Obtaining Adjustable Regularization for Free via Iterate Averaging

A. Continuous analysis

To motivate our proofs for the theorems in main text, let us first elaborate the continuous cases. Then we will extend our
analysis to the discrete circumstances. One can safely skip this part and go directly to Section C for the missing proofs in
main text, which is self-consistent.

Continuous optimization paths To ease notations and preliminaries, in this part we only discuss gradient descent (GD)
and Nesterov’s accelerated gradient descent (NGD), and their strong continuous approximation via ordinary differential
equations (ODEs). For SGD and NSGD, existing works show that there are weak continuous approximation by stochastic
differential equations (SDEs) (Hu et al., 2017a;b; Li et al., 2017). Our analysis can be extended to SDEs, but we believe it
serves better to motivate our discrete proofs by focusing on ODEs.

We consider loss L(w) and ¢5-regularizer R(w) = 1 ||wH§ Let the learning rate ) — 0, the path of L(w) optimized by GD
converges to the following ODE (Yang et al., 2018)

Similarly the continuous GD optimization path of regularized loss admits

Aty = — (V L(ty) + My dt.

As for NGD, Su et al. (2014); Yang et al. (2018) show if the loss is a-strongly convex, then the NGD optimization path
converges to
wy 4+ 2v/aw;, + L' (w;) = 0.

Since L(w) = L(w) + 3 [[@]]2 is (a + A)-strongly convex, the NGD path of the regularized loss satisfies
@+ 2v/a + M| + L' (1) + Moy = 0.
Continuous weighting scheme We define the continuous weighting scheme as

t
pe >0, t>0, P :/ p(s)ds, lim P =1.
0 t—o0

Lemma 1. Given two continuous dynamic x;, &;, t > 0. Let T; = Pfl fg psxsds. Suppose g = To = 0. If the
continuous weighting scheme Py satisfies
di‘t = (1 — Pt)dl‘t, t Z 0,

then we have
Pixy — &) =x¢ — Ty, t2>0,
and

‘%t_jt:(l_Pt)(xt_it); tZO

Proof. By definition we have for ¢t > 0,

t t t
7, = Pt—l/ pszsds = P71 <stsg 7/ Psdxs) =z, — Pt—l/ P.dz,
0 0 0
t t
=T —Pt_l (.I‘t—/ (1—P5)d$b> :th—Pt_l (l‘t —/ dj?é>
0 0

=Tt — Ptil (iCt — Li’t) .
Thus
Pt(l’t - li‘t) =z — Iy,

and
f:t—itza:t—Pt(xt—i"t)—it:(l—Pt)(xt—it).
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A.1. Continuous Theorem 1

. . . 2 .
Consider linear regression problem L(w) = ﬁ S Hwai - ylH2 = %wTEw — w'a + const, and /5-regularizer

R(w) =1 ||w||§ Assume the initial condition wy = Wy = 0, then the GD dynamics for the unregularized and regularized
losses are

dw; = — (Zwy —a)dt, wo =0,

diy = — (B — a+ Mby) dt,  w = 0.
The ODEs are solved by

wy=(I—e )T a, @y = (I - 67(2+A1)t) (Z+ M) a.

Now let the continuous weighting scheme be
Pt =1- €>\t,
then we have
dUA}t = (1 — Pt)dwt,
thus by Lemma 1 we obtain
wt — U~}t = (1 — Pt)(wt — ’th),

which proves the continuous version of Theorem 1.

A.2. Continuous Theorem 3

. . . 2
Consider linear regression problem L(w) = ﬁ v HwaZ- — yi||2 = %
R(w) = § Hw||§ Assume the initial condition wg = w{, = 0 and Wy = @}, = 0. Then the unregularized and regularized

NGD dynamics are

w' Yw — w'a + const, and {y-regularizer

wy + 2/ aw; + Xwy —a =0, wy=wy =0, (7)
Wy +2Va+ My + (S + Ny —a=0, o =w,=0. (8)

We first solve the order-2 ODE Eq. (7) in the canonical way, and then obtain the solution of Eq. (8) similarly. To do so,
let’s firstly ignore the constant term and solve the homogenous ODE of Eq. (7), and obtain two general solutions of the

homogenous equation as
Wi = eVt cos VX —at, wo= eVt gin VY — ot.

Then we guess a particular solution of Eq. (7) as wt o = X~ 'a. Thus the general solution of ODE (7) can be decomposed
as wy = Awy1 + Aowg o + wyo. Consider the initial conditions wy = wj = 0, we obtain A\ = —X7la, Ay =

—¥7!a/(X — a)~la. Thus the solution of Eq. (7) is
wy =Y"1a (1 —e V%05 VI —at — Va(E — )~ le Vol sin VS — at) )

€))
wh = a\/(Z — a)~le Volsin VI — at.
Repeat these procedures, Eq. (9) is solved by
W= (Z+N)"ta (1 —e VOt eos VS —at — (a4 N) (Z — a)"lem VO sin /S — at) ) a0)

W) = ay/(E — a)~Lle” VoM sin /Y — at.

Now let the continuous weighting scheme be
P=1- e_(‘/m_ﬁ)t,
then we have
diy = (1 — Py)dws,
thus by Lemma 1 we obtain
Wy — W = (1 — Pp)(wy — wy),

which proves the continuous version of Theorem 3.
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A.3. Continuous Theorem 4

Consider an a-strongly convex and 3-smooth loss function L(w), and ¢2-regularizer. Without loss of generality assume the
minimum of L(w) satisfies w, > wg = 0. Then by Lemma 3 we have

aw—b<VLw)<pw->b, Ywe (0,w,),

where b = — V L(0), and “<” is defined entry-wisely. We study the continuous optimization paths caused by GD.

Consider the following three dynamics:
dw; = — V L(wy)dt, duy = —(auy —b)dt, dvy = —(Bvy —b)dt, wp = ug = vg = 0.
By the comparison theorem of ODEs (Gronwall’s inequality), and solution of linear ODEs, we claim that for all ¢ > 0,

b
vy <wp <y, up=—(1—

—at
o € )

(1—e P, (1)

| o

) Ut =

In a similar manner, for the following three dynamics of regularized loss:
didg n = —=(V L(dy,5) + Mg a)dt,  dign = —((A+ @)lyx = b)dt,  dign = —((A+ B)byx — b)dt,
where g ) = tp,» = 99,» = 0. Similarly we have for all ¢t > 0,

N . . . b —Ota . _
Dy < Wpx < gy, Upr = m(l —emOFIy = (1 — e MR,

For the continuous weighting scheme
Pt = 1767@7 Dt :Ceigta tZOa <>Oa

the averaged solution is defined as w; = Pt_1 fot prwdt = wy — Pt_1 fot P,dwys, similar there are ty, v;. Thanks to Eq. (11)
and p; being non-negative, we have v; < wy < 4;. Let

)\1:<+ﬁ—0[, )\2:<+OZ—5,

then . . .
Py(uy — i) =/ Pydu, = / (1— e Qathmes)peasqs = b/ em @ — e (FHA2)sqg
0 0 0
=b l(1—e*at) - (1 — e Q2tBY ) — gy — 5,
o Ao + /B t tAz:
Thus

Wy — wt,/\g < Uy — @t,Ag = U — Ut + Pt(ut - ftt) = (1 - Pt)(ﬂt - Ut)~

Similarly, since
t t t
Py (v — ) :/ P.du, = / (1— 6*(>\1*,3+a)s)b6755dt _ b/ e B _ o= (atA)s g
0 0 0
1
=b(=(1—ePf—
oo

we can obtain a lower bound as

1

m(l - @_(Mm)t)) = v — Ut 5

Wy — Wy n, >V — Upn, = U — V¢ + Pr(vy — 0p) = (1 — Py) (0 — vy).

These inequalities give us

which proves the continuous version of Theorem 4.
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B. Technical Lemmas

Lemma 2. Consider two series {x.} ;o , {&k}req and a weighting scheme {py};— such that Y ;- s pr =1, pr > 0,
P, = Ele pi. Let Ty, 1= Pk_1 Z?:o pixi. Suppose xo = Ty = 0. Suppose the weighting scheme P}, satisfies

:i'kJrl — ik = (1 - Pk)(xerrl —xk), k Z 0.

Then we have
Py(xy — Zp) =ap — &, k>0,

and
T — T = (1 — Py) (g — Tx), k>0.

More generally, the weighting scheme {pk}zozo could be a series of positive semi-definite matrix where

lim P,=1, 0P =1, ppr=PFP—PF.

k——+oo

Proof. By definition we know py = Py, pr = Px — Px_1, k > 1, and

k k k k
Pz = sz'l"i = Z(Pl — Pz = Z Px; — Zpi—lfl?i
i—1 i—1 i=1 i—1
k k k
=Pz + 23—15&—1 - Z P12 = Pyag — ZPi—l(Ii —Ti—1).
i—1 i=1 i—1
Therefore
k k k
Polwg — k) =Y  Pia(wi—mi1) = > (i —wic1) = » (1= Pioy) (@i — zi1)
i=1 i=1 i=1
k
=z — 3 (1= Pisy) (@i — 2i-1).
i=1

Now use the assumption, we obtain

k
Pk(xk_jlc):xk_Z(i‘i—i‘i—l):xk_i'k, k> 1.

i=1

Thus we have
Ty — T = xp — Pe(op — ) — 3 = (1 = P) (vp —Tx), k>1.

One can directly verify that the above equation also holds for k£ = 0, which concludes our proof. O

Lemma 3. Let x € R. Let f(x) be a-strongly convex and 3-smooth, 0 < a < f. Let f(x) be lower bounded, then
x, = argmin, ey f(x) exists. Consider GD with learning rate n € (0, %) the optimization path {x; } 25 is given by

Tkt1 = T — va(l’k)-

If xg < x4, then we have

1. Forallk > 0, x, € (xg,Z+).
2. Forall x € (xg, ), we have f(x — x,) <V f(z) < a(z — z.).

3. Forall x € (xg, ), we have a(x — o) + V f(zo) < V f(z) < B(z — o) + V f(z0).

Similarly if o > x., then we have
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1. Forallk > 0, x, € (2, x0).
2. Forall x € (x4, x0), we have a(x — x,) <V f(x) < B(x — z4).

3. Forall x € (x4, x0), we have B(x — x0) + V f(xg) <V f(x) < alx —x9) + V f(x0).

Proof. We only prove Lemma 3 in case of xg < z.. The other case is true in a similar manner.
To prove the first conclusion we only need to show that xy < x1 < x,, then recursively we obtain xp < 1 < -+ < T < Zs.

Note that V f(x.) = 0. Since f(z) is a-strongly convex and S-smooth, we have (Zhou, 2018)
alz—y)? < (V@)= VIE)(z—y) <Bla-y)?

Thus a(x, — 20)? < =V f(x0)(xs — 20) < B(xs — x0)2. Now by the assumption that zqg < ., we obtain 0 <
a(x. —x9) < =V f(xo) < B(xx — x0). Hence

1 =20 —nV f(x0) > 20
1 =x0—NV f(x0) < x0+nB(Ts — T0) < To + Ts — T < T

To prove the second conclusion, recall that a(z. — x)? < —V f(z)(x. — 2) < B(x. — x)?, thus for z € (0, 7.), we
obtain a(z, —x) < =V f(x) < (x4 — ).

As for the third conclusion, since a(x — z¢)? < (V f(x) — V f(z0))(x — 20) < B(x — 0)?, thus for x € (zg, ), We
obtain a(z — zg) + V f(z9) < V f(z) < B(z — z9) + V f(z0). which completes our proof. O
C. Missing proofs in main text

C.1. Proof of Theorem 1

Proof. The first part of the theorem is an extension of Proposition 1 and Proposition 2 in (Neu & Rosasco, 2018). Beyond
the analysis of constant learning rate in (Neu & Rosasco, 2018), we show the corresponding results for adaptive learning
rates.

Recall the SGD updates for linear regression problem
Wha1 = W — Mk (Tha1 T4 1 Wk — Tha1Yetr),  wo = 0.

Let

Y=E,zz], a=E,,lryl, w.=Y"'a, e = (Swp—a)— (Tpp120 Wk — Thi1Yrt1)s

where €, is the gradient noise, and 1 [ex] = 0. Under these notations we have

w41 = wi, — N(Swg — a) + nrer = wp — NS (Wi — wi) + Nreg,  wo = 0. (12)

Similarly for linear regression with ¢5-regularization, SGD takes update

N « T 4 « .
Wg1 = Wk — Y (Th 1T Wk — Th1Yh1 + AWg), o = 0.

Let
W, = (X + X)) a,

then
W1 = Wi — Ye(XWr — a + M) + yier = W — V(8 + M) (W, — Ws) + Vi€, wWo = 0. (13)
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Expectations First let us compute the expectations. For Eq. (12), after taking expectation at time k + 1, we have
Epqi1[wig1] = wi — meX(wi — wy).
Then recursively taking expectation at time k, . .., 1, we obtain
Elwg11] = Elwg] — i 2(E[wg] — ws), Elwo] = we = 0.
Solving the above recurrence relation we have
Elwy] — w. = T — 0, 8) (wo — ws), wo =0, w,=%"'a,

hence
Elwyi1] — Elwy] = 150 (I — 0 2)meX(wo — w.) = I (I — miS)mea,  Efwe] = 0.

In a same way we can solve Eq. (13) in expectation and obtain
E[wp11] — Elg] =I5 (I — (2 + AD))yka, Efdy] = 0.
Notice that the weighting scheme is defined by
Py =1-TF (1 - ),
and 1 — \y; = %, we can directly verify that
E[tg41] — Efg] = (1 — Py)(E[wg41] — Efwg]).
Thus by Lemma 2, we know that
P E[wy] = E[wg] — (1 — Py)E[wg], k>0.

Hence the first conclusion holds.
Convergence By assumptions we know 0 < n < 1n; < % < A—lax, where A\, ax is the largest eigenvalue of 3. Thus
f—
IE[wr] — willy < [0 (1 =mE)|, - wo — welly < [[(T=nZ)* |, - llwo —willy — 0,

and limy,_, o0 E[wy] = w, = X" 1a.

1
)\max +)\ :

In a similar manner, since v; = 1417;;,\ and0 < n<n < % < %,We have 0 < %M] =7< v < ﬂTlA <
Thus

IEfox] — bl < T2 (= 7i(E + AD) |, - lldo — dully < [|(T =7+ AD)¥l, - o — @elly =0,

and limy_, oo E[tg] = 0, = (X + M) " La.

On the other hand, by the first conclusion we know
E[wy] — E[wg] = (1 — Pr)(Elwg] — E[wg]).
Since E[wy,] converges, E[dy] = P Zle p;IE[w;] is bounded. Therefore
IE[@k] = El@x]ll, = (1 = Pe) | Elwe] — E[@]ll, = O(1 = Py) = O(IIo(1 = X)) < O((1 = A)F).

Hence the second claim is true.



Obtaining Adjustable Regularization for Free via Iterate Averaging

Variance Now we turn to analyze the deviation of the averaged solution. From Eq. (12), we can recursively obtain
w; = E[wz + &, Z Hz —J+1 I - nhz)njeja

where we abuse the notation and let IT;_% (I — 1, %) = I.

Now applying iterate averaging with respect to p; = )\%-H;;lo(l — A\vp), we have

k

k k k
Py, = Zpiwi = szE[wJ + Zpi&' = PyE[y] + Zpi§i~
i1 i=1 )

i=1

We turn to calculate the noise term Zle p;&;. Note that in every step, all of the matrices can be diagonalized simultaneously,
thus they commute, similarly hereinafter.

k k i—1
dopi& =Y pi | DM (T —mE)nje
i=1 i=1 =0
k—1
= Z sz;L 1]_|_1 I_nhz)nj €j
j=0 \i=j+1
k—1 _
= Z )\'Yinz;lo(l - AWh)Hh7j+1(I - nhz)nj €j
j=0 \i=j+1
k—1 )
(> M (T2 =2 (05210 (= Mn) (=) ) (L= Xm) |
§=0 \i=j+1
k—1 )
=3 | (mzhe —xw) S0 Ml (4 A0) | 7 ) o
7=0 i=j+1
k—1
=D A€,
§=0

where A; = ~; (H{L;B(l - )wh)) (Zf:jﬂ )\%H;L 1]“ (I =y (EZ+ AI))). Recall that €y, €; ..., €, is a martingale

difference sequence, then S>F_| p;&; = Z?;& Aje; is a martingale. Thus

k k—1 k—1
Tr Var szfi = Tr Var Z Ajej | = Z Tr Var [A;€;],
i=1 =0 =0

where “Var” is the covariance of a random vector. and “Tr” is the trace of a matrix.

Next we bound each term in the summation as

T Var [4;¢;] = T E [(456,)(456,) 7] = E [|45¢l13] < 14,013 E [J1el3] < 0 14,113
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And we remain to bound ||A]H§ Remember that n < np, < %, v <y < ﬁ, we have

2
k

145013 = s (250 = Am)) Z WL (I = (S + D)
2
2
@) [ 3 2 o amaany
A+ PN

i=j+1

IN

2

1 2

(I—- VZ—F)\I)))

A e
= loae - (;

A k—j—1
1o (3 0w

(u e (w“ )

7(1=Ay)%

2
2

2N+ ) (A+58)*
The second equality holds because o < \,in (2).

Based on previous discussion we have

k k—1 k—1
Tr Var Zplfl] = ZTrVar [Aje;] < Zoz ||A7H§
i=1 §=0 3=0
242 ‘ 252 1
= Z ( a )‘7)% S 3 2 4 2
2N+ a)?2(A+ PB)4 VA +a)2(A+6)41—(1-X\y)
o2

TP MO+ AT

Now by multivariate Chebyshev’s inequality, we have

k Tr Var [Ele pi@} o2
P Gl >e] < < = 4
=1 ‘ )= €’ T P2 =M At a)2(A+B)*
That is, with probability at least 1 — §, we have
| Pxiwy — PrE[wyg]|ly = i&i S €,
where
o A
€ .
TA+a)(A+5)? | 67(2 - Ay)
This completes our proof. O

C.2. Proof of Theorem 1.1

Proof. The derivation of kernel ridge regression can be found in (Mohri et al., 2018). We consider the following loss
function of the dual problem

1 A
Maﬂ):iﬂy—KM@+§aTKm
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where y = (y1,...,yn)7 is the label set. Then GD takes update
g1 = o — e (Ko, — Ky + AKay), ag=0.

Let a, = (K + AI)~ 'y, then
Qi1 — Qy = (I— (K2 + )\K)) (o — ),

thus
Qi1 — Qy = H?:O (I — i (K? + /\K)) (o — ),

and

a1 — o = TZ0 (T = ni(K? + AK)) - (K? + AK) - (K + M)~y = T2 (T = mi(K? + AK)) i Ky.
Similarly for éy, i.e., the GD path for L(4&, 5\) with learning rate ;, we have
1 — Gy = ITh=1 (I — (K2 + XK)) wKy.
We emphasize that the generalized learning rate v; = (I + (5\ - K ) o 7 commutes with K. And

Iy — VK =2,
Mk

Thus for the generalized weighting scheme Px = 1 — II¥_,(v;/n;) we have

K2

(1 P)(apsr — o) =25 <Z7 (I —mi(K*+ /\K))> %ﬁkKy

11}, (g — (K% + AK)) Wky = W) (1= 3\ = VK = 5(K? + AK) ) 3Ky

K2

=1, (I — (K% + 5\K)> WKy = g1 — G

Therefore by Lemma 2 we have
Pkdk = dk — (1 — Pk)ak.

Let Apax and Ay be the maximal and minimal eigenvalue of K respectively. Then if

1 1
Amax(Amax +A)7 Aaxc(Amax + 24 — A)

N —1
ngnkémaX{ } 7=(I+(>\—>\)77K) n,

we have . .
N(K? 4+ AK) < (K2 + AK) < I, ~v(K?+\K) <% (K?+\K) < I,

which guarantees the convergence of oy, and ¢&y,. Hence both o, and &, are bounded. And the convergence rate is given by

léin = ielly, = (1 = Pe) (e — )l = O (1 = Plly) < © (I/ll§) = O ((1+ (A = Nmdwin) ™) -

C.3. Proof of Theorem 2
Proof. Let us consider changing of variable v, = Q%wk, then
Uki1 = QFwp1 = QFwy — Q2 (why wy — TRYR)
1 _1 _1 1 _1
=Q7wi — Mk(Q T wpf Q2 Q7w — Q7 2 kyk)

_1 _ 1 _1
=vp — e(Q 2apxl Q20K — Q24 Yk).-
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Similarly let 0y, = Q%wk, then
R 1 1, 1 T A .
Upy1 = Q2 g1 = Q2Wg — Q™ 2 (T Wp — Tpyr — AQUWg)
1, _1 _1 1, _1 1 .
=Q2 0y, — k(Q 2apxl QT 2Q2 Wy — Q 2y — ANQ2y,)
N _1 1, _1 ~
=0p — 1(Q 2z Q7208 — Q7 TTRyk — A).
Let us denote
Y =E,[zz”], a=E,yfryl, w.=S"la, .= (S+A)ta, e = (Swp—a)— (Tpr1T0 1 Wk — Th1Yk+1)s

and correspondingly,

1

A=Q7F8Q7E, b=Q fa, v, =Q Tw,, 0. =Q i, u=Q e

Under these notations we have
Vg1 = Vg — Nk (Avg — b) + ek,  vo =0. (14)

and
Vpy1 = U — ’Yk(A@k —b+ )\f/k) + Yitk, g =0. (15)

We can see that Eq. (14) and Eq. (15) are exactly what we have studied in Theorem 1. Also by assumption we know
al < A=<pI.

Thus by Theorem 1 we have the following conclusions:

1. In expectation for any k£ > 0,
Pk]E[’LNJk} = E[ﬁk] — (1 — Pk)E[’Uk]

2. Both E[vy] and E[0] converge. And there exists a constant K such that for all £ > K,
IBlox] — Eloe]]l, < O(1 = 2)").
Hence the limitation of E[0] exists and limy_, oo E[0] = limg_ 0 E[0g].
3. If the noise ¢x has uniform bounded variance
Ellil3) < 1Qll 0%, V.
Then for k large enough, with probability at least 1 — §, we have

| Petr — PeE[Or] ||y < e,

___leQlie x
YA+ a)A+B)2 | 07(2 =)

P 1. _ k 1 k 1
Now let wy, = Q™ 2w, Wy, = Q2 7y, then Wy, = Pik S piw;=Q72 Pik >y pivi = Q™ 27, Hence we have

where

1. In expectation for any k > 0,
PkE[’lJ)k] == E[’Lf}k] - (1 - Pk)E[wk]

2. Both E[wy] and E[@y] converge. And there exists a constant K such that for all £ > K,
Bliox] — Blwx]ll, < O((1 = Ay)").

Hence the limitation of E[wy] exists and limy_, o0 E[wy] = limg—, o0 E[g].
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3. If the PSGD noise Q ‘¢, has uniform bounded variance
]E[HQ_leiH;] <o Vi
Then for k large enough, with probability at least 1 — J, we have

| Petvy, — PeE[wg]|l, < e,

el e, T e, X
YA+ a)A+6)2 V[ v(@2 = ) — v A+ ) (A +8)2\ (2 - Ay)

Hence our claims are proved.

where

C.4. Proof of Theorem 3

Proof. First, provided 0 < 7 < 4 < 5 andy = 1, we have
n

na
a4+ A

1
N BHA " a+ A

1
n o o n

Therefore 0 < 1_17 V_'iﬁ%_” < 1,and

k—1
1-— a+ A
szl—l 1= Valet ) v Pk =Pp— Py,
n 1—/na
is a well defined weighting scheme, i.e., Py is non-negative, non-decreasing and limy_, o, P = 1.

Recall the NSGD updates for linear regression problem

-
Wyl = Vk — N(Thp1Tp 1 Vk — Thp1Yhs1), Vb = Wi + T(Wp — wg—1), wo =wy =0,

1—/na

where 7 = ERy

Let
S=E,fex], a=E,,ley), e = (Sop —a) — (0rs1@f 0 — Sryie),

where €, is the gradient noise, and Ej 11 [ex] = 0. Under these notations we have
W1 = vk — N(Bvg —a) +neg,  vp = wi + 7(wp — wr—1), wo=wy =0.

Thus
w1 = 1+ 7)1 =X )wr — 7(1 — nX)wk—1 +na + neg, wo = wy = 0. (16)

Similarly for the linear regression with /o-regularization, NSGD takes update

g1 = Ok — ¥ ((@r1@hqq + A0k — oY1), O = B + 7y — p—1), o =11 =0,

where 7+ — 1=V(atd) VV(O""/\).
I+4/~v(a+N)

And we have

W1 = 1 +7) QA =v(E+N) e —7 (1 = v(Z+ X)) Wr—1 + ya + yeg, o = w1 = 0. (17)
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Expectation First let us compute the expectations. Let z;, = E[wg41] — Elwy], 2k = E[Wg+1] — E[wg], we aim to show
that

Then according to Lemma 2, we prove the first conclusion in Theorem 3.
We begin with solving zy.
For Eq. (16), taking expectation with respect to the random mini-batch sampling procedure, we have
Elwi1] = (1+7)(1 — n2)Elw] — 7(1 — nX)Elwi—1] + na, Elwy] = Elw;] = 0.

Thus zj, = E[wg4+1] — E[wg] satisfies

zkr1 =1 +7)A=nX)z —7(1 —nX)2k—1, 20=0, 21 =na. (19)
Without loss of generality, let us assume X is diagonal in the following. Otherwise consider its eigenvalue decomposition
¥ = UAUT, and replace z with U ;. All of the operators in the following are defined entry-wisely.

Eq. (19) defines a homogeneous linear recurrence relation with constant coefficients, which could be solved in a standard
manner. Let

A== =2 gy - SO0

then the characteristic function of Eq. (19) is
r?—Ar—B=0. (20)

Since X is diagonal, 0 < 7 < i, and « is no greater than the smallest eigenvalue of X, we have
An(1 — n¥)(a — %)
(1+ /7a)?

Thus the characteristic function (20) has two conjugate complex roots 71 and 5 (they might be equal). Suppose r1 o = s £ 1i.
Then the solution of Eq. (19) can be written as

A? +4B = <0.

2k = 2(—=B)* (Ecos(0k) + Fsin(0k)), k>0,
where E and F' are constants decided by initial conditions zg = 0, z; = na, and 0 satisfies

S t
cosl) = ———, sinf=-————, ra2=stti

s2 42 N

Since 2s = 1| + 15 = A, s + 12 = ri7y = —B, we have

g VAB—A (s -

cosf = , = .
1 —na 2v—B 1 —na

Because zp = 0, z1 = na, we know that

E=0, 2F=—1%

(—=B)2 sinf
Thus na s
= —_ 2 gi > .
Zk sin9( B) = sin(fk), k>0 21)

where

—(1—/ 1—n% — —
B= ( na){d =1 ), cosf = ! 772, sinf = M.
1+ /na 1—na 1—na

One can directly verify that Eq. (21) solves the recurrence relation (19).

Then we solve Z;..
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Similarly treat Eq. (17), we know %, = E[w41] — E[wy] satisfies
ﬁk_;,_l—(1+7A')(1—’y(Z—F/\))ZA:k—Ff'(l—’Y(Z—F/\))ffk_l:0, 2:’0:0, 2?1:—’)@.

Repeat the calculation, we obtain

sin 0
where
~ (1= A+ 0) =5+ )

B= ,
1+ v/y(la+A)
- iy s [ E—a
cosf = et N’ sinf = ot V)

Finally we verify the sufficient condition in Lemma 2 (Eq. (18)).

First we show thatif 1 — Ay = %, we have 0 = 0 (mod 27). To see this, we only need to verify that cosf = cos 0, sinf =

sin @. This is because
A 1—yA—9% 1 —9% 1—n%
cosf = i R = n = cos 0;
11—\ —ya %f’ya 1—na

(2 - a) (X - ) nX-a

sinf) = m: %—’ya = T— = siné.
Therefore we have na ~a
2, = Slne(fB) 2 5111(9]{})’ 2k = Slng(*B) 2 81n(¢9k).
Since
k—1
1—Pk:1 1—/A(a+A) 1:1_/\7
7 —/na Lo 7
we have
o
2 2
TNV § Gt TR N R
v (1= yma)? L+ vna
2 = 2 =R
(1- A+ n) (-9 (1= VAl X)) (1= 3=+ )
N 1 —na B 1—vy(a+N)

(1- VAT M) -+ ©
1+ /v(a+ )

Thus (1 — Px)zr = Zx. And according to Lemma 2, we have

Efdy] — E[wg] = (1 — Py) (Elwy] — E[wg]), & =0.
Hence the first conclusion holds.

Convergence Since L(w) is 3-smooth, and the corresponding learning rate < <, I5[wy,] converges (Beck & Teboulle,

2009). Similarly, L(w) = L(w) + 4 ||l@]|3 is (8 + A)-smooth, and the corresponding learning rate 7 = ﬁ < 73
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thus E[wy] converges (Beck & Teboulle, 2009). Specially for linear regression, these can be also verified by noticing that
0 < —B < 1 because n < % and

k
na (—B)%sm(ai)‘ <3| (B)F < oo,

k k
Do lail =2 :
pt - sin 6 1 sin @

i= i=

i.e., the right hand side of the above series converge, which implies that E[wy] = Zle z; converges absolutely, hence it
converges. In a same manner IE[wy,] converges. Thus there exist constants M/ and K such that forall &k > K, ||E[wy]|, < M,
|E[wy]]|, < M. Hence

B[] — Eldn]ll, = (1 — Py) [ Eluwy] — Eligll, < %0’“-1 L2M = O(C*),

1—y/v(a+X)

where C' = W

€ (0, 1), thus by taking limitation in both sides we obtain

lim E[wg] = lim Efwg],
k—o00 k— o0

Hence the second conclusion holds.

Variance Next we turn to analyze the deviation of the averaged solution.

Let w; = E[w;] + &;. Based on Eq. (16), we first prove that

1—1
&= aijme, i>1, (22)
j=1
where
ap+1 = Aay + Bag—1, ap=0, a3 =1. (23)

We prove Eq. (22) by mathematical induction.

For i = 1,2, by Eq. (16) we know &; = w; — E[w;] = 0 and &2 = we — E[ws] = ney, thus Eq. (22) holds. Now suppose
Eq. (22) holds for ¢ — 1 and i, then we consider 7 + 1. In Eq. (16), since §; = w; — [E[w;], taking difference we have

&iv1 = A& + B&i—1 + ne;.

Now combining the induction assumptions we have

i—1 i—2
§iy1 =AY aime; + B aij 1ne; + ne;
j=1 j=1
i—2
= Z(Aai—j + Bai_j_1)nej + Aainei—1 + ne;
j=1
i-2
= Z Qi—j+1M€; + a2M€;—1 + a17Me€;
j=1

i
= E Qj—j41M€;-
j=1

Thus by mathematical induction Eq. (22) is true for all ¢ > 1.
Similarly to solve zj, we can solve the recurrence relation Eq. (23) and obtain

4= (—B)"% sin(0k), k>0, (24)

sin 0
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where
—(1— 1—n% — -
po -1V —n )7 cosh= |12 Gnp—,[1EZ)
14+ /na 1 —na 1 —na
Thus

R =

1—na 1—na
< 1
51110 \/77(2 —a) ~ \/n()\min —a)’

where A, is the smallest eigenvalue of 3.

Now apply iterate averaging with respect to

_p_p 7 V(e + ) — /na 1—/v(a+ ) i
B 1—/na L—/na ’

we have

k K K K
Pyiy =Y pawi = Y piElwi] + Y pi&s = PE[@] + ) pic.

i=1 i=1 =1 i=1

We turn to calculate the noise term Zle p;&;. Note that in every step, all of the matrices can be diagonalized simultaneously,
thus they commute, similarly hereinafter.

k k i—1
D opi& =Y pi Y aigme
i=1 i=1 =1
k—1 k
:Z Z DiGi—j | 1€;

j=1 \i=j+1

k—1
= Aje;,
=1

where A; =1 Zf:jﬂ pia;—;. Recall that €, €1 .. ., € is a martingale difference sequence, Zle pi&i = Zf;é Ajejisa
martingale. Thus

k—1 k—1
= Tr Var ZAjej :ZTrVar[Ajej].

Jj=1 Jj=1

k
Zpifi

i=1

Tr Var

Next we bound each term in the summation as

Te Var [4;¢;] = T E [(456,)(456,) 7] = E [|45¢l13] < 14,03 E [Jlel3] < 0 14,113
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And we remain to bound || 4; H;

2

k
2
14515 =1n Z Piti—j

i=j+1

2

| VAR v S (1 AN e
“lsing 11— ma Z,_JZ%( - Jia ) (-B) (0@ —35))

IN

sin 6 1—/na o) 1—/na

’y \/ Oé+)\ \/7770( Z
sin 0 1 - /Mo Pt

k . 2
_ [ valed ) - x/TTa(l W)l‘jZ(l— 'y(oz—l—)\))l 2)

IN

7 VAle+A) - o Z (1 \/7(a+k)>i2 ((1\/?7704) 1772>Z T

1-— 'y(a+)\)>i_2(1
1

sin 0 1—/na ]

IN

Qi =) (1 - /@)’ sy

i=1\ 2
1—na .\/W(a—i-/\)—\_/n*a.(l_ 7(a+A)) )

2 .
AT ) (e

i — ) (@ + A) (1 AT )\)>2

The first inequality is because sin(6(¢ — j)) < 1, and the second inequality is because o < Apin(2).

Based on previous discussion we have

Tr Var

k k—1 k—1
ZP@] = Z Tr Var [Aj¢;] < 202 ||A]||§
j=1

i=1 j=1

k—1
S; Vi

17 (Amin — @) (@ + X) (1— wiN)
2
e (Vi - ) (S5

N(Amin — @) (o + A) (1_ \/TH)Q | (1 v(aH))z

= Jna
_ o) (Vi - i) (1- VA m)
‘Wmm_ D+ ) (1= A in) (2= vie - VA X) (Vale ) - vim)

1*7704( CE \/7,71)
_n()\min—a)(a—i-/\)(Q—\/qTa_ fy(oH—/\)

S
).
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Now by multivariate Chebyshev’s inequality, we have

k
]P (
i=1

That is, with probability at least 1 — §, we have

o > 6) _ TrVarlSl pis] o*y(1=na) (Vrla+X) - yia)

C T @ —a)a 4N (2- v Ala T )

<e
2

k
> it )

i=1

| Peivg — PelE[wy] ||, =

where

~v(1 — na) (\/T—F/\ \/7771)

n(Amin — @) (a + A) (2 —yna— /(o + )\)) .

g

This completes our proof.

C.5. Proof of Theorem 4

Proof. We will prove a stronger version of Theorem 4 by showing the conclusions hold for any 1-dim projection direction
v1 € R?. Concisely, given a unit vector v; € R?, we can extend it to a group of orthogonal basis, vy, v, . .., v4. For
w € RY, we denote its decomposition as

w=wMv + 0Py - +wPyy, w® cR.
Define h(w) = L(w) = L(wMv; + - - - + wDvy), then V h(w®)) = v V L(w). Now for one step of GD,
Wi+1 = wi — 1 'V L(wy),
by multiplying v; in both sides, we obtain

w,gl_gl = v] wpyp1 = v wy — ] V L(wg) = wk —n'Vh(w (1)). (25)

We turn to study GD along direction v; by analyzing Eq. (25).

Firstly h(w™)) is a-strongly convex, 3-smooth and lower bounded since L(w) is a-strongly convex, 3-smooth, and lower

n _

bounded. Let w, be the unique minimum of L(w), then wy,~’ = v, w, is the minimum of 2 (w)). Without loss of generality,

assume

w® (1)

>0=wy" .

(¢ )) we have

Then by Lemma 3, we know the optimization path of Eq. (25) lies between (0, w!! )) and for any v € (0, wsx
av—b<Vh()<pv—-»>b, b=-—Vh(0).

T'hus for Eq. (25) we have
1 1 1 1
w,g)l ():777Vh( ()) < —n(a w,(g)fb),

1 1 1
w,g_gl—w,i) —n'V h(w, ( )) (ﬁwk —b).
Define the following dynamics:
1 1 1 1 1) 1 1 1
ug)y — ) = —nlou? =), ol — ol = —n(sol” —0), Wl =ofY =0.

By the discrete Gronwall’s inequality (Clark, 1987), we have

v,(;) < wlgl) < u,(cl).
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1)

Furthermore, u, (1)

and v;; ~ satisfy two first order recurrence relations respectively, thus they can be solved by

(1>_nz —na) b, v;(f)—nz —nB)" .

) 1)

g) and v(

Since 7 <3 < =, u converge. And w,, ’ also converges since h(-) is 3-smooth convex and 7 < %

In a same way, for the regularized path,
(1 (1 ~(1 (1 (1
)y =) = (V@) + M), g =0,
we have
5 = B = = AV AaL]) + b)) < =y ((a+ Nl - b),
L (1 A (1 ~(1 L (1 ¢!
@)1 = 0l = = T h(@) + X)) = = (8 + Naf - b).
Consider the following dynamics:

~(1 ~(1 ~(1 ~(1 N
al) - A = (@ rNall - b, ol oy

where uélg\ = {)(()1;\ = 0. Then by the discrete Gronwall’s inequality (Clark, 1987) and the solution of the first order

recurrence relation we obtain

k k
(1 . (1 i (1 i
<o < a, afh =y —ala+ )T ol =D (1 —y(B+ )

i=1 i=1

Now we turn to bound the iterate averaged solution. Consider

1 1 1 1
M=---+B-a, N=--—-+a-§
Y on Yon
since > aand 0 < v < m we know \; > Ay > 0. Notice that
1

0 <yla+ ) < {y(la+ A1), v(B+X)} <~v(B+M)=1 —7(—5 +26-a)<1,

i) 11213\2 v,(glz\l {),(C 2\2 converge. Further wy, », and @y, also

where the last 1nequa11ty 1s because n

converge since v < T /\1 < /\2 and the correspondlng regularlzed losses are (8 + A1) and (8 + A2)-smooth, respectively.

k+1
Next let us consider the weighting scheme P, = 1 — (%) , which is well defined since 0 < v < [3—++1/n <n.

One can directly verify that u(l) = p%c Zf 1 pith (1), 17,(;) = Pik Zle pivgl) converge, and
1 1 (1 1 1 1 (1
(1= PGy — ) =0, =0l (= PG — o) =2, -4l

Thus according to Lemma 2 we have

1 ~(1 1 ~(1 1 ~(1 1 ~(1
Rl — a0 = — afS,, Bl — o) = o0~

Therefore (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Dy, _wk,)\2§~k UkAz—f‘k — Uy +Pk(uk — Uy, ):(1_Pk)(ﬂk - )s
- (1 (1 1 1 1 1 ~(1 -
0 a6 ] o0 o)+ Bl )= - B o),
which implies that
w1, + (1= P — o) <af!) <afl), + (1 - Py —ul). (26)
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Note that ug), u21)7 (1) ~(1) wfj;l w,(j; converge, therefore there is a constant M controlling their /-norm. Define

(1) (wl(c)A + “,(61/\1)/2 d, 1) = (W, ! ) — Ak,h)/2. Recall that uA;,(Clz\l are the GD optimization path of a (a+ A1 )-strongly

convex and (8 + A1)-smooth loss, thus w,(clz\l converges in rate O ((1 — y(a + A1))¥). Similarly w,(C 2\ converges in rate

O ((1 = y(a + A2))¥). Thus triangle inequality we have

1 1 . (1 1 . (1
[ =m <51w£12 Ol 5 [ = o[, £ 0 (@ =2a+ )" +0 (1 -+ 2.
. . 1. .
a2 = a®| < 2 s, — oL, + 5 [958, 98], < 0 (@ = ta+ 20 + 0 (1 =2+ 1))

By Eq. (26) we obtain

k+1
af! = mi? < d? + - P o) < o) +on (1)

"
k
<dV —dM +4P 40 ((7> )
n

k
<dM + O (1 —~v(a+ ) +0 (1 —y(a+ 1)) +0 ((;) ) ,

and .

af! > )+ (- P —of?) 2 @l - 2r (1)

k
>d0 —d® 44— 0 (7>
n
v k
>d — 0 (1 —~(a+A))*) =0 (1 —~(a+X))F) -0 <<n> ) .

Thus 5

| —m?|| <d® +0(c*), € =max{(1 = (a+ M), (1=l + ), b

In conclusion we have

T I R S

D. Experiments setups

The code is available at https://github.com/uuujf/IterAvg.

The experiments are conducted using one GPU K80 and PyTorch 1.3.1.

D.1. Two dimensional toy example

The loss function is
1

5(w —w,) Z(w—w,), w,=(1,1)", ¥ =UDiag(0.1,1)U7,

cosf —sinf s
U_<sin0 cos@)’ 0_5'
All the algorithms are initiated from zero. The learning rate for the unregularized problem is = 0.1. The hyperparameter

for the vanilla/generalized ¢s-regularization is A = 0.1. And the learning rate for the regularized problem is v = Senyrt

The preconditioning matrix is set to be Q = X. We run the algorithms for 500 iterations. For NGD and NSGD, we set the
strongly convex coefficient to be o = 0.05.

L(w) =
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D.2. MNIST dataset

Dataset http://yann.lecun.com/exdb/mnist/

Linear regression The image data is scaled to [0, 1]. The label data is one-hotted. The loss function is standard linear

regression under squared loss, without bias term, L(w) = ﬁ S ||wa1 — Y Hz All the algorithms are initiated from
zero. The learning rate for the unregularized problem is 7 = 0.01. The hyperparameter for the vanilla/generalized /o-

regularizer is A = 4.0. And the learning rate for the regularized problem is v = ﬁl/n The preconditioning matrix is set to

be Q = % Yo x;z, . The batch size for the stochastic algorithms are b = 500. We run the algorithms for 500 iterations.
For NGD and NSGD, we set the strongly convex coefficient to be o = 1.0.

Logistic regression The image data is scaled to [0, 1]. The label data is one-hotted. The loss function is standard logistics
regression loss plus an ¢5-regularization term, L(w) = £ 3" | Dxr(y; || o(w ;) + 20 ||w||§, where o (x) is the softmax
function and Ao = 1.0. All the algorithms are initiated from zero. The learning rate for the unregularized problem is
1 = 0.01. The hyperparameter for the vanilla/generalized ¢5-regularizer is A = 4.0. And the learning rate for the regularized
problem is v = ﬁ The preconditioning matrix is set to be @ = 2 3" | 2;x. The batch size for the stochastic
algorithms are b = 500. We run the algorithms for 500 iterations. For NGD and NSGD, we set the strongly convex
coefficient to be av = 1.0.

D.3. CIFAR-10 and CIFARR-100 datasets

Datasets https://www.cs.toronto.edu/~kriz/cifar.html

VGG-16 on CIFAR-10 The image data is scaled to [0, 1] and augmented by horizontally flipping and randomly cropping.
The label data is one-hotted. The model is standard VGG-16 with batch normalization. We train the model with vanilla
SGD for 300 epochs. The batch size is 100. The learning rate is 0.1, and decreased by ten times at epoch 150 and 250. The
weight decay is set to be 5 x 1074,

After finishing the SGD training process, we average the checkpoints from 61 to 300 epoch with standard geometric
distribution. We test the success probability p € {0.9999,0.999,0.99,0.9}. And the best one is 0.99.

ResNet-18 on CIFAR-10 The image data is scaled to [0, 1] and augmented by horizontally flipping and randomly cropping.
The label data is one-hotted. The model is standard ResNet-18. We train the model with vanilla SGD for 300 epochs. The
batch size is 100. The learning rate is 0.1, and decreased by ten times at epoch 150 and 250. The weight decay is set to be
5x 1074

After finishing the SGD training process, we average the checkpoints from 61 to 300 epoch with standard geometric
distribution. We test the success probability p € {0.9999, 0.999,0.99,0.9}. And the best one is 0.99.

ResNet-18 on CIFAR-100 The image data is scaled to [0, 1] and augmented by horizontally flipping and randomly
cropping. The label data is one-hotted. The model is standard ResNet-18. We train the model with vanilla SGD for 300
epochs. The batch size is 100. The learning rate is 0.1, and decreased by ten times at epoch 150 and 250. The weight decay
is settobe 5 x 107

After finishing the SGD training process, we average the checkpoints from 61 to 300 epoch with standard geometric
distribution. We test the success probability p € {0.9999, 0.999,0.99,0.9}. And the best one is 0.99.

Additional experiments for deep nets without weight decay For ResNet-18 trained on CIFAR-10, without weight
decay, and with the other setups the same, vanilla SGD has 92.95% test accuracy, and our method has 93.21% test accuracy.
This result is consistent with the results presented in the main text.



