
Obtaining Adjustable Regularization for Free via Iterate Averaging

A. Continuous analysis
To motivate our proofs for the theorems in main text, let us first elaborate the continuous cases. Then we will extend our
analysis to the discrete circumstances. One can safely skip this part and go directly to Section C for the missing proofs in
main text, which is self-consistent.

Continuous optimization paths To ease notations and preliminaries, in this part we only discuss gradient descent (GD)
and Nesterov’s accelerated gradient descent (NGD), and their strong continuous approximation via ordinary differential
equations (ODEs). For SGD and NSGD, existing works show that there are weak continuous approximation by stochastic
differential equations (SDEs) (Hu et al., 2017a;b; Li et al., 2017). Our analysis can be extended to SDEs, but we believe it
serves better to motivate our discrete proofs by focusing on ODEs.

We consider loss L(w) and `2-regularizer R(w) = 1
2 ‖w‖

2
2. Let the learning rate η → 0, the path of L(w) optimized by GD

converges to the following ODE (Yang et al., 2018)

dwt = −∇L(wt)dt.

Similarly the continuous GD optimization path of regularized loss admits

dŵt = − (∇L(ŵt) + λŵt) dt.

As for NGD, Su et al. (2014); Yang et al. (2018) show if the loss is α-strongly convex, then the NGD optimization path
converges to

w′′t + 2
√
αw′t + L′(wt) = 0.

Since L̂(ŵ) = L(ŵ) + λ
2 ‖ŵ‖

2
2 is (α+ λ)-strongly convex, the NGD path of the regularized loss satisfies

ŵ′′t + 2
√
α+ λŵ′t + L′(ŵt) + λŵt = 0.

Continuous weighting scheme We define the continuous weighting scheme as

pt ≥ 0, t ≥ 0, Pt =

∫ t

0

p(s)ds, lim
t→∞

Pt = 1.

Lemma 1. Given two continuous dynamic xt, x̂t, t ≥ 0. Let x̃t = P−1
t

∫ t
0
psxsds. Suppose x0 = x̂0 = 0. If the

continuous weighting scheme Pt satisfies
dx̂t = (1− Pt)dxt, t ≥ 0,

then we have
Pt(xt − x̃t) = xt − x̂t, t ≥ 0,

and
x̂t − x̃t = (1− Pt)(xt − x̃t), t ≥ 0.

Proof. By definition we have for t ≥ 0,

x̃t = P−1
t

∫ t

0

psxsds = P−1
t

(
xsPs|t0 −

∫ t

0

Psdxs

)
= xt − P−1

t

∫ t

0

Psdxs

=xt − P−1
t

(
xt −

∫ t

0

(1− Ps)dxs
)

= xt − P−1
t

(
xt −

∫ t

0

dx̂s

)
=xt − P−1

t (xt − x̂t) .

Thus
Pt(xt − x̃t) = xt − x̂t,

and
x̂t − x̃t = xt − Pt(xt − x̃t)− x̃t = (1− Pt)(xt − x̃t).
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A.1. Continuous Theorem 1

Consider linear regression problem L(w) = 1
2n

∑n
i=1

∥∥w>xi − yi∥∥2

2
= 1

2w
>Σw − w>a + const, and `2-regularizer

R(w) = 1
2 ‖w‖

2
2. Assume the initial condition w0 = ŵ0 = 0, then the GD dynamics for the unregularized and regularized

losses are

dwt = − (Σwt − a) dt, w0 = 0,

dŵt = − (Σŵt − a+ λŵt) dt, ŵ0 = 0.

The ODEs are solved by

wt =
(
I − e−Σt

)
Σ−1a, ŵt =

(
I − e−(Σ+λI)t

)
(Σ + λI)

−1
a.

Now let the continuous weighting scheme be
Pt = 1− eλt,

then we have
dŵt = (1− Pt)dwt,

thus by Lemma 1 we obtain
ŵt − w̃t = (1− Pt)(wt − w̃t),

which proves the continuous version of Theorem 1.

A.2. Continuous Theorem 3

Consider linear regression problem L(w) = 1
2n

∑n
i=1

∥∥w>xi − yi∥∥2

2
= 1

2w
>Σw − w>a + const, and `2-regularizer

R(w) = 1
2 ‖w‖

2
2. Assume the initial condition w0 = w′0 = 0 and ŵ0 = ŵ′0 = 0. Then the unregularized and regularized

NGD dynamics are

w′′t + 2
√
αw′t + Σwt − a = 0, w0 = w′0 = 0, (7)

ŵ′′t + 2
√
α+ λŵ′t + (Σ + λ)ŵt − a = 0, ŵ0 = ŵ′0 = 0. (8)

We first solve the order-2 ODE Eq. (7) in the canonical way, and then obtain the solution of Eq. (8) similarly. To do so,
let’s firstly ignore the constant term and solve the homogenous ODE of Eq. (7), and obtain two general solutions of the
homogenous equation as

wt,1 = e
√
αt cos

√
Σ− αt, wt,2 = e

√
αt sin

√
Σ− αt.

Then we guess a particular solution of Eq. (7) as wt,0 = Σ−1a. Thus the general solution of ODE (7) can be decomposed
as wt = λ1wt,1 + λ2wt,2 + wt,0. Consider the initial conditions w0 = w′0 = 0, we obtain λ1 = −Σ−1a, λ2 =

−Σ−1a
√

(Σ− α)−1α. Thus the solution of Eq. (7) is

wt = Σ−1a
(

1− e−
√
αt cos

√
Σ− αt−

√
α(Σ− α)−1e−

√
αt sin

√
Σ− αt

)
,

w′t = a
√

(Σ− α)−1e−
√
αt sin

√
Σ− αt.

(9)

Repeat these procedures, Eq. (9) is solved by

ŵt = (Σ + λ)−1a
(

1− e−
√
α+λt cos

√
Σ− αt−

√
(α+ λ) (Σ− α)−1e−

√
α+λt sin

√
Σ− αt

)
,

ŵ′t = a
√

(Σ− α)−1e−
√
α+λt sin

√
Σ− αt.

(10)

Now let the continuous weighting scheme be

Pt = 1− e−(
√
α+λ−

√
λ)t,

then we have
dŵt = (1− Pt)dwt,

thus by Lemma 1 we obtain
ŵt − w̃t = (1− Pt)(wt − w̃t),

which proves the continuous version of Theorem 3.



Obtaining Adjustable Regularization for Free via Iterate Averaging

A.3. Continuous Theorem 4

Consider an α-strongly convex and β-smooth loss function L(w), and `2-regularizer. Without loss of generality assume the
minimum of L(w) satisfies w∗ > w0 = 0. Then by Lemma 3 we have

αw − b ≤ ∇L(w) ≤ βw − b, ∀w ∈ (0, w∗),

where b = −∇L(0), and “≤” is defined entry-wisely. We study the continuous optimization paths caused by GD.

Consider the following three dynamics:

dwt = −∇L(wt)dt, dut = −(αut − b)dt, dvt = −(βvt − b)dt, w0 = u0 = v0 = 0.

By the comparison theorem of ODEs (Gronwall’s inequality), and solution of linear ODEs, we claim that for all t > 0,

vt ≤ wt ≤ ut, ut =
b

α
(1− e−αt), vt =

b

β
(1− e−βt). (11)

In a similar manner, for the following three dynamics of regularized loss:

dŵt,λ = −(∇L(ŵt,λ) + λŵt,λ)dt, dût,λ = −((λ+ α)ût,λ − b)dt, dv̂t,λ = −((λ+ β)v̂t,λ − b)dt,

where ŵ0,λ = û0,λ = v̂0,λ = 0. Similarly we have for all t > 0,

v̂t,λ ≤ ŵt,λ ≤ ût,λ, ût,λ =
b

λ+ α
(1− e−(λ+α)t), v̂t,λ =

b

λ+ β
(1− e−(λ+β)t).

For the continuous weighting scheme

Pt = 1− e−ζt, pt = ζe−ζt, t ≥ 0, ζ > 0,

the averaged solution is defined as w̃t = P−1
t

∫ t
0
ptwtdt = wt −P−1

t

∫ t
0
Psdws, similar there are ũt, ṽt. Thanks to Eq. (11)

and pt being non-negative, we have ṽt ≤ w̃t ≤ ũt. Let

λ1 = ζ + β − α, λ2 = ζ + α− β,

then

Pt(ut − ũt) =

∫ t

0

Psdus =

∫ t

0

(1− e−(λ2+β−α)s)be−αsdt = b

∫ t

0

e−αs − e−(β+λ2)sds

=b

(
1

α
(1− e−αt)− 1

λ2 + β
(1− e−(λ2+β)t)

)
= ut − v̂t,λ2 .

Thus
w̃t − ŵt,λ2

≤ ũt − v̂t,λ2
= ũt − ut + Pt(ut − ũt) = (1− Pt)(ũt − ut).

Similarly, since

Pt(vt − ṽt) =

∫ t

0

Psdvs =

∫ t

0

(1− e−(λ1−β+α)s)be−βsdt = b

∫ t

0

e−βs − e−(α+λ1)sds

=b

(
1

β
(1− e−βt)− 1

λ1 + α
(1− e−(λ1+α)t)

)
= vt − ût,λ1

,

we can obtain a lower bound as

w̃t − ŵt,λ1
≥ ṽt − ût,λ1

= ṽt − vt + Pt(vt − ṽt) = (1− Pt)(ṽt − vt).

These inequalities give us

ŵt,λ1 + (1− Pt)(ṽt − vt) ≤ w̃t ≤ ŵt,λ2 + (1− Pt)(ũt − ut),

which proves the continuous version of Theorem 4.



Obtaining Adjustable Regularization for Free via Iterate Averaging

B. Technical Lemmas
Lemma 2. Consider two series {xk}∞k=0 , {x̂k}

∞
k=0, and a weighting scheme {pk}∞k=0 such that

∑∞
k=0 pk = 1, pk ≥ 0,

Pk =
∑k
i=1 pi. Let x̃k := P−1

k

∑k
i=0 pixi. Suppose x0 = x̂0 = 0. Suppose the weighting scheme Pk satisfies

x̂k+1 − x̂k = (1− Pk)(xk+1 − xk), k ≥ 0.

Then we have
Pk(xk − x̃k) = xk − x̂k, k ≥ 0,

and
x̂k − x̃k = (1− Pk) (xk − x̃k), k ≥ 0.

More generally, the weighting scheme {pk}∞k=0 could be a series of positive semi-definite matrix where

lim
k→+∞

Pk = I, 0 � Pk � I, pk = Pk − Pk−1.

Proof. By definition we know p0 = P0, pk = Pk − Pk−1, k ≥ 1, and

Pkx̃k =

k∑
i=1

pixi =

k∑
i=1

(Pi − Pi−1)xi =

k∑
i=1

Pixi −
k∑
i=1

Pi−1xi

=Pkxk +

k∑
i=1

Pi−1xi−1 −
k∑
i=1

Pi−1xi = Pkxk −
k∑
i=1

Pi−1(xi − xi−1).

Therefore

Pk(xk − x̃k) =

k∑
i=1

Pi−1(xi − xi−1) =

k∑
i=1

(xi − xi−1)−
k∑
i=1

(1− Pi−1)(xi − xi−1)

=xk −
k∑
i=1

(1− Pi−1)(xi − xi−1).

Now use the assumption, we obtain

Pk(xk − x̃k) = xk −
k∑
i=1

(x̂i − x̂i−1) = xk − x̂k, k ≥ 1.

Thus we have
x̂k − x̃k = xk − Pk(xk − x̃k)− x̃k = (1− Pk) (xk − x̃k), k ≥ 1.

One can directly verify that the above equation also holds for k = 0, which concludes our proof.

Lemma 3. Let x ∈ R. Let f(x) be α-strongly convex and β-smooth, 0 < α ≤ β. Let f(x) be lower bounded, then
x∗ = arg minx∈R f(x) exists. Consider GD with learning rate η ∈ (0, 1

β ), the optimization path {xk}+∞k=0 is given by

xk+1 = xk − η∇ f(xk).

If x0 < x∗, then we have

1. For all k > 0, xk ∈ (x0, x∗).

2. For all x ∈ (x0, x∗), we have β(x− x∗) ≤ ∇ f(x) ≤ α(x− x∗).

3. For all x ∈ (x0, x∗), we have α(x− x0) +∇ f(x0) ≤ ∇ f(x) ≤ β(x− x0) +∇ f(x0).

Similarly if x0 > x∗, then we have
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1. For all k > 0, xk ∈ (x∗, x0).

2. For all x ∈ (x∗, x0), we have α(x− x∗) ≤ ∇ f(x) ≤ β(x− x∗).

3. For all x ∈ (x∗, x0), we have β(x− x0) +∇ f(x0) ≤ ∇ f(x) ≤ α(x− x0) +∇ f(x0).

Proof. We only prove Lemma 3 in case of x0 < x∗. The other case is true in a similar manner.

To prove the first conclusion we only need to show that x0 < x1 < x∗, then recursively we obtain x0 < x1 < · · · < xk < x∗.

Note that∇ f(x∗) = 0. Since f(x) is α-strongly convex and β-smooth, we have (Zhou, 2018)

α(x− y)2 ≤ (∇ f(x)−∇ f(y)) (x− y) ≤ β(x− y)2.

Thus α(x∗ − x0)2 ≤ −∇ f(x0)(x∗ − x0) ≤ β(x∗ − x0)2. Now by the assumption that x0 < x∗, we obtain 0 <
α(x∗ − x0) ≤ −∇ f(x0) ≤ β(x∗ − x0). Hence

x1 = x0 − η∇ f(x0) > x0

x1 = x0 − η∇ f(x0) < x0 + ηβ(x∗ − x0) < x0 + x∗ − x0 < x∗.

To prove the second conclusion, recall that α(x∗ − x)2 ≤ −∇ f(x)(x∗ − x) ≤ β(x∗ − x)2, thus for x ∈ (x0, x∗), we
obtain α(x∗ − x) ≤ −∇ f(x) ≤ β(x∗ − x).

As for the third conclusion, since α(x − x0)2 ≤ (∇ f(x) −∇ f(x0))(x − x0) ≤ β(x − x0)2, thus for x ∈ (x0, x∗), we
obtain α(x− x0) +∇ f(x0) ≤ ∇ f(x) ≤ β(x− x0) +∇ f(x0). which completes our proof.

C. Missing proofs in main text
C.1. Proof of Theorem 1

Proof. The first part of the theorem is an extension of Proposition 1 and Proposition 2 in (Neu & Rosasco, 2018). Beyond
the analysis of constant learning rate in (Neu & Rosasco, 2018), we show the corresponding results for adaptive learning
rates.

Recall the SGD updates for linear regression problem

wk+1 = wk − ηk(xk+1x
>
k+1wk − xk+1yk+1), w0 = 0.

Let

Σ = Ex[xx>], a = Ex,y[xy], w∗ = Σ−1a, εk = (Σwk − a)− (xk+1x
>
k+1wk − xk+1yk+1),

where εk is the gradient noise, and Ek+1[εk] = 0. Under these notations we have

wk+1 = wk − ηk(Σwk − a) + ηkεk = wk − ηkΣ(wk − w∗) + ηkεk, w0 = 0. (12)

Similarly for linear regression with `2-regularization, SGD takes update

ŵk+1 = ŵk − γk(xk+1x
>
k+1ŵk − xk+1yk+1 + λŵk), ŵ0 = 0.

Let

ŵ∗ = (Σ + λI)−1a,

then

ŵk+1 = ŵk − γk(Σŵk − a+ λŵk) + γkεk = ŵk − γk(Σ + λI)(ŵk − ŵ∗) + γkεk, ŵ0 = 0. (13)
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Expectations First let us compute the expectations. For Eq. (12), after taking expectation at time k + 1, we have

Ek+1[wk+1] = wk − ηkΣ(wk − w∗).

Then recursively taking expectation at time k, . . . , 1, we obtain

E[wk+1] = E[wk]− ηkΣ(E[wk]− w∗), E[w0] = w0 = 0.

Solving the above recurrence relation we have

E[wk]− w∗ = Πk−1
i=0 (I − ηiΣ)(w0 − w∗), w0 = 0, w∗ = Σ−1a,

hence
E[wk+1]− E[wk] = −Πk−1

i=0 (I − ηiΣ)ηkΣ(w0 − w∗) = Πk−1
i=0 (I − ηiΣ)ηka, E[w0] = 0.

In a same way we can solve Eq. (13) in expectation and obtain

E[ŵk+1]− E[ŵk] = Πk−1
i=0 (I − γi(Σ + λI))γka, E[ŵ0] = 0.

Notice that the weighting scheme is defined by

Pk = 1−Πk
i=0(1− λγi),

and 1− λγi = γi
ηi

, we can directly verify that

E[ŵk+1]− E[ŵk] = (1− Pk)(E[wk+1]− E[wk]).

Thus by Lemma 2, we know that

PkE[w̃k] = E[ŵk]− (1− Pk)E[wk], k ≥ 0.

Hence the first conclusion holds.

Convergence By assumptions we know 0 < η ≤ ηi < 1
β ≤ 1

λmax
, where λmax is the largest eigenvalue of Σ. Thus

‖E[wk]− w∗‖2 ≤
∥∥Πk−1

i=0 (I − ηiΣ)
∥∥

2
· ‖w0 − w∗‖2 ≤

∥∥(I − ηΣ)k
∥∥

2
· ‖w0 − w∗‖2 → 0,

and limk→+∞E[wk] = w∗ = Σ−1a.

In a similar manner, since γi = ηi
1+ηiλ

and 0 < η ≤ ηi <
1
β ≤ 1

λmax
, we have 0 < η

1+λη = γ ≤ γi <
1

β+λ ≤ 1
λmax+λ .

Thus

‖E[ŵk]− ŵ∗‖2 ≤
∥∥Πk−1

i=0 (I − γi(Σ + λI))
∥∥

2
· ‖ŵ0 − ŵ∗‖2 ≤

∥∥(I − γ(Σ + λI))k
∥∥

2
· ‖ŵ0 − ŵ∗‖2 → 0,

and limk→+∞E[ŵk] = ŵ∗ = (Σ + λI)−1a.

On the other hand, by the first conclusion we know

E[ŵk]− E[w̃k] = (1− Pk)(E[wk]− E[w̃k]).

Since E[wk] converges, E[w̃k] = P−1
k

∑k
i=1 piE[wi] is bounded. Therefore

‖E[ŵk]− E[w̃k]‖2 = (1− Pk) ‖E[wk]− E[w̃k]‖2 = O(1− Pk) = O(Πk
i=0(1− λγi)) ≤ O((1− λγ)k).

Hence the second claim is true.
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Variance Now we turn to analyze the deviation of the averaged solution. From Eq. (12), we can recursively obtain

wi = E[wi] + ξi, ξi =

i−1∑
j=0

Πi−1
h=j+1(I − ηhΣ)ηjεj ,

where we abuse the notation and let Πi−1
h=i(I − ηhΣ) = I .

Now applying iterate averaging with respect to pi = λγiΠ
i−1
h=0(1− λγh), we have

Pkw̃k =

k∑
i=1

piwi =

k∑
i=1

piE[wi] +

k∑
i=1

piξi = PkE[w̃k] +

k∑
i=1

piξi.

We turn to calculate the noise term
∑k
i=1 piξi. Note that in every step, all of the matrices can be diagonalized simultaneously,

thus they commute, similarly hereinafter.

k∑
i=1

piξi =

k∑
i=1

pi

i−1∑
j=0

Πi−1
h=j+1(I − ηhΣ)ηjεj


=

k−1∑
j=0

 k∑
i=j+1

piΠ
i−1
h=j+1(I − ηhΣ)ηj

 εj

=

k−1∑
j=0

 k∑
i=j+1

λγiΠ
i−1
h=0(1− λγh)Πi−1

h=j+1(I − ηhΣ)ηj

 εj

=

k−1∑
j=0

 k∑
i=j+1

λγi

(
Πj−1
h=0(1− λγh)

)(
Πi−1
h=j+1(1− λγh)(I − ηhΣ)

)
((1− λγj)ηj)

 εj

=

k−1∑
j=0

(Πj−1
h=0(1− λγh)

) k∑
i=j+1

λγiΠ
i−1
h=j+1 (I − γh(Σ + λI))

 γj

 εj

=

k−1∑
j=0

Ajεj ,

where Aj = γj

(
Πj−1
h=0(1− λγh)

)(∑k
i=j+1 λγiΠ

i−1
h=j+1 (I − γh(Σ + λI))

)
. Recall that ε0, ε1 . . . , εk is a martingale

difference sequence, then
∑k
i=1 piξi =

∑k−1
j=0 Ajεj is a martingale. Thus

Tr Var

[
k∑
i=1

piξi

]
= Tr Var

k−1∑
j=0

Ajεj

 =

k−1∑
j=0

Tr Var [Ajεj ],

where “Var” is the covariance of a random vector. and “Tr” is the trace of a matrix.

Next we bound each term in the summation as

Tr Var [Ajεj ] = TrE
[
(Ajεj)(Ajεj)

>] = E
[
‖Ajε‖22

]
≤ ‖Aj‖22 · E

[
‖ε‖22

]
≤ σ2 ‖Aj‖22 .
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And we remain to bound ‖Aj‖22. Remember that η ≤ ηh ≤ 1
β , γ ≤ γh ≤ 1

λ+β , we have

‖Aj‖22 =

∥∥∥∥∥∥γj
(

Πj−1
h=0(1− λγh)

) k∑
i=j+1

λγiΠ
i−1
h=j+1 (I − γh(Σ + λI))

∥∥∥∥∥∥
2

2

≤

∥∥∥∥∥∥ 1

λ+ β

(
(1− λγ)j

) k∑
i=j+1

λ

λ+ β
(I − γ(Σ + λI))

i−j−1

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥ λ

(λ+ β)2

(
(1− λγ)j

)(k−j−1∑
i=0

(I − γ(Σ + λI))
i

)∥∥∥∥∥
2

2

≤
(

λ

(λ+ β)2

(
(1− λγ)j

)(k−j−1∑
i=0

(1− γ(α+ λ))
i

))2

≤
(

λ

(λ+ β)2

(
(1− λγ)j

)( 1

γ(α+ λ)

))2

=
λ2

γ2(λ+ α)2(λ+ β)4
(1− λγ)2j .

The second equality holds because α ≤ λmin(Σ).

Based on previous discussion we have

Tr Var

[
k∑
i=1

piξi

]
=

k−1∑
j=0

Tr Var [Ajεj ] ≤
k−1∑
j=0

σ2 ‖Aj‖22

≤
k−1∑
j=0

λ2σ2

γ2(λ+ α)2(λ+ β)4
(1− λγ)2j ≤ λ2σ2

γ2(λ+ α)2(λ+ β)4

1

1− (1− λγ)2

=
λσ2

γ3(2− λγ)(λ+ α)2(λ+ β)4
.

Now by multivariate Chebyshev’s inequality, we have

P

(∥∥∥∥∥
k∑
i=1

piξi

∥∥∥∥∥
2

≥ ε
)
≤

Tr Var
[∑k

i=1 piξi

]
ε2

≤ λσ2

ε2γ3(2− λγ)(λ+ α)2(λ+ β)4
= δ.

That is, with probability at least 1− δ, we have

‖Pkw̃k − PkE[w̃k]‖2 =

∥∥∥∥∥
k∑
i=1

piξi

∥∥∥∥∥
2

≤ ε,

where

ε =
σ

γ(λ+ α)(λ+ β)2

√
λ

δγ(2− λγ)
.

This completes our proof.

C.2. Proof of Theorem 1.1

Proof. The derivation of kernel ridge regression can be found in (Mohri et al., 2018). We consider the following loss
function of the dual problem

L(α, λ) =
1

2
‖y −Kα‖22 +

λ

2
α>Kα,
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where y = (y1, . . . , yn)T is the label set. Then GD takes update

αk+1 = αk − ηk
(
K2αk −Ky + λKαk

)
, α0 = 0.

Let α∗ = (K + λI)−1y, then
αk+1 − α∗ =

(
I − ηk(K2 + λK)

)
(αk − α∗),

thus
αk+1 − α∗ = Πk

i=0

(
I − ηi(K2 + λK)

)
(α0 − α∗),

and

αk+1 − αk = Πk−1
i=0

(
I − ηi(K2 + λK)

)
· ηk(K2 + λK) · (K + λI)−1y = Πk−1

i=0

(
I − ηi(K2 + λK)

)
ηkKy.

Similarly for α̂k, i.e., the GD path for L(α̂, λ̂) with learning rate γk, we have

α̂k+1 − α̂k = Πk−1
i=0

(
I − γi(K2 + λ̂K)

)
γkKy.

We emphasize that the generalized learning rate γk =
(
I + (λ̂− λ)ηkK

)−1

ηk commutes with K. And

I − γk(λ̂− λ)K =
γk
ηk
.

Thus for the generalized weighting scheme PK = 1−Πk
i=0(γi/ηi) we have

(1− Pk)(αk+1 − αk) = Πk−1
i=0

(
γi
ηi

(
I − ηi(K2 + λK)

)) γk
ηk
ηkKy

=Πk−1
i=0

(
γi
ηi
− γi(K2 + λK)

)
γkKy = Πk−1

i=0

(
I − γi(λ̂− λ)K − γi(K2 + λK)

)
γkKy

=Πk−1
i=0

(
I − γi(K2 + λ̂K)

)
γkKy = α̂k+1 − α̂k.

Therefore by Lemma 2 we have
Pkα̃k = α̂k − (1− Pk)αk.

Let λmax and λmin be the maximal and minimal eigenvalue of K respectively. Then if

η ≤ ηk ≤ max

{
1

λmax(λmax + λ)
,

1

λmax(λmax + 2λ̂− λ)

}
, γ =

(
I + (λ̂− λ)ηK

)−1

η,

we have
η(K2 + λK) � ηk(K2 + λK) ≺ I, γ(K2 + λ̂K) � γk(K2 + λ̂K) ≺ I,

which guarantees the convergence of αk and α̂k. Hence both αk and α̃k are bounded. And the convergence rate is given by

‖α̂k − α̃k‖2 = ‖(1− Pk) (αk − α̃k)‖2 = O (‖1− Pk‖2) ≤ O
(
‖γ/η‖k2

)
= O

(
(1 + (λ̂− λ)ηλmin)−k

)
.

C.3. Proof of Theorem 2

Proof. Let us consider changing of variable vk = Q
1
2wk, then

vk+1 = Q
1
2wk+1 = Q

1
2wk − ηkQ−

1
2 (xkx

>
k wk − xkyk)

=Q
1
2wk − ηk(Q−

1
2xkx

T
kQ
− 1

2Q
1
2wk −Q−

1
2xkyk)

=vk − ηk(Q−
1
2xkx

>
k Q
− 1

2 vk −Q−
1
2xkyk).
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Similarly let v̂k = Q
1
2 ŵk, then

v̂k+1 = Q
1
2 ŵk+1 = Q

1
2 ŵk − γkQ−

1
2 (xkx

>
k ŵk − xkyk − λQŵk)

=Q
1
2 ŵk − γk(Q−

1
2xkx

>
k Q
− 1

2Q
1
2 ŵk −Q−

1
2xkyk − λQ

1
2 ŵk)

=v̂k − γk(Q−
1
2xkx

>
k Q
− 1

2 v̂k −Q−
1
2xkyk − λv̂k).

Let us denote

Σ = Ex[xxT ], a = Ex,y[xy], w∗ = Σ−1a, ŵ∗ = (Σ +λI)−1a, εk = (Σwk − a)− (xk+1x
>
k+1wk −xk+1yk+1),

and correspondingly,

Λ = Q−
1
2 ΣQ−

1
2 , b = Q−

1
2 a, v∗ = Q−

1
2w∗, v̂∗ = Q−

1
2 ŵ∗, ιk = Q−

1
2 εk.

Under these notations we have
vk+1 = vk − ηk(Λvk − b) + ηkιk, v0 = 0. (14)

and
v̂k+1 = v̂k − γk(Λv̂k − b+ λv̂k) + γkιk, v̂0 = 0. (15)

We can see that Eq. (14) and Eq. (15) are exactly what we have studied in Theorem 1. Also by assumption we know

αI � Λ � βI.

Thus by Theorem 1 we have the following conclusions:

1. In expectation for any k > 0,
PkE[ṽk] = E[v̂k]− (1− Pk)E[vk].

2. Both E[vk] and E[v̂k] converge. And there exists a constant K such that for all k > K,

‖E[v̂k]− E[ṽk]‖2 ≤ O((1− λγ)k).

Hence the limitation of E[ṽk] exists and limk→∞E[ṽk] = limk→∞E[v̂k].

3. If the noise ιk has uniform bounded variance

E[‖ι̃k‖22] ≤ ‖Q‖2 σ2, ∀k.

Then for k large enough, with probability at least 1− δ, we have

‖Pkṽk − PkE[ṽk]‖2 ≤ ε,

where

ε =
‖Q‖

1
2
2 σ

γ(λ+ α)(λ+ β)2

√
λ

δγ(2− λγ)
.

Now let wk = Q−
1
2 vk, ŵk = Q−

1
2 v̂k, then w̃k = 1

Pk

∑k
i=1 piwi = Q−

1
2

1
Pk

∑k
i=1 pivi = Q−

1
2 ṽk. Hence we have

1. In expectation for any k > 0,
PkE[w̃k] = E[ŵk]− (1− Pk)E[wk].

2. Both E[wk] and E[ŵk] converge. And there exists a constant K such that for all k > K,

‖E[ŵk]− E[w̃k]‖2 ≤ O((1− λγ)k).

Hence the limitation of E[w̃k] exists and limk→∞E[w̃k] = limk→∞E[ŵk].
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3. If the PSGD noise Q−1εk has uniform bounded variance

E[
∥∥Q−1εi

∥∥2

2
] ≤ σ2, ∀i.

Then for k large enough, with probability at least 1− δ, we have

‖Pkw̃k − PkE[w̃k]‖2 ≤ ε,

where

ε =
σ
∥∥∥Q− 1

2

∥∥∥
2
·
∥∥∥Q 1

2

∥∥∥
2

γ(λ+ α)(λ+ β)2

√
λ

δγ(2− λγ)
≤ σ ‖Q‖2
γ(λ+ α)(λ+ β)2

√
λ

δγ(2− λγ)
.

Hence our claims are proved.

C.4. Proof of Theorem 3

Proof. First, provided 0 < η < 1
β <

1
α and γ = 1

1
η+λ

, we have

ηα

α+ λ
=

1
1
η + λ

ηα

<
1

1
η + λ

= γ <
1

β + λ
≤ 1

α+ λ
.

Therefore 0 <
1−
√
γ(α+λ)

1−√ηα < 1, and

Pk = 1− γ

η

(
1−

√
γ(α+ λ)

1−√ηα

)k−1

, pk = Pk − Pk−1,

is a well defined weighting scheme, i.e., Pk is non-negative, non-decreasing and limk→∞ Pk = 1.

Recall the NSGD updates for linear regression problem

wk+1 = vk − η(xk+1x
>
k+1vk − xk+1yk+1), vk = wk + τ(wk − wk−1), w0 = w1 = 0,

where τ =
1−√ηα
1+
√
ηα .

Let
Σ = Ex[xx>], a = Ex,y[xy], εk = (Σvk − a)− (xk+1x

>
k+1vk − xk+1yk+1),

where εk is the gradient noise, and Ek+1[εk] = 0. Under these notations we have

wk+1 = vk − η(Σvk − a) + ηεk, vk = wk + τ(wk − wk−1), w0 = w1 = 0.

Thus
wk+1 = (1 + τ)(1− ηΣ)wk − τ(1− ηΣ)wk−1 + ηa+ ηεk, w0 = w1 = 0. (16)

Similarly for the linear regression with `2-regularization, NSGD takes update

ŵk+1 = v̂k − γ
(
(xk+1x

T
k+1 + λ)v̂k − xk+1yk+1

)
, v̂k = ŵk + τ̂(ŵk − ŵk−1), ŵ0 = ŵ1 = 0,

where τ̂ =
1−
√
γ(α+λ)

1+
√
γ(α+λ)

.

And we have

ŵk+1 = (1 + τ̂) (1− γ(Σ + λ)) ŵk − τ̂ (1− γ(Σ + λ)) ŵk−1 + γa+ γεk, ŵ0 = ŵ1 = 0. (17)
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Expectation First let us compute the expectations. Let zk = E[wk+1]−E[wk], ẑk = E[ŵk+1]−E[ŵk], we aim to show
that

(1− Pk)zk = ẑk, k ≥ 0. (18)

Then according to Lemma 2, we prove the first conclusion in Theorem 3.

We begin with solving zk.

For Eq. (16), taking expectation with respect to the random mini-batch sampling procedure, we have

E[wk+1] = (1 + τ)(1− ηΣ)E[wk]− τ(1− ηΣ)E[wk−1] + ηa, E[w0] = E[w1] = 0.

Thus zk = E[wk+1]− E[wk] satisfies

zk+1 = (1 + τ)(1− ηΣ)zk − τ(1− ηΣ)zk−1, z0 = 0, z1 = ηa. (19)

Without loss of generality, let us assume Σ is diagonal in the following. Otherwise consider its eigenvalue decomposition
Σ = UΛUT , and replace zk with U>zk. All of the operators in the following are defined entry-wisely.

Eq. (19) defines a homogeneous linear recurrence relation with constant coefficients, which could be solved in a standard
manner. Let

A = (1 + τ)(1− ηΣ) =
2(1− ηΣ)

1 +
√
ηα

, B = −τ(1− ηΣ) =
−(1−√ηα)(1− ηΣ)

1 +
√
ηα

,

then the characteristic function of Eq. (19) is
r2 −Ar −B = 0. (20)

Since Σ is diagonal, 0 < η < 1
α , and α is no greater than the smallest eigenvalue of Σ, we have

A2 + 4B =
4η(1− ηΣ)(α− Σ)

(1 +
√
ηα)2

≤ 0.

Thus the characteristic function (20) has two conjugate complex roots r1 and r2 (they might be equal). Suppose r1,2 = s± ti.
Then the solution of Eq. (19) can be written as

zk = 2(−B)
k
2 (E cos(θk) + F sin(θk)) , k ≥ 0,

where E and F are constants decided by initial conditions z0 = 0, z1 = ηa, and θ satisfies

cos θ =
s√

s2 + t2
, sin θ =

t√
s2 + t2

, r1,2 = s± ti.

Since 2s = r1 + r2 = A, s2 + t2 = r1ṙ2 = −B, we have

cos θ =
A

2
√
−B =

√
1− ηΣ

1− ηα , sin θ =

√
−4B −A2

2
√
−B =

√
η(Σ− α)

1− ηα .

Because z0 = 0, z1 = ηa, we know that
E = 0, 2F =

ηa

(−B)
1
2 sin θ

.

Thus
zk =

ηa

sin θ
(−B)

k−1
2 sin(θk), k ≥ 0. (21)

where

B =
−(1−√ηα)(1− ηΣ)

1 +
√
ηα

, cos θ =

√
1− ηΣ

1− ηα , sin θ =

√
η(Σ− α)

1− ηα .

One can directly verify that Eq. (21) solves the recurrence relation (19).

Then we solve ẑk.
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Similarly treat Eq. (17), we know ẑk = E[ŵk+1]− E[ŵk] satisfies

ẑk+1 − (1 + τ̂) (1− γ(Σ + λ)) ẑk + τ̂ (1− γ(Σ + λ)) ẑk−1 = 0, ẑ0 = 0, ẑ1 = −γa.

Repeat the calculation, we obtain

ẑk =
γa

sin θ̂
(−B̂)

k−1
2 sin(θ̂k), k ≥ 0,

where

B̂ =
−
(

1−
√
γ(α+ λ)

)
(1− γ(Σ + λ))

1 +
√
γ(α+ λ)

,

cos θ̂ =

√
1− γ(Σ + λ)

1− γ(α+ λ)
, sin θ̂ =

√
γ(Σ− α)

1− γ(α+ λ)
.

Finally we verify the sufficient condition in Lemma 2 (Eq. (18)).

First we show that if 1− λγ = γ
η , we have θ ≡ θ̂ (mod 2π). To see this, we only need to verify that cos θ̂ = cos θ, sin θ̂ =

sin θ. This is because

cos θ̂ =

√
1− γλ− γΣ

1− γλ− γα =

√
γ
η − γΣ
γ
η − γα

=

√
1− ηΣ

1− ηα = cos θ;

sin θ̂ =

√
γ(Σ− α)

1− γλ− γα =

√
γ(Σ− α)
γ
η − γα

=

√
η(Σ− α)

1− ηα = sin θ.

Therefore we have
zk =

ηa

sin θ
(−B)

k−1
2 sin(θk), ẑk =

γa

sin θ
(−B̂)

k−1
2 sin(θk).

Since

1− Pk =
γ

η

(
1−

√
γ(α+ λ)

1−√ηα

)k−1

,
γ

η
= 1− λγ,

we have

η

γ
(1− Pk)(−B)

k−1
2 =


(

1−
√
γ(α+ λ)

)2

(1−√ηα)2
· (1−√ηα)(1− ηΣ)

1 +
√
ηα


k−1
2

=


(

1−
√
γ(α+ λ)

)2

(1− ηΣ)

1− ηα


k−1
2

=


(

1−
√
γ(α+ λ)

)2

(1− γ(Σ + λ))

1− γ(α+ λ)


k−1
2

=


(

1−
√
γ(α+ λ)

)
(1− γ(Σ + λ))

1 +
√
γ(α+ λ)


k−1
2

= (−B̂)
k−1
2 .

Thus (1− Pk)zk = ẑk. And according to Lemma 2, we have

E[ŵk]− E[w̃k] = (1− Pk) (E[wk]− E[w̃k]), k ≥ 0.

Hence the first conclusion holds.

Convergence Since L(w) is β-smooth, and the corresponding learning rate η < 1
β , E[wk] converges (Beck & Teboulle,

2009). Similarly, L̂(ŵ) = L(ŵ) + λ
2 ‖ŵ‖

2
2 is (β + λ)-smooth, and the corresponding learning rate γ = 1

1
η+λ

< 1
β+λ ,
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thus E[ŵk] converges (Beck & Teboulle, 2009). Specially for linear regression, these can be also verified by noticing that
0 < −B < 1 because η < 1

β and

k∑
i=1

|zi| =
k∑
i=1

∣∣∣ ηa
sin θ

(−B)
i−1
2 sin(θi)

∣∣∣ ≤ k∑
i=1

∣∣∣ ηa
sin θ

(−B)
i−1
2

∣∣∣ < +∞,

i.e., the right hand side of the above series converge, which implies that E[wk] =
∑k
i=1 zi converges absolutely, hence it

converges. In a same mannerE[ŵk] converges. Thus there exist constantsM andK such that for all k > K, ‖E[wk]‖2 ≤M ,
‖E[ŵk]‖2 ≤M . Hence

‖E[ŵk]− E[w̃k]‖2 = (1− Pk) ‖E[wk]− E[ŵk]‖2 ≤
γ

η
Ck−1 · 2M = O(Ck),

where C =
1−
√
γ(α+λ)

1−√ηα ∈ (0, 1), thus by taking limitation in both sides we obtain

lim
k→∞

E[w̃k] = lim
k→∞

E[ŵk],

Hence the second conclusion holds.

Variance Next we turn to analyze the deviation of the averaged solution.

Let wi = E[wi] + ξi. Based on Eq. (16), we first prove that

ξi =

i−1∑
j=1

ai−jηεj , i ≥ 1, (22)

where
ak+1 = Aak +Bak−1, a0 = 0, a1 = 1. (23)

We prove Eq. (22) by mathematical induction.

For i = 1, 2, by Eq. (16) we know ξ1 = w1 − E[w1] = 0 and ξ2 = w2 − E[w2] = ηε1, thus Eq. (22) holds. Now suppose
Eq. (22) holds for i− 1 and i, then we consider i+ 1. In Eq. (16), since ξi = wi − E[wi], taking difference we have

ξi+1 = Aξi +Bξi−1 + ηεi.

Now combining the induction assumptions we have

ξi+1 =A

i−1∑
j=1

ai−jηεj +B

i−2∑
j=1

ai−j−1ηεj + ηεi

=

i−2∑
j=1

(Aai−j +Bai−j−1)ηεj +Aa1ηεi−1 + ηεi

=

i−2∑
j=1

ai−j+1ηεj + a2ηεi−1 + a1ηεi

=

i∑
j=1

ai−j+1ηεj .

Thus by mathematical induction Eq. (22) is true for all i ≥ 1.

Similarly to solve zk, we can solve the recurrence relation Eq. (23) and obtain

ak =
1

sin θ
(−B)

k−1
2 sin(θk), k ≥ 0, (24)
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where

B =
−(1−√ηα)(1− ηΣ)

1 +
√
ηα

, cos θ =

√
1− ηΣ

1− ηα , sin θ =

√
η(Σ− α)

1− ηα .

Thus

√
−B =

√
(1−√ηα)(1− ηΣ)

1 +
√
ηα

= (1−√ηα)

√
1− ηΣ

1− ηα ,

1

sin θ
=

√
1− ηα
η(Σ− α)

�
√

1− ηα
η(λmin − α)

I,

where λmin is the smallest eigenvalue of Σ.

Now apply iterate averaging with respect to

pi = Pi − Pi−1 =
γ

η

(√
γ(α+ λ)−√ηα

1−√ηα

)(
1−

√
γ(α+ λ)

1−√ηα

)i−2

,

we have

Pkw̃k =

k∑
i=1

piwi =

k∑
i=1

piE[wi] +

k∑
i=1

piξi = PkE[w̃k] +

k∑
i=1

piξi.

We turn to calculate the noise term
∑k
i=1 piξi. Note that in every step, all of the matrices can be diagonalized simultaneously,

thus they commute, similarly hereinafter.

k∑
i=1

piξi =

k∑
i=1

pi

i−1∑
j=1

ai−jηεj

=

k−1∑
j=1

 k∑
i=j+1

piai−j

 ηεj

=

k−1∑
j=1

Ajεj ,

where Aj = η
∑k
i=j+1 piai−j . Recall that ε0, ε1 . . . , εk is a martingale difference sequence,

∑k
i=1 piξi =

∑k−1
j=0 Ajεj is a

martingale. Thus

Tr Var

[
k∑
i=1

piξi

]
= Tr Var

k−1∑
j=1

Ajεj

 =

k−1∑
j=1

Tr Var [Ajεj ].

Next we bound each term in the summation as

Tr Var [Ajεj ] = TrE
[
(Ajεj)(Ajεj)

>] = E
[
‖Ajε‖22

]
≤ ‖Aj‖22 · E

[
‖ε‖22

]
≤ σ2 ‖Aj‖22 .
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And we remain to bound ‖Aj‖22:

‖Aj‖22 =

∥∥∥∥∥∥η
k∑

i=j+1

piai−j

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥ γ

sin θ

√
γ(α+ λ)−√ηα

1−√ηα
k∑

i=j+1

(
1−

√
γ(α+ λ)

1−√ηα

)i−2

(−B)
i−j−1

2 sin(θ(i− j))

∥∥∥∥∥∥
2

2

≤

∥∥∥∥∥∥ γ

sin θ

√
γ(α+ λ)−√ηα

1−√ηα
k∑

i=j+1

(
1−

√
γ(α+ λ)

1−√ηα

)i−2(
(1−√ηα)

√
1− ηΣ

1− ηα

)i−j−1
∥∥∥∥∥∥

2

2

≤

 γ

sin θ

√
γ(α+ λ)−√ηα

1−√ηα
k∑

i=j+1

(
1−

√
γ(α+ λ)

1−√ηα

)i−2

(1−√ηα)
i−j−1

2

=

 γ

sin θ

√
γ(α+ λ)−√ηα

1−√ηα (1−√ηα)
1−j

k∑
i=j+1

(
1−

√
γ(α+ λ)

)i−2

2

≤

γ√ 1− ηα
η(λmin − α)

·
√
γ(α+ λ)−√ηα(

1−√ηα
)j ·

(
1−

√
γ(α+ λ)

)j−1

√
γ(α+ λ)


2

=
γ(1− ηα)

(√
γ(α+ λ)−√ηα

)2

η(λmin − α)(α+ λ)
(

1−
√
γ(α+ λ)

)2

(
1−

√
γ(α+ λ)

1−√ηα

)2j

.

The first inequality is because sin(θ(i− j)) ≤ 1, and the second inequality is because α < λmin(Σ).

Based on previous discussion we have

Tr Var

[
k∑
i=1

piξi

]
=

k−1∑
j=1

Tr Var [Ajεj ] ≤
k−1∑
j=1

σ2 ‖Aj‖22

≤
k−1∑
j=1

σ2γ(1− ηα)
(√

γ(α+ λ)−√ηα
)2

η(λmin − α)(α+ λ)
(

1−
√
γ(α+ λ)

)2

(
1−

√
γ(α+ λ)

1−√ηα

)2j

≤
σ2γ(1− ηα)

(√
γ(α+ λ)−√ηα

)2

η(λmin − α)(α+ λ)
(

1−
√
γ(α+ λ)

)2 ·

(
1−
√
γ(α+λ)

1−√ηα

)2

1−
(

1−
√
γ(α+λ)

1−√ηα

)2

≤
σ2γ(1− ηα)

(√
γ(α+ λ)−√ηα

)2

η(λmin − α)(α+ λ)
(

1−
√
γ(α+ λ)

)2 ·

(
1−

√
γ(α+ λ)

)2

(
2−√ηα−

√
γ(α+ λ)

)(√
γ(α+ λ)−√ηα

)
=

σ2γ(1− ηα)
(√

γ(α+ λ)−√ηα
)

η(λmin − α)(α+ λ)
(

2−√ηα−
√
γ(α+ λ)

) .
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Now by multivariate Chebyshev’s inequality, we have

P

(∥∥∥∥∥
k∑
i=1

piξi

∥∥∥∥∥
2

≥ ε
)
≤ Tr Var[

∑k
i=1 piξi]

ε2
≤

σ2γ(1− ηα)
(√

γ(α+ λ)−√ηα
)

ε2η(λmin − α)(α+ λ)
(

2−√ηα−
√
γ(α+ λ)

) =: δ.

That is, with probability at least 1− δ, we have

‖Pkw̃k − PkE[w̃k]‖2 =

∥∥∥∥∥
k∑
i=1

piξi

∥∥∥∥∥
2

≤ ε,

where

ε =

√√√√√ σ2γ(1− ηα)
(√

γ(α+ λ)−√ηα
)

δη(λmin − α)(α+ λ)
(

2−√ηα−
√
γ(α+ λ)

) .
This completes our proof.

C.5. Proof of Theorem 4

Proof. We will prove a stronger version of Theorem 4 by showing the conclusions hold for any 1-dim projection direction
v1 ∈ Rd. Concisely, given a unit vector v1 ∈ Rd, we can extend it to a group of orthogonal basis, v1, v2, . . . , vd. For
w ∈ Rd, we denote its decomposition as

w = w(1)v1 + w(2)v2 + · · ·+ w(d)vd, w(i) ∈ R.

Define h(w(1)) = L(w) = L(w(1)v1 + · · ·+ w(d)vd), then∇h(w(1)) = v>1 ∇L(w). Now for one step of GD,

wk+1 = wk − η∇L(wk),

by multiplying v1 in both sides, we obtain

w
(1)
k+1 = v>1 wk+1 = v>1 wk − ηv>1 ∇L(wk) = w

(1)
k − η∇h(w

(1)
k ). (25)

We turn to study GD along direction v1 by analyzing Eq. (25).

Firstly h(w(1)) is α-strongly convex, β-smooth and lower bounded since L(w) is α-strongly convex, β-smooth, and lower
bounded. Letw∗ be the unique minimum of L(w), thenw(1)

∗ = v>1 w∗ is the minimum of h(w(1)). Without loss of generality,
assume

w
(1)
∗ > 0 = w

(1)
0 .

Then by Lemma 3, we know the optimization path of Eq. (25) lies between (0, w
(1)
∗ ), and for any v ∈ (0, w

(1)
∗ ), we have

αv − b ≤ ∇h(v) ≤ βv − b, b = −∇h(0).

Thus for Eq. (25) we have
w

(1)
k+1 − w

(1)
k =− η∇h(w

(1)
k ) ≤ −η(αw

(1)
k − b),

w
(1)
k+1 − w

(1)
k =− η∇h(w

(1)
k ) ≥ −η(βw

(1)
k − b).

Define the following dynamics:

u
(1)
k+1 − u

(1)
k = −η(αu

(1)
k − b), v

(1)
k+1 − v

(1)
k = −η(βv

(1)
k − b), u

(1)
0 = v

(1)
0 = 0.

By the discrete Gronwall’s inequality (Clark, 1987), we have

v
(1)
k ≤ w(1)

k ≤ u
(1)
k .
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Furthermore, u(1)
k and v(1)

k satisfy two first order recurrence relations respectively, thus they can be solved by

u
(1)
k = η

k∑
i=1

(1− ηα)i−1b, v
(1)
k = η

k∑
i=1

(1− ηβ)i−1b.

Since η < 1
β ≤ 1

α , u(1)
k and v(1)

k converge. And w(1)
k also converges since h(·) is β-smooth convex and η < 1

β .

In a same way, for the regularized path,

ŵ
(1)
k+1,λ = ŵ

(1)
k,λ − γ(∇h(ŵ

(1)
k,λ) + λŵ

(1)
k,λ), ŵ

(1)
0,λ = 0,

we have
ŵ

(1)
k+1,λ − ŵ

(1)
k,λ =− γ(∇h(ŵ

(1)
k,λ) + λŵ

(1)
k,λ) ≤ −γ

(
(α+ λ)ŵ

(1)
k,λ − b

)
,

ŵ
(1)
k+1,λ − ŵ

(1)
k,λ =− γ(∇h(ŵ

(1)
k,λ) + λŵ

(1)
k,λ) ≥ −γ

(
(β + λ)ŵ

(1)
k,λ − b

)
.

Consider the following dynamics:

û
(1)
k+1,λ − û

(1)
k,λ = −γ((α+ λ)û

(1)
k,λ − b), v̂

(1)
k+1,λ − v̂

(1)
k,λ = −γ((β + λ)v̂

(1)
k,λ − b),

where û(1)
0,λ = v̂

(1)
0,λ = 0. Then by the discrete Gronwall’s inequality (Clark, 1987) and the solution of the first order

recurrence relation we obtain

v̂
(1)
k,λ ≤ ŵ

(1)
k,λ ≤ û

(1)
k,λ, û

(1)
k,λ = γ

k∑
i=1

(1− γ(α+ λ))i−1b, v̂
(1)
k,λ = γ

k∑
i=1

(1− γ(β + λ))i−1b.

Now we turn to bound the iterate averaged solution. Consider

λ1 =
1

γ
− 1

η
+ β − α, λ2 =

1

γ
− 1

η
+ α− β,

since β ≥ α and 0 < γ < 1
β−α+1/η we know λ1 ≥ λ2 > 0. Notice that

0 < γ(α+ λ2) ≤ {γ(α+ λ1), γ(β + λ2)} ≤ γ(β + λ1) = 1− γ(−1

η
+ 2β − α) < 1,

where the last inequality is because η > 1
2β−α . Thus û(1)

k,λ1
, û(1)

k,λ2
, v̂(1)
k,λ1

, v̂(1)
k,λ2

converge. Further ŵk,λ1 and ŵk,λ2 also
converge since γ < 1

β+λ1
≤ 1

β+λ2
and the corresponding regularized losses are (β+λ1) and (β+λ2)-smooth, respectively.

Next let us consider the weighting scheme Pk = 1−
(
γ
η

)k+1

, which is well defined since 0 < γ < 1
β−α+1/η ≤ η.

One can directly verify that ũ(1)
k = 1

Pk

∑k
i=1 piu

(1)
i , ṽ

(1)
k = 1

Pk

∑k
i=1 piv

(1)
i converge, and

(1− Pk)(u
(1)
k+1 − u

(1)
k ) = v̂

(1)
k+1,λ2

− v̂(1)
k,λ2

, (1− Pk)(v
(1)
k+1 − v

(1)
k ) = û

(1)
k+1,λ1

− û(1)
k,λ1

.

Thus according to Lemma 2 we have

Pk(u
(1)
k − ũ

(1)
k ) = u

(1)
k − v̂

(1)
k,λ2

, Pk(v
(1)
k − ṽ

(1)
k ) = v

(1)
k − û

(1)
k,λ1

.

Therefore
w̃

(1)
k − ŵ

(1)
k,λ2
≤ ũ(1)

k − v̂
(1)
k,λ2

= ũ
(1)
k − u

(1)
k + Pk(u

(1)
k − ũ

(1)
k ) = (1− Pk)(ũ

(1)
k − u

(1)
k ),

w̃
(1)
k − ŵ

(1)
k,λ1
≥ ṽ(1)

k − û
(1)
k,λ1

= ṽ
(1)
k − v

(1)
k + Pk(v

(1)
k − ṽ

(1)
k ) = (1− Pk)(ṽ

(1)
k − v

(1)
k ),

which implies that
ŵ

(1)
k,λ1

+ (1− Pk)(ṽ
(1)
k − v

(1)
k ) ≤ w̃(1)

k ≤ ŵ
(1)
k,λ2

+ (1− Pk)(ũ
(1)
k − u

(1)
k ). (26)
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Note that u(1)
k , ũ

(1)
k , v

(1)
k , ṽ

(1)
k , ŵ

(1)
k,λ1

, ŵ
(1)
k,λ2

converge, therefore there is a constant M controlling their `2-norm. Define

m
(1)
k = (ŵ

(1)
k,λ2

+ŵ
(1)
k,λ1

)/2, d(1)
k = (ŵ

(1)
k,λ2
−ŵ(1)

k,λ1
)/2. Recall that ŵ(1)

k,λ1
are the GD optimization path of a (α+λ1)-strongly

convex and (β + λ1)-smooth loss, thus ŵ(1)
k,λ1

converges in rate O
(
(1− γ(α+ λ1))k

)
. Similarly ŵ(1)

k,λ2
converges in rate

O
(
(1− γ(α+ λ2))k

)
. Thus triangle inequality we have∥∥∥m(1)

k −m(1)
∥∥∥

2
≤ 1

2

∥∥∥ŵ(1)
k,λ2
− ŵ(1)

∞,λ2

∥∥∥
2

+
1

2

∥∥∥ŵ(1)
k,λ1
− ŵ(1)

∞,λ1

∥∥∥
2
≤ O

(
(1− γ(α+ λ1))k

)
+O

(
(1− γ(α+ λ2))k

)
.∥∥∥d(1)

k − d(1)
∥∥∥

2
≤ 1

2

∥∥∥ŵ(1)
k,λ2
− ŵ(1)

∞,λ2

∥∥∥
2

+
1

2

∥∥∥ŵ(1)
k,λ1
− ŵ(1)

∞,λ1

∥∥∥
2
≤ O

(
(1− γ(α+ λ1))k

)
+O

(
(1− γ(α+ λ2))k

)
.

By Eq. (26) we obtain

w̃
(1)
k −m

(1)
k ≤ d

(1)
k + (1− Pk)(ũ

(1)
k − u

(1)
k ) ≤ d(1)

k + 2M

(
γ

η

)k+1

≤ d(1) − d(1) + d
(1)
k +O

((
γ

η

)k)

≤d(1) +O
(
(1− γ(α+ λ1))k

)
+O

(
(1− γ(α+ λ2))k

)
+O

((
γ

η

)k)
,

and

w̃
(1)
k −m

(1)
k ≥ d

(1)
k + (1− Pk)(ṽ

(1)
k − v

(1)
k ) ≥ d(1)

k − 2M

(
γ

η

)k+1

≥ d(1) − d(1) + d
(1)
k −O

((
γ

η

)k)

≥d(1) −O
(
(1− γ(α+ λ1))k

)
−O

(
(1− γ(α+ λ2))k

)
−O

((
γ

η

)k)
.

Thus ∥∥∥w̃(1)
k −m

(1)
k

∥∥∥
2
≤ d(1) +O(Ck), C = max{(1− γ(α+ λ1), (1− γ(α+ λ2),

γ

η
}.

In conclusion we have ∥∥∥w̃(1)
k −m(1)

∥∥∥
2
≤
∥∥∥w̃(1)

k −m
(1)
k

∥∥∥
2

+
∥∥∥m(1)

k −m(1)
∥∥∥

2
≤ d(1) +O(Ck).

D. Experiments setups
The code is available at https://github.com/uuujf/IterAvg.

The experiments are conducted using one GPU K80 and PyTorch 1.3.1.

D.1. Two dimensional toy example

The loss function is

L(w) =
1

2
(w − w∗)>Σ(w − w∗), w∗ = (1, 1)>, Σ = U Diag (0.1, 1)UT ,

U =

(
cos θ − sin θ
sin θ cos θ

)
, θ =

π

3
.

All the algorithms are initiated from zero. The learning rate for the unregularized problem is η = 0.1. The hyperparameter
for the vanilla/generalized `2-regularization is λ = 0.1. And the learning rate for the regularized problem is γ = 1

λ+1/η .
The preconditioning matrix is set to be Q = Σ. We run the algorithms for 500 iterations. For NGD and NSGD, we set the
strongly convex coefficient to be α = 0.05.
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D.2. MNIST dataset

Dataset http://yann.lecun.com/exdb/mnist/

Linear regression The image data is scaled to [0, 1]. The label data is one-hotted. The loss function is standard linear
regression under squared loss, without bias term, L(w) = 1

2n

∑n
i=1

∥∥wTxi − yi∥∥2

2
. All the algorithms are initiated from

zero. The learning rate for the unregularized problem is η = 0.01. The hyperparameter for the vanilla/generalized `2-
regularizer is λ = 4.0. And the learning rate for the regularized problem is γ = 1

λ+1/η . The preconditioning matrix is set to
be Q = 1

n

∑n
i=1 xix

>
i . The batch size for the stochastic algorithms are b = 500. We run the algorithms for 500 iterations.

For NGD and NSGD, we set the strongly convex coefficient to be α = 1.0.

Logistic regression The image data is scaled to [0, 1]. The label data is one-hotted. The loss function is standard logistics
regression loss plus an `2-regularization term, L(w) = 1

n

∑n
i=1DKL(yi || σ(w>xi)) + λ0

2 ‖w‖
2
2, where σ(x) is the softmax

function and λ0 = 1.0. All the algorithms are initiated from zero. The learning rate for the unregularized problem is
η = 0.01. The hyperparameter for the vanilla/generalized `2-regularizer is λ = 4.0. And the learning rate for the regularized
problem is γ = 1

λ+1/η . The preconditioning matrix is set to be Q = 1
n

∑n
i=1 xix

>
i . The batch size for the stochastic

algorithms are b = 500. We run the algorithms for 500 iterations. For NGD and NSGD, we set the strongly convex
coefficient to be α = 1.0.

D.3. CIFAR-10 and CIFARR-100 datasets

Datasets https://www.cs.toronto.edu/˜kriz/cifar.html

VGG-16 on CIFAR-10 The image data is scaled to [0, 1] and augmented by horizontally flipping and randomly cropping.
The label data is one-hotted. The model is standard VGG-16 with batch normalization. We train the model with vanilla
SGD for 300 epochs. The batch size is 100. The learning rate is 0.1, and decreased by ten times at epoch 150 and 250. The
weight decay is set to be 5× 10−4.

After finishing the SGD training process, we average the checkpoints from 61 to 300 epoch with standard geometric
distribution. We test the success probability p ∈ {0.9999, 0.999, 0.99, 0.9}. And the best one is 0.99.

ResNet-18 on CIFAR-10 The image data is scaled to [0, 1] and augmented by horizontally flipping and randomly cropping.
The label data is one-hotted. The model is standard ResNet-18. We train the model with vanilla SGD for 300 epochs. The
batch size is 100. The learning rate is 0.1, and decreased by ten times at epoch 150 and 250. The weight decay is set to be
5× 10−4.

After finishing the SGD training process, we average the checkpoints from 61 to 300 epoch with standard geometric
distribution. We test the success probability p ∈ {0.9999, 0.999, 0.99, 0.9}. And the best one is 0.99.

ResNet-18 on CIFAR-100 The image data is scaled to [0, 1] and augmented by horizontally flipping and randomly
cropping. The label data is one-hotted. The model is standard ResNet-18. We train the model with vanilla SGD for 300
epochs. The batch size is 100. The learning rate is 0.1, and decreased by ten times at epoch 150 and 250. The weight decay
is set to be 5× 10−4.

After finishing the SGD training process, we average the checkpoints from 61 to 300 epoch with standard geometric
distribution. We test the success probability p ∈ {0.9999, 0.999, 0.99, 0.9}. And the best one is 0.99.

Additional experiments for deep nets without weight decay For ResNet-18 trained on CIFAR-10, without weight
decay, and with the other setups the same, vanilla SGD has 92.95% test accuracy, and our method has 93.21% test accuracy.
This result is consistent with the results presented in the main text.


