hk−1
jz
−Hk−1

jy
‖, where 1 ≤ z < y ≤ m,

using their definition, as well as using Assumption 4 on the Lipshitzness of the Hessian. First we can get
the following equality:

‖Hk−1
jy
−Hk−1

jz
‖

= ‖
∫ 1

0

[H(wI
jy (k − 1) + x(wI

jy (k)−wI
jy (k − 1)))]dx

−
∫ 1

0

[H(wI
jz (k − 1) + x(wI

jz (k)−wI
jz (k − 1)))]dx‖

= ‖
∫ 1

0

[H(wI
jy (k − 1) + x(wI

jy (k)−wI
jy (k − 1)))

−H(wI
jz (k − 1) + x(wI

jz (k)−wI
jz (k − 1)))]dx‖

(66)

38

Then we can bound this as:

≤ c0
∫ 1

0

‖wI
jy (k − 1) + x(wI

jy (k)−wI
jy (k − 1))

− [wI
jz (k − 1) + x(wI

jz (k)−wI
jz (k − 1))]‖dx

≤ c0‖wI
jy (k − 1)−wI

jz (k − 1)‖

+
c0
2
‖wI

jy (k)−wI
jy (k − 1)− (wI

jz (k)−wI
jz (k − 1))‖

≤ c0‖wI
jy (k − 1)−wI

jz (k − 1)‖

+
c0
2
‖wI

jz (k)−wI
jz (k − 1)‖+c0

2
‖wI

jy (k)−wI
jy (k − 1)‖

≤ c0djy,jz (k − 1) + c0M
r
1

1

n
≤ c0dj1,jm+T0−1(k − 1) + c0M

r
1

1

n
.

On the last line, we have used the definition of djz,jy , and the assumption on the boundedness of ‖wI
jz (k)−

wI
jz (k − 1)‖.
Then by following the rest of the proof of Theorem 1, we get:

‖∆gjz −Bjy∆wjz‖≤
[
(1 + e)y−z−1 − 1

]
· c0(djz,jy (k − 1) +Mr

1

1

n
) · sj1,jm(k − 1).

Similarly, the online version of Corollary 1 also holds by following the same derivation as the proof of
Corollary 1 (except that r, ξj1,jm and dj1,jm+T0−1 is replaced by 1, ξj1,jm(k − 1) and dj1,jm+T0−1(k − 1)
respectively), i.e.:

Corollary 3 (Approximation accuracy of quasi-Hessian to mean Hessian (online deletion)). Suppose that
at the kth deletion request, ‖wI js(k) − wI js(k − 1)‖≤ Mr

1
1
n and ‖wI t(k) − wI t(k − 1)‖≤ Mr

1
1
n where s =

1, 2, . . . ,m. Then for jm ≤ t ≤ jm + T0 − 1,

‖Hk−1
t −Bk−1

jm
‖≤ ξj1,jm(k − 1) := Adj1,jm+T0−1(k − 1) +AMr

1

1

n
. (67)

Recall that A = c0
√
m[(1+e)m−1]

c1
+ c0, where c0 is the Lipschitz constant of the Hessian, c1 is the ”strong

independence” constant from Assumption 5, and dj1,jm+T0−1(k − 1) is the maximal gap between the iterates
of the GD algorithm on the full data from j1 to jm + T0 − 1 after the k − 1-st deletion.

Based on this, let us derive a bound on ‖∇Fi(wI
t(r))‖, ‖ga(wI

t(r)) − 1
n−r

∑
i 6∈Rr ∇Fi(w

I
t(r))‖ and

‖ga(wI
t(r))‖.

Lemma 12. Suppose we are at an iteration t such that jm ≤ t ≤ jm + T0 − 1. If the following inequality
holds for all k < r:

‖wI t(k)−wI t(k − 1)‖≤Mr
1

1

n
,

then the following inequality holds for all i = 1, 2, . . . , n:

‖∇Fi(wI t(r − 1))‖≤Mr
1

1

n
Lr + c2.

Proof. By adding and subtracting ∇Fi(wI
t(r − 2)) inside ‖∇Fi(wI

t(r − 1))‖, we get:

‖∇Fi(wI
t(r − 1))‖

= ‖∇Fi(wI
t(r − 1))−∇Fi(wI

t(r − 2)) +∇Fi(wI
t(r − 2))‖

≤ ‖∇Fi(wI
t(r − 1))−∇Fi(wI

t(r − 2))‖+‖∇Fi(wI
t(r − 2))‖

39

The last inequality uses the triangle inequality. Then by using the Cauchy mean value theorem, the upper
bound on the eigenvalue of the Hessian matrix (i.e. Assumption 2) and the bound on ‖wI

t(k)−wI
t(k−1)‖,

the formula above is bounded as (recall Hi is an integrated Hessian):

= ‖Hi(w
I
t(r − 1) + x(wI

t(r − 2)−wI
t(r − 1))) · (wI

t(r − 1)−wI
t(r − 2))‖+‖∇Fi(wI

t(r − 2))‖

≤ LMr
1

1

n
+ ‖∇Fi(wI

t(r − 2))‖.

By using this recursively, we get:

≤
r−1∑
k=1

Mr
1

1

n
L+ ‖∇Fi(wI

t(0))‖≤Mr
1

1

n
Lr + c2.

Lemma 13. If at a given iteration t such that jm ≤ t ≤ jm +T0− 1, for all k < r, the following inequalities
hold:

‖wI t(k)−wI t(k − 1)‖≤Mr
1

1

n
and

ξj1,jm(k − 1) ≤ µ

2
,

then we have

‖ 1

n− r + 1

∑
i 6∈Rr−1

∇Fi(wI t(r − 1))− ga(wI t(r − 1))‖≤ rMr
1

1

n
µ.

Proof. First of all, 1
n−r+1

∑
i 6∈Rr−1

∇Fi(wI
t(r−1)) can be rewritten as below by using the Cauchy mean-value

theorem:

1

n− r + 1

∑
i 6∈Rr−1

∇Fi(wI
t(r − 1)) =

1

n− r + 1
[
∑

i6∈Rr−2

∇Fi(wI
t(r − 1))−∇Fir−1

(wI
t(r − 1))]

=
1

n− r + 1
{(n− r + 2)[Hr−2

t × (wI
t(r − 1)−wI

t(r − 2)]

+
∑

i6∈Rr−2

∇Fi(wI
t(r − 2))−∇Fir−1(wI

t(r − 1))}.

By subtracting the above formula from equation (62), i.e., the update rule for the approximate gradient,
the norm of the approximation error between true and approximate gradients is:

‖ 1

n− r + 1

∑
i 6∈Rr−1

∇Fi(wI
t(r − 1))− ga(wI

t(r − 1))‖

=
1

n− r + 1
‖(n− r + 2)(Hr−2

t −Br−2
jm

)× (wI
t(r − 1)−wI

t(r − 2))

+
∑

i 6∈Rr−2

∇Fi(wI
t(r − 2))− (n− r + 2)ga(wI

t(r − 2))‖

Then by using the triangle inequality, Corollary 3 on the approximation accuracy of the quasi-Hessian
(where the bound is in terms of ξ), and the bound on ‖wI

t(r−1)−wI
t(r−2)‖, the formula above is bounded

as:

≤ n− r + 2

n− r + 1
‖Hr−2

t −Br−2
jm
‖‖wI

t(r − 1)−wI
t(r − 2)‖

+
1

n− r + 1
‖
∑

i 6∈Rr−2

∇Fi(wI
t(r − 2))− (n− r + 2)ga(wI

t(r − 2))‖

≤ n− r + 2

n− r + 1
ξj1,jm(r − 2)Mr

1

1

n
+
n− r + 2

n− r + 1
‖ 1

n− r + 2

∑
i 6∈Rr−2

∇Fi(wI
t(r − 2))− ga(wI

t(r − 2))‖

(68)

40

By using that ξj1,jm(r − 2) ≤ µ
2 , the formula above is bounded as:

≤ n− r + 2

n− r + 1

µ

2
(Mr

1

1

n
) +

n− r + 2

n− r + 1
‖ 1

n− r + 2

∑
i 6∈Rr−2

∇Fi(wI
t(r − 2))− ga(wI

t(r − 2))‖

We can use this recursively. Note that ∇F (wI
t(0)) = ga(wI

t(0)). In the end, we get the following
inequality:

≤
r−1∑
k=1

n− k
n− r

µ

2
(Mr

1

1

n
) ≤Mr

1

1

n

µ

2

r−1∑
k=1

n− k
n− r

Also for r � n, n−kn−r ≤ 2 (in fact we assumed r/n ≤ δ for a sufficiently small δ, so this holds). So we get

the bound rMr
1

1
nµ.

Note that for ‖ 1
n−r+1

∑
i 6∈Rr−1

∇Fi(wI
t(r−1))−ga(wI

t(r−1))‖, we get a tighter bound when t→∞ by

using equation (68), Lemma 11 (i.e. dja,jb(r) ≤ dja,jb(0) + 2r ·Mr
1

1
n) and Lemma 8 without using ξj1,jm(r−

1) ≤ µ
2 , which starts by bounding ξj1,jm(k − 1) where k <= r, j1 = j0 + xT0 and jm = j0 + (x+m− 1)T0:

ξj1,jm(k − 1) = Adj1,jm+T0−1(k − 1) +AMr
1

1

n

≤ Adj1,jm+T0−1(0) + 2(k − 1)A ·Mr
1

1

n
+AMr

1

1

n

≤ A(1− µη)j0+xT0d0,mT0−1(0) +A(2k − 1)Mr
1

1

n
,

(69)

which can be plugged into Equation (68), i.e.:

‖ 1

n− r + 1

∑
i6∈Rr−1

∇Fi(wI
t(r − 1))− ga(wI

t(r − 1))‖

≤ n− r + 2

n− r + 1
ξj1,jm(r − 2)Mr

1

1

n

+
n− r + 2

n− r + 1
‖ 1

n− r + 2

∑
i 6∈Rr−2

∇Fi(wI
t(r − 2))− ga(wI

t(r − 2))‖

≤
r−1∑
k=1

n− k + 1

n− k
ξj1,jm(k − 1)Mr

1

1

n

≤
r−1∑
k=1

n− k + 1

n− k
[A(1− µη)j0+xT0d0,mT0−1(0) +A(2k − 1)Mr

1

1

n
] ·Mr

1

1

n

≤ 2A(1− µη)j0+xT0d0,mT0−1(0)rMr
1

1

n
+ 2A(rMr

1

1

n
)2

(70)

The last step uses that n−k+1
n−k ≤ 2 and

∑r−1
k=1(2k − 1) <

∑r
k=1(2k − 1) = r2. So when t → ∞ and thus

x→∞, ‖ 1
n−r

∑
i 6∈Rr ∇Fi(w

I
t(r))− ga(wI

t(r))‖= o(rn).

Then based on Lemma 12 and 13, the bound on ‖ga(wI
t(r))‖ becomes:

‖ga(wI
t(r − 1))‖

= ‖ga(wI
t(r − 1))− 1

n− r + 1

∑
i 6∈Rr−1

∇Fi(wI
t(r − 1)) +

1

n− r + 1

∑
i6∈Rr−1

∇Fi(wI
t(r − 1))‖

≤ ‖ga(wI
t(r − 1))− 1

n− r + 1

∑
i 6∈Rr−1

∇Fi(wI
t(r − 1))‖+‖ 1

n− r + 1

∑
i6∈Rr−1

∇Fi(wI
t(r − 1))‖

= rMr
1

1

n
µ+Mr

1

1

n
Lr + c2 = (rµ+ Lr)Mr

1

1

n
+ c2

(71)

41

Main results

Theorem 14 (Bound between iterates on full data and incrementally updated ones (online deletions)).
Suppose that for any k < r, ‖wI t(k)−wI t(k− 1)‖≤Mr

1
1
n . At the rth deletion request, consider an iteration

t indexed with jm for which jm ≤ t < jm + T0 − 1, and suppose that we are at the x-th iteration of
full gradient updates, so j1 = j0 + xT0, jm = j0 + (m − 1 + x)T0. Suppose that we have the bounds
‖Hr−1

t −Br−1
jm
‖≤ ξj1,jm(r− 1) = Adj1,jm+T0−1(r− 1) +A(Mr

1
1
n) (where we recalled the definition of ξ) and

ξj1,jm(r − 1) = Adj1,jm+T0−1(r − 1) +A(Mr
1

1

n
) ≤ µ

2

for all iterations x. Then

‖wI t+1(r)−wI t+1(r − 1)‖≤Mr
1

1

n
.

Recall that c0 is the Lipshitz constant of the Hessian, M1 and A are defined in Theorem 12 and Corollary 3
respectively, and do not depend on t,

Then by using the same derivation as the proof of Theorem 4, we get the following results at the rth
deletion request.

Theorem 15 (Bound between iterates on full data and incrementally updated ones (all iterations, online
deletion)). At the deletion request r, if for all k < r, ‖wI t(k) − wI t(k − 1)‖≤ Mr

1
1
n holds, then for any

jm < t < jm + T0 − 1,

‖wI t(r)−wI t(r − 1)‖≤Mr
1

1

n

and

‖Hr−1
t −Br−1

jm
‖≤ ξj1,jm(r − 1) := Adj1,jm+T0−1(r − 1) +AMr

1

1

n

and

‖ 1

n− r + 1

∑
i6∈Rr−1

∇Fi(wI t(r − 1))− ga(wI t(r − 1))‖≤ rMr
1

1

n
µ

hold

Then by induction (the base case is similar to Theorem 4), we know that the following theorem holds for
all iterations t:

Theorem 16 (Bound between iterates on full data and incrementally updated ones (all iterations, all deletion
requests, online deletion)). At the rth deletion request, for any jm < t < jm + T0 − 1,

‖wI t(r)−wI t(r − 1)‖≤Mr
1

1

n

and

‖Hr−1
t −Br−1

jm
‖≤ ξj1,jm(r − 1) := Adj1,jm+T0−1(r − 1) +AMr

1

1

n

and

‖ 1

n− r + 1

∑
i6∈Rr−1

∇Fi(wI t(r − 1))− ga(wI t(r − 1))‖≤ rMr
1

1

n
µ

hold

Then by induction (from the rth deletion request to the 1st deletion request), the following inequality
holds:

‖wI
t(r)−wI

t(0)‖= ‖wI
t(r)−wt‖≤ r ·Mr

1

1

n

42

Then by using equation (64), the following inequality holds:

‖wU
t(r)−wI

t(r − 1)‖= ‖wU
t(r)−wt + wt −wI

t(r − 1)‖
≤ ‖wU

t(r)−wt‖+‖wt −wI
t(r − 1)‖

≤M1
r

n
+ (r − 1) ·Mr

1

1

n
:= M2

r

n

(72)

where M2 is a constant which does not depend on t or k.
In the end, we get a similar result for the bound on ‖wI

t(r)−wU
t(r)‖:

Theorem 17 (Convergence rate of DeltaGrad (online deletion)). At the rth deletion request, for all iterations
t, the result wI t(r) of DeltaGrad, Algorithm 2, approximates the correct iteration values wUt(r) at the rate

‖wUt(r)−wI t(r)‖= o(
r

n
).

So ‖wUt(r)−wI t(r)‖ is of a lower order than r
n .

The proof of Theorem 14

Proof. Note that the approximated update rules for wI
t at the rth and the (r − 1)st deletion request are:

wI
t+1(r) = wI

t(r)−
η

n− r
{(n− r + 1)[Br−1

jm
(wI

t(r)−wI
t(r − 1))

+ ga(wI
t(r − 1))]−∇Fir (wI

t(r))}
(73)

and

wI
t+1(r − 1) = wI

t(r − 1)− η

n− r + 1
{(n− r + 2)[Br−2

jm
(wI

t(r − 1)−wI
t(r − 2))

+ ga(wI
t(r − 2))]−∇Fir−1(wI

t(r − 1))}.
(74)

Note that since

ga(wI
t(r − 1)) =

1

n− r + 1
{(n− r + 2)[Br−2

jm
(wI

t(r − 1)−wI
t(r − 2))

+ga(wI
t(r − 2))]−∇Fir−1(wI

t(r − 1))},

then equation (74) can be rewritten as:

wI
t+1(r − 1) = wI

t(r − 1)− η

n− r + 1
{(n− r + 2)[Br−2

jm
(wI

t(r − 1)−wI
t(r − 2))

+ ga(wI
t(r − 2))]−∇Fir−1

(wI
t(r − 1))}

= wI
t(r − 1)− ηga(wI

t(r − 1)).

(75)

Then by subtracting equation (74) from equation (75), the result becomes:

wI
t+1(r)−wI

t+1(r − 1)

= (wI
t(r)−wI

t(r − 1))− η

n− r
{(n− r + 1)[Br−1

jm
(wI

t(r)−wI
t(r − 1))

+ ga(wI
t(r − 1))]−∇Fir (wI

t(r))}+ ηga(wI
t(r − 1)).

43

Then by adding and subtracting Hr−1
t and 1

n−r+1

∑
i 6∈Rr−1

∇F (wI
t(r − 1)) in the formula above and

rearranging the result properly, it becomes:

wI
t+1(r)−wI

t+1(r − 1)

= (I− ηn− r + 1

n− r
(Br−1

jm
−Hr−1

t))(wI
t(r)−wI

t(r − 1))

− η

n− r
{(n− r + 1)[Hr−1

t (wI
t(r)−wI

t(r − 1))

+
1

n− r + 1

∑
i 6∈Rr−1

∇F (wI
t(r − 1))− 1

n− r + 1

∑
i6∈Rr−1

∇F (wI
t(r − 1))

+ ga(wI
t(r − 1))]−∇Fir (wI

t(r))}+ ηga(wI
t(r − 1)).

(76)

Then by using the fact that

Hr−1
t (wI

t(r)−wI
t(r − 1)) +

1

n− r + 1

∑
i 6∈Rr−1

∇F (wI
t(r − 1))

=
1

n− r + 1

∑
i 6∈Rr−1

∇F (wI
t(r))

and
(
∑

i 6∈Rr−1

∇F (wI
t(r)))−∇Fir (wI

t(r)) =
∑
i 6∈Rr

∇F (wI
t(r)),

Equation (76) becomes:

wI
t+1(r)−wI

t+1(r − 1)

= (I− ηn− r + 1

n− r
(Br−1

jm
−Hr−1

t))(wI
t(r)−wI

t(r − 1))

− η

n− r
[
∑
i 6∈Rr

∇F (wI
t(r))−

∑
i 6∈Rr−1

∇F (wI
t(r − 1))

+ (n− r + 1)ga(wI
t(r − 1))] + ηga(wI

t(r − 1)).

(77)

Also note that by using the Cauchy mean-value theorem, the following equation holds:∑
i 6∈Rr

∇Fi(wI
t(r))−

∑
i 6∈Rr−1

∇Fi(wI
t(r − 1))

=
∑
i 6∈Rr

∇Fi(wI
t(r))−

∑
i 6∈Rr

∇Fi(wI
t(r − 1))−∇Fir (wI

t(r − 1))

= [
∑
i 6∈Rr

∫ 1

0

Hi(w
I
t(r − 1) + x(wI

t(r)−wI
t(r − 1)))dx](wI

t(r)−wI
t(r − 1))−∇Fir (wI

t(r − 1)),

which can be plugged into equation (77), i.e.:

wI
t+1(r)−wI

t+1(r − 1)

= (I− ηn− r + 1

n− r
(Br−1

jm
−Hr−1

t))(wI
t(r)−wI

t(r − 1))

− η

n− r
{[
∑
i 6∈Rr

∫ 1

0

Hi(w
I
t(r − 1) + x(wI

t(r)−wI
t(r − 1)))dx]

· (wI
t(r)−wI

t(r − 1))−∇Fir (wI
t(r − 1))

+ (n− r + 1)ga(wI
t(r − 1))}+ ηga(wI

t(r − 1)),

(78)

44

which can be rearranged as:

wI
t+1(r)−wI

t+1(r − 1)

= (I− ηn− r + 1

n− r
(Br−1

jm
−Hr−1

t))(wI
t(r)−wI

t(r − 1))

− η

n− r
{[
∑
i 6∈Rr

∫ 1

0

Hi(w
I
t(r − 1) + x(wI

t(r)−wI
t(r − 1)))dx]

· (wI
t(r)−wI

t(r − 1))−∇Fir (wI
t(r − 1))} − η

n− r
ga(wI

t(r − 1)).

(79)

Then by taking the matrix norm on both sides of equation (79) and using that ‖Hi(w
I
t(r−1)+x(wI

t(r)−
wI

t(r − 1)))‖≥ µ and ‖Br−1
jm
−Hr−1

t ‖≤ ξj1,jm(r − 1), equation (79) can be bounded as:

‖wI
t+1(r)−wI

t+1(r − 1)‖
≤ (1− ηµ)‖wI

t(r)−wI
t(r − 1)‖

+
(n− r + 1)η

n− r
ξj1,jm(r − 1)‖wI

t(r)−wI
t(r − 1)‖

+
η

n− r
‖∇Fir (wI

t(r − 1))‖+‖ η

n− r
ga(wI

t(r − 1))‖.

Then by using Lemma 12 and equation (71), the formula above becomes:

≤ (1− ηµ+
(n− r + 1)η

n− r
ξj1,jm(r))‖wI

t(r)−wI
t(r − 1)‖

+
η

n− r
(Mr

1

1

n
L(r − 1) + c2) +

η

n− r
(Mr

1

1

n
(r − 1)µ+Mr

1

1

n
L(r − 1) + c2).

By using the bound on ξj1,jm(r) and applying the above formula recursively across all iterations, the
formula above becomes:

≤ 1

ηµ− η(n−r+1)
n−r

µ
2

(
η

n− r
(Mr

1

1

n
L(r − 1) + c2)

+
η

n− r
(Mr

1

1

n
L(r − 1) +Mr

1

1

n
µ(r − 1) + c2)

=
2

(n− r − 1)µ
((Mr

1

1

n
(2L(r − 1) + (r − 1)µ) + 2c2).

Then by using that M1 = 2c2
µ and Mr

1
1
n =

2M1
n

1− r+1
n −

2(r−1)
n (2L+µ

µ)
, the formula above can be rewritten as:

=
2

(n− r − 1)µ

2M1(r−1)
n (2L+ µ) + µM1(1− r+1

n −
2(r−1)
n (2L+µ

µ))

1− r+1
n −

2(r−1)
n (2L+µ

µ)

=
2M1

n

1− r+1
n −

2(r−1)
n (2L+µ

µ)
= Mr

1

1

n
.

This finishes the proof.

The proof of Theorem 17

Proof. Recall that the update rule for wU
t(r) is:

wU
t+1(r) = wU

t(r)− η
1

n− r
∑
i 6∈Rr

∇F (wU
t(r))

45

and the update rule for wI
t(r) is (where the gradients are explicitly evaluated):

wI
t+1(r) = wI

t(r)−
η

n− r
[(n− r + 1)(Br−1

jm
(wI

t(r)−wI
t(r − 1)) + ga(wI

t(r − 1)))−∇Fir (wI
t(r))].

Then by subtracting wI
t+1(r) from wU

t+1(r), we get:

‖wI
t+1(r)−wU

t+1(r)‖

= ‖wI
t(r)−wU

t(r)−
η

n− r
{(n− r + 1)[Br−1

jm
(wI

t(r)−wI
t(r − 1))

+ ga(wI
t(r − 1))]−∇Fir (wI

t(r))}+
η

n− r
∑
i 6∈Rr

∇F (wU
t(r))‖.

Then by bringing in Hr−1
t and 1

n−r+1

∑
i∈Rr−1

∇F (wI
t(r − 1)) into the formula above, we get:

= ‖wI
t(r)−wU

t(r)−
(n− r + 1)η

n− r
[(

Br−1
jm
−Hr−1

t

)
(wI

t(r)−wI
t(r − 1))

+ Hr−1
t × (wI

t(r)−wI
t(r − 1)) + ga(wI

t(r − 1))

− 1

n− r + 1

∑
i∈Rr−1

∇F (wI
t(r − 1)) +

1

n− r + 1

∑
i∈Rr−1

∇F (wI
t(r − 1))]

+
η

n− r
[∇Fir (wI

t(r))−∇Fir (wI
t(r − 1)) +∇Fir (wI

t(r − 1))] +
η

n− r
∑
i 6∈Rr

∇Fi(wU
t(r))‖.

Then by using the triangle inequality and the result from equation (70), the formula above can be bounded
as:

≤ ‖wI
t(r)−wU

t(r)−
(n− r + 1)η

n− r
[(

Br−1
jm
−Hr−1

t

)
(wI

t(r)−wI
t(r − 1))

+ Hr−1
t × (wI

t(r)−wI
t(r − 1)) +

1

n− r + 1

∑
i∈Rr−1

∇Fi(wI
t(r − 1))


+

η

n− r
[∇Fir (wI

t(r))−∇Fir (wI
t(r − 1)) +∇Fir (wI

t(r − 1))]

+
η

n− r
∑
i 6∈Rr

∇Fi(wU
t(r))‖+2A(1− µη)j0+xT0d0,(m−1)T0

(0)rMr
1

1

n
+ 2A(rMr

1

1

n
)2.

Note that the first matrix norm in this formula is the same as equation (33) by replacing n, r, wI
t, wU

t,
wt, Bjm , Ht and∇F (wt) with n−r+1, 1, wI

t(r), wU
t(r), wI

t(r−1), Br−1
jm

, Hr−1
t and 1

n−r+1

∑
i 6∈Rr−1

∇Fi(wI
t(r−

1)) reps.. So by following the same derivation, the formula above can be bounded as:

≤ ‖(I− η

n− r
∑
i 6∈Rr

Hr−1
t,i)(wI

t(r)−wU
t(r))‖

+ ‖ (n− r + 1)η

n− r
[(

Br−1
jm
−Hr−1

t

)
(wI

t(r)−wU
t(r))

]
‖

+ ‖ η

n− r
[
∑
i 6∈Rr

∫ 1

0

Hi(w
I
t(r − 1) + x(wU

t(r)−wI
t(r − 1)))dx

−
∫ 1

0

Hi(w
I
t(r − 1) + x(wI

t(r)−wI
t(r − 1)))dx](wU

t(r)−wI
t(r − 1))‖

+ ‖ (n− r + 1)η

n− r
[(

Br−1
jm
−Hr−1

t

)
(wU

t(r)−wI
t(r − 1))

]
‖

+ 2A(1− µη)j0+xT0d0,(m−1)T0
(0)rMr

1

1

n
+ 2A(rMr

1

1

n
)2.

Then by using the following facts:

46

1. ‖I− ηHr−1
t,i ‖≤ 1− ηµ;

2. from Theorem 16 on the approximation accuracy of the quasi-Hessian to mean Hessian, we have the
error bound ‖Hr−1

t −Br−1
jm
‖≤ ξj1,jm(r − 1);

3. we bound the difference of integrated Hessians using the strategy from Equation (20);

4. from Equation (72), we have the error bound ‖wU
t(r) − wI

t(r − 1)‖≤ M2
r
n (and this requires no

additional assumptions),

the expression can be bounded as follows:

≤ (1− ηµ+
(n− r + 1)η

n− r
ξj0,j0+(m−1)T0

(r − 1) +
c0M2rη

2n
)‖wI

t −wU
t‖

+
M2(n− r + 1)rη

n(n− r)
ξj1,jm(r − 1) + 2A(1− µη)j0+xT0d0,(m−1)T0

(0)rMr
1

1

n

+ 2A(rMr
1

1

n
)2,

which is very similar to equation (36) (except the difference in the coefficient). So by following the
derivation after equation (36), we know that:

‖wI
t(r)−wU

t(r)‖= o(
r

n
)

when t→∞.

C.3 Extension of DeltaGrad for non-strongly convex, non-smooth objective
functions

For the original version of the L-BFGS algorithm, strong convexity is essential to make the secant condi-
tion hold. In this subsection, we present our extension of DeltaGrad to non-strongly convex, non-smooth
objectives.

To deal with non-strongly convex objectives, we assume that convexity holds in some local regions. When
constructing the arrays ∆G and ∆W , only the model parameters and their gradients where local convexity
holds are used.

For local non-smoothness, we found that even a small distance between wt and wI
t can make the

estimated gradient ∇F (wI
t) drift far away from ∇F (wt). To deal with this, we explicitly check if the norm

of Bjm(wt − wI
t) (which equals to ∇F (wI

t) − ∇F (wt)) is larger than the norm of L(wt − wI
t) for a

constant L. In our experiments, L is configured as 1. The details of the modifications above are highlighted
in Algorithm 3.

D Supplementary experiments

In this section, we present some supplementary experiments that could not be presented in the paper due
to space limitations.

D.1 Experiments with large deletion rate

In this experiment, instead of deleting at most 1% of training samples each time as we did in Section 4 in
the main paper, we vary the deletion rate from 0 to up to 20% on MNIST dataset and still compare the
performance between DeltaGrad (with T0 as 5 and j0 as 10) and BaseL. All other hyper-parameters such as
the learning rate and mini-batch size remain the same as in Section 4 in the main paper.

The experimental results in Figure 1 show that even with the largest deletion rate, i.e. 20%, DeltaGrad
can still be 1.67x faster than BaseL (2.27s VS 1.53s) and the error bound between their resulting model

47

Algorithm 3: DeltaGrad (general models)

Input : The full training set (X,Y), model parameters cached during the training phase for the full training
samples {w0,w1, . . . ,wt} and corresponding gradients {∇F (w0) ,∇F (w1) , . . . ,∇F (wt)}, the
removed training sample or the added training sample R, period T0, total iteration number T ,
history size m, warmup iteration number j0, learning rate η

Output: Updated model parameter wI
t

1 Initialize wI
0 ← w0

2 Initialize an array ∆G = []
3 Initialize an array ∆W = []
4 Initialize last t = j0
5 is explicit = False
6 for t = 0; t < T ; t+ + do
7 if (t− lastt) mod T0 == 0 or t ≤ j0 then
8 is explicit = True
9 else

10 end
11 if is explicit == True or t ≤ j0 then
12 last t = t

13 compute ∇F
(
wI

t

)
exactly

14 compute ∇F
(
wI

t

)
−∇F (wt) based on the cached gradient ∇F (wt)

/* check local convexity */

15 if < ∇F
(
wI t
)
−∇F (wt) ,w

I
t −wt >≤ 0 then

16 compute wI
t+1 by using exact GD update (equation (1))

17 continue

18 end

19 set ∆G [k] = ∇F
(
wI

t

)
−∇F (wt)

20 set ∆W [k] = wI
t −wt, based on the cached parameters wt

21 k ← k + 1

22 compute wI
t+1 by using exact GD update (equation (1))

23 else

24 Pass ∆W [−m :], ∆G [−m :], the last m elements in ∆W and ∆G, which are from the jth1 , j
th
2 , . . . , j

th
m

iterations where j1 < j2 < · · · < jm depend on t, v = wI
t −wt, and the history size m, to the

L-BFGFS Algorithm (See Supplement) to get the approximation of H(wt)v, i.e., Bjmv
/* check local smoothness */

25 if ‖Bjmv‖≥ ‖v‖ then
26 go to line 12
27 end

28 Approximate ∇F
(
wI

t

)
= ∇F (wt) + Bjm

(
wI

t −wt

)
29 Compute wI

t+1 by using the ”leave-r-out” gradient formula, based on the approximated ∇F (wI
t)

30 end

31 end

32 return wI
t

48

Figure 1: Running time and distance with varied deletion rate up to 20%

parameters (i.e. wI∗ VS wU∗) are still acceptable (on the order of 10−3), far smaller than the error bound
between wU∗ and w∗ (on the order of 10−1). Such a small difference between wI∗ and wU∗ also results
in almost the same prediction performance, i.e. 87.460 ± 0.0011% and 87.458 ± 0.0012% respectively. This
experiment thus provides some justification for the feasibility of DeltaGrad even when the number of the
removed samples is not far smaller than the entire training dataset size.

Figure 2: Running time and distance comparison with varying mini-batch size under fixed
j0 = 10 and varying T0 (T0 = 20 VS T0 = 10 VS T0 = 5)

D.2 Influence of hyper-parameters on performance

To begin with, the influence of different hyper-parameters used in SGD and DeltaGrad is explored. We
delete one sample from the training set of MNIST by running regularized logistic regression with the same
learning rate and regularization rate as in Section 4 and varying mini-batch sizes (1024 - 60000), T0 (T0 = 20,
10, 5) and j0 (j0 = 5, 10, 50). The experimental results are presented in Figure 2-3. For different mini-batch
sizes, we also used different epoch numbers to make sure that the total number of running iterations/steps
in SGD are roughly the same. In what follows, we analyze how the mini-batch size, the hyper-parameters
T0 and j0 influence the performance, thus providing some hints on how to choose proper hyper-parameters
when DeltaGrad is used.

Influence of the mini-batch size. It is clear from Figure 2-3 that with larger mini-batch sizes,
DeltaGrad can gain more speed with longer running time for both BaseL and DeltaGrad. As discussed in
Section 4, to compute the gradients, other GPU-related overhead (the overhead to copy data from CPU

49

Figure 3: Running time and distance comparison with varying mini-batch size under fixed
T0 = 5 and varying j0 (j0 = 5 VS j0 = 10 VS j0 = 50)

Figure 4: Comparison of DeltaGrad and PrIU

DRAM to GPU DRAM, the time to launch the kernel on GPU) cannot be ignored. This can become more
significant when compared against the smaller computational overhead for smaller mini-batch data. Also
notice that, when T0 = 5, with increasing B, the difference between wU and wI becomes smaller and smaller,
which matches our conclusion in Theorem 11, i.e. with larger B, the difference o(rn + 1

B
1
4

) is smaller.

Influence of T0. By comparing the three sub-figures in Figure 2, the running time slightly (rather than
significantly) decreases with increasing T0 for the same mini-batch size. This is explained by the earlier
analysis in Section 4 on the non-ideal performance for GPU computation over small matrices. Interestingly,
when T0 = 10 or T0 = 20, ‖wI,S −wU,S‖ does not decrease with larger mini-batch sizes. This is because in
Formula (61), one component of the bound of ‖wI,S −wU,S‖ is

M1(rn + 1
B1/4)

C(1− r
n −

1
B1/4)

(1− ηC)yT0(1− ηµ)j0d0,mT0−1
1

1− (1−ηµ
1−ηC)T0

(while the other component is o((rn + 1

B
1
4

))). Here d0,mT0−1 increases with larger T0 and the term (1−ηC)yT0

is not arbitrarily approaching 0 since yT0 cannot truly go to infinity. So when T0 = 20 and T0 = 10, this
component becomes the dominating term in the bound of ‖wI,S−wU,S‖. So to make the bound o((rn + 1

B
1
4

))

hold, so that we can adjust the bound of ‖wI,S −wU,S‖ by varying B, proper choice of T0 is important. For
example, T0 = 5 is a good choice for the MNIST dataset. This can achieve speed-ups comparable to larger
T0 without sacrificing the closeness between wI,S and wU,S .

Influence of j0. By comparing the three sub-figures in Figure 3, with increasing j0, long “burn-in”

50

iterations are expected, thus incurring more running time. This, however, does not significantly reduce the
distance between wI,S and wU,S . It indicates that we can select smaller j0, e.g. 5 or 10 for more speed-up.

Discussions on tuning the hyper-parameters for DeltaGrad. Through our extensive experiments,
we found that for regularized logistic regression, setting T0 as 5 and j0 as 5−20 would lead to some of the most
favorable trade-offs between running time and the error ‖wU,S −wI,S‖. But in terms of more complicated
models, e.g. 2-layer DNN, higher j0 (even half of the total iteration number) and smaller T0 (2 or 1) are
necessary. Similar experiments were also conducted on adding training samples, in which similar trends were
observed.

D.3 Comparison against the state-of-the-art work

To our knowledge, the closest work to ours is Wu et al. (2020), which targets simple ML models, i.e. linear
regression and regularized logistic regression with an ad-hoc solution (called PrIU) rather than solutions for
general models. Their solutions can only deal with the deletion of samples from the training set without
supporting the addition of samples. In our experiments, we compared DeltaGrad (with T0 = 5 and j0 = 10)
against PrIU by running regularized logistic regression over MNIST and covtype with the same mini-batch
size (16384), the same learning rate and regularization rate, but with varying deletion rates.

Table 1: Memory usage of DeltaGrad and PrIU(GB)

Deletion rate
MNIST covtype

PrIU DeltaGrad PrIU DeltaGrad

2× 10−5 26.61 2.74 9.30 2.56

5× 10−5 27.02 2.74 9.30 2.56

1× 10−4 27.13 2.74 9.30 2.55

2× 10−4 27.75 2.74 9.31 2.56

5× 10−4 29.10 2.74 10.67 2.56

1× 10−3 29.10 2.74 10.67 2.56

The running time and the distance term ‖wU −wI‖ of both PrIU and DeltaGrad with varying deletion
rate are presented in Figure 4. First, it shows that DeltaGrad is always faster than PrIU, with more significant
speed-ups on MNIST. The reason is that the time complexity of PrIU is O(rp) for each iteration where p
represents the total number of model parameters while r represents the reduced dimension after Singular
Value Decomposition is conducted over some p× p matrix. This is a large integer for large sparse matrices,
e.g. MNIST.

As a result, O(rp) is larger than the time complexity of DeltaGrad. Also, the memory usage of PrIU
and DeltaGrad is shown in Table 1. PrIU needs much more DRAM (even 10x in MNIST) than DeltaGrad.
The reason is that to prepare for the model update phase, PrIU needs to collect more information during
the training phase over the full dataset. This is needed in the model update phase and is quadratic in the
number of the model parameters p. The authors of Wu et al. (2020) claimed that their solution cannot
provide good performance over sparse datasets in terms of running time, error term wU −wI and memory
usage. In contrast, both the time and space overhead of DeltaGrad are smaller, which thus indicates the
potential of its usage in the realistic, large-scale scenarios.

D.4 Experiments on large ML models

In this section, we compare DeltaGrad with BaseL using the state-of-the-art ResNet152 network (He
et al., 2016) (ResNet for short hereafter) with all but the top layer frozen, for which we use the pre-trained
parameters from Pytorch torchvision library1. The pre-trained layers with fixed parameters are regarded
as the feature transformation layer, applied over each training sample as the pre-processing step before the
training phase. Those transformed features are then used to train the last layer of ResNet, which is thus
equivalent to training a logistic regression model.

This experiment is conducted on CIFAR-10 dataset (Krizhevsky et al., 2009), which is composed of
60000 32×32 color images (50000 of them are training samples while the rest of are test samples). We run

1https://pytorch.org/docs/stable/torchvision/models.html

51

Figure 5: Comparison of DeltaGrad and BaseL on the CIFAR-10 dataset with pre-trained
ResNet152 network

SGD with mini-batch size 10000, fixed learning rate 0.05 and L2 regularization rate 0.0001. Similar to the
experimental setup introduced in Section 4 in the main paper, the deletion rate is varied from 0 to 1% and
the model parameters are updated by using BaseL and DeltaGrad (with T0 as 5 and j0 as 20) respectively
after the deletion operations. The experimental results are presented in Figure 5, again showing significant
speed-ups for DeltaGrad relative to BaseL (up to 3x speed-ups when the deletion rate is 0.005%) with far
smaller error bound (up to 4×10−3) than the baseline error bound (up to 2×10−2). Since it is quite common
to reuse sophisticated pre-trained models in practice, we expect that the use of DeltaGrad in this manner is
applicable in many cases.

D.5 Applications of DeltaGrad to robust learning

As Section 5 in the main paper reveals, DeltaGrad has many potential applications. In this section,
we explored how DeltaGrad can accelerate the evaluations of the effect of the outliers in robust statistical
learning. Here the effect of outliers is represented by the difference of the model parameters before and after
the deletion of the outliers (see Yu and Yao (2017)).

In the experiments, we start by training a model on the training dataset (RCV1 here) along with some
randomly generated outliers. Then we remove those outliers and update the model on the remaining training
samples by using DeltaGrad and BaseL. We also evaluate the effect of the fraction of outlier: the ratio between
the number of the outliers and the training dataset size is also defined as the Deletion rate. It is varied from
1% to 10%. According to the experimental results shown in Figure 6, when there are up to 10% outliers in the
training dataset, DeltaGrad is at least 2.18x faster than BaseL in evaluating the updated model parameters
by only sacrificing little computational accuracy (no more than 5× 10−3), thus reducing the computational
overhead on evaluating the effect of the outliers in robust learning.

References

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning. Siam Review, 60
(2):223–311, 2018.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.
R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-newton matrices and their use in limited

memory methods. Mathematical Programming, 63(1-3):129–156, 1994.
K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression. In Advances in neural information processing

systems, pages 289–296, 2009.
A. R. Conn, N. I. Gould, and P. L. Toint. Convergence of quasi-newton matrices generated by the symmetric rank

one update. Mathematical programming, 50(1-3):177–195, 1991.
C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations and Trends R© in Theoretical

Computer Science, 9(3–4):211–407, 2014.
A. Ginart, M. Guan, G. Valiant, and J. Y. Zou. Making ai forget you: Data deletion in machine learning. In Advances

in Neural Information Processing Systems, pages 3513–3526, 2019.

52

Figure 6: Comparison of DeltaGrad and BaseL on RCV1 dataset after deleting outliers

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778, 2016.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.
R. I. Oliveira. Concentration of the adjacency matrix and of the laplacian in random graphs with independent edges.

arXiv preprint arXiv:0911.0600, 2009.
J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational mathematics, 12

(4):389–434, 2012.
J. A. Tropp. The expected norm of a sum of independent random matrices: An elementary approach. In High

dimensional probability VII, pages 173–202. Springer, 2016.
Y. Wu, V. Tannen, and S. B. Davidson. Priu: A provenance-based approach for incrementally updating regression

models. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pages
447–462, 2020.

C. Yu and W. Yao. Robust linear regression: A review and comparison. Communications in Statistics-Simulation
and Computation, 46(8):6261–6282, 2017.

53

	Mathematical details
	Additional notes on setup, preliminaries
	Classical results on GD convergence, SGD convergence
	Notations for DeltaGrad with SGD
	Classical results for random variables

	Results for deterministic gradient descent
	Quasi-Newton
	Proof that Quasi-Hessians are well-conditioned
	Proof preliminaries
	Main recursions
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Results for stochastic gradient descent
	Quasi-Newton
	Proof preliminaries
	Main recursions
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11

	Details on applications
	Privacy related data deletion

	Supplementary algorithm details
	Extension of DeltaGrad for stochastic gradient descent
	Extension of DeltaGrad for online deletion/addition
	Convergence rate analysis for online gradient descent version of DeltaGrad

	Extension of DeltaGrad for non-strongly convex, non-smooth objective functions

	Supplementary experiments
	Experiments with large deletion rate
	Influence of hyper-parameters on performance
	Comparison against the state-of-the-art work
	Experiments on large ML models
	Applications of DeltaGrad to robust learning

