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Table 2. Best convergence rates up to constants in previous analyses under our assumptions.

A. Comparisons Between Existing Local SGD Analyses and Minibatch SGD

In this section, we describe the derivation of the entries in Table 1 for the cases in which it is not obvious. In particular, these
previous analyses were stated based on different assumptions (stronger as well as weaker) which need to be reconciled with
ours. Since local SGD is often analyzed in the strongly convex setting (or with weaker assumptions that are implied by
strong convexity), we will make use of the following fact: If an algorithm guarantees error at most €(\) when applied to a
A-strongly convex function, then we can apply the algorithm to F'(z)+ 5 ||z||? in order to ensure error €(\) + % ||z*||. This
applies for any A > 0, so we can actually infer that the algorithm, in fact, guarantees error at most minyq €(\) + 5 [|z*||.

Since our purpose is to show that these analyses are dominated by minibatch SGD, the entries in the table are, in some
sense, the most optimistic interpretation of the bounds stated in the paper. For example, if error €1 (A) + €2 () is guaranteed
for strongly convex functions, we actually enter 2 miny~g €1 (\) + 3]|z*||? + 3 minyso e2(N) + 5(|2*||? into the table,
which is a lower bound on the actual guarantee.

For reference, we restate the worst-case guarantee of minibatch SGD:

HB? ocB
€EMB-SGD < R + Tihh (13)

A.1. Stich (2018)

The paper makes the same assumptions as us but, in addition, assumes that the stochastic gradients are uniformly bounded,
ie. ED [IIV f(z;2)]|?] < G?, Va. We relax this assumption by noting the following,

E [IVf@)lP] = E_[IVF(w;2) = VI@*2) + V(2" 2) = VP (14)
S E [IVf(x:2) = Vi@2)IP] + E [IVF(@a*2) = VE@)|?] (15)
S H?|z —a*|* + 07 (16)
< H?||z*|]* + 0 (17)
< H?B? + o2 (18)

In the last step we make the optimistic assumption that the iterates stray no farther from x* than they were at initialization,

i.e. [[xzg—z*|| < B. This may not be true, so this bound is optimistic. On the other hand, it is clear that one cannot generally

upper bound ED [IV f(x;2)||?] any tighter than this in our setting. Since our goal is anyways to show that the analysis
Y]

of Stich (2018) is deficient, we continue using the bound (18). This immediately gives the result for the strongly-convex
setting in appendix A. For the non-strongly setting we extend their result by optimizing each term separately as e(\) + %32
and ignore the constants.
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A.2. Stich and Karimireddy (2019)

The paper relaxes the convexity assumption, by assuming F is A*-quasi convex, i.e., Vo F(z*) < F(x) + (VF, z* — z) +
’\7 ||z —2*||?. This condition can also hold for certain non-convex functions and is implied by A*-strong convexity. Besides
they assume H-smoothness of F' and multiplicative noise for the stochastic gradients, i.e., IE [IVf(z;2) — VF(2)]?] <

N||x — 2*||> + 2. The latter assumption is a relaxation of the uniform upper bound on the variance of the stochastic
gradients, which we have assumed. Thus to compare to their result we set N = 0 upper bounding the stochastic variance
by o2 and use the strong convexity constant X instead of A\*. For the non-strongly convex setting we use their rate, along
with our uniform variance bound. Besides they use specific learning rate and averaging schedules to optimize their rates.
Both these rates are given in Appendix A. For the general convex setting, we believe their dependence in M is poor and is
improved upon by our upper bound in Section 4.

A.3. Khaled et al. (2019)

The relevant analysis from Khaled et al. (2019) is given in their Corollary 2, which is their only analysis that upper bounds
the error in terms of the objective function suboptimality and in the setting where each machine receives i.i.d. stochastic
gradients. Their Corollary 2 states that when M < K R, the error is bounded by5

< HB? N o? +02M (19)
€L

0= UMKR W HVMKR HR

In the case where H = B = o2 = 1, it 1s clear that this is strictly worse than minibatch SGD since 4 > R However,

consider the case of arbitrary H, B and o and suppose Khaled et al. (2019)’s guarantee is less than \/"KiR, in which case

HB? < cB M H?B? N 02M> HB? 20)
MKR ~ VKR T o? HR = R
Consequently, (19) is either greater than \/”Ki or greater than R . This does not mean that their upper bound is worse
than minibatch SGD. However, it is worse than minibatch SGD unless ~Z2- < HB ?

VKR — R

If we interrogate what this regime corresponds to, we see that it is actually a trivial regime where K R steps of serial
SGD, which achieves error K =+ \;’i < i 5 , is actually better than minibatch SGD. That is, rather than implementing
minibatch SGD distributed across the M machines, we are actually better off just ignoring M — 1 of the available machines
and doing serial SGD. If this is really the right thing to do, then there was never any need for parallelism in the first place,
and thus there is no reason to use local SGD, which performs no better than serial SGD in this case anyways.

B. Proofs from Section 3

Theorem 1. Let A be a linear update algorithm which, when executed for T iterations on any quadratic (f,D) €
F(H, X\, B,o?), guarantees EF (xr) — F* < €(T,02). Then, local-A’s averaged final iterate Tx g = 77 Zm | TR R will
satisfy EF (T ) — F* < (KR, %)

Proof. We will show that the average of the iterates at any particular time Z; = M Z _, x3" evolves according to A with
a lower variance stochastic gradient, even though this average iterate is not explicitly computed by the algorithm at every
step. It is easily confirmed from (6) that

Tyl = % f: £ (a0 (o)) 1)

m’/=1

:L;w( NS m;n)zgn)> @)

>There is a typo in their statement which omits the factor of H (L in their notation) from the numerator of the first term.
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where we used that Eét) is linear. We will now show that 5; 2%:1 \i (/:?) (x{”/, .. ,xﬁ);z{”,) is an unbiased

2
estimate of VI (,Cgt) (Z1,... ,i“t)) with variance bounded by §;. Therefore, Z;, is updated exactly according to A with
a lower variance stochastic gradient.

By the linearity of Lgt) and VF

LS o (el (xT',...,xpf);zyf)] LS (0 (o)) = VE(E0 7))

m’=1 m’=1

E

Furthermore, since the 2™ on each machine are independent, and sup, E||V f(z; 2) — VF(2)||* < 02,

2

1 J\/[ ’ ’ ’ 1 M ’ ’ ’
E i E Vf(ﬁgt)(acgn,...,x?l)z?)—ﬂi i g Vf(/lgt)(xgn,...,x?);zln)]
m’/=1 m’/=1

0.2

- Y E|e (e - v ()< D e
m=1

O

Corollary 1. For any quadratic (f, D) € F(H,\ = 0, B, 0?), there are constants ¢, and cy such that local-SGD returns

a point I such that
HB? oB
EF(z) — F* <
@ - <oy + A=)

and local-AC-SA returns a point T such that

- " HB? ocB
EF(z) - F* < 02<K2R2 + MKR) .

In particular, local-AC-SA is minimax optimal for quadratic objectives.

Proof. 1tis easily confirmed that SGD and AC-SA (Ghadimi and Lan, 2013) are linear update algorithms, which allows us

to apply Theorem 1. In addition, Simchowitz (2018) shows that any randomized algorithm that accesses an deterministic

. . 2 . . .
first order oracle at most 7" times will have error at least d}f in the worst case for an H-smooth, convex quadratic objec-

tive, for some universal constant c. Therefore, the first term of local-AC-SA’s guarantee cannot be improved. The second
term of the guarantee also cannot be improved (Nemirovsky and Yudin, 1983)—in fact, this term cannot be improved even
by an algorithm which is allowed to make M K R sequential calls to a stochastic gradient oracle. O

C. Proof of Theorem 2

Before we prove Theorem 2, we will introduce some notation. Recall that the objective is of the form F(z) :=
E..p[f(z;2)]. Let n: denote the stepsize used for the t¢th overall iteration. Let x}* denote the tth iterate on the mth
machine, and let z, = ﬁ 2%21 xy" denote the averaged tth iterate. The vector Z; may not actually be computed by the
algorithm, but it will be central to our analysis. We will use V f(z}*; 2J*) to denote the stochastic gradient computed at

27" by the mth machine at iteration ¢, and g; = ﬁ Zﬁf:l V f(«}; z{) will denote the average of the stochastic gradients
M
m=1

computed at time ¢. Finally, let g; = % >
iterates.

V F(z}") denote the average of the full gradients computed at the individual

Lemma 1 (See Lemma 3.1 (Stich, 2018)). Let F be H-smooth and A-strongly convex, let
sup, E|Vf(z;2) — VF(2)|* < 02, and let 1, < +57. then the iterates of local SGD satisfy

. 2 - 2 Lo 2mo?  AH L
E[F(z,) — F*] < (n —2)\>E||a:t —a? - n—EthH S i i T > Elz — 2|
t t m=1

- M
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Proof. This proof is nearly identical to the proof of Lemma 3.1 due to Stich (2018), and we claim no technical innovation
here. We include it in order to be self-contained.

We begin by analyzing the distance of Z;; from the optimum. Below, expectations are taken over the all of the random
variables {z;" } which determine the iterates {z}"}.

E|Z41 — 2"

= E[|Z, — mge — 2| (25)
=E||Z: — 2°|| + n7El|ge|* + n?Ellge — gel® — 20 E(Ze — 27, r) (26)

2o 2 M

— * — 12 t - * m. .m

<E||Z; — 2*| + 77E||g[I” + tﬁ Y m=1E<xt =", Vf(zi";2")) (27)

no? 2 M
= E||Z, — 2*|| + nfEllge|” + ~ > [E(a] —a*, VE(@})) + E(®, — 2}, VF(2}"))] (28)

m=1
For the second equality, we used that E[g; — g:] = 0; for the first inequality, we used that E|/g; — gl* =

2 2
IEH &= ZAm4=1 Vf(x; 2") — VF(x]") H < 97 since the individual stochastic gradient estimates are independent; and

for the final equality, we used that z;" is independent of Z;.

2
For any vectors v, ‘ Zi\f:l va < MZ%=1||va2. (x)\|2 <
2H(F(x) — F(x*)), thus
2 M
_ 2Hn; m .
i Elg” < nf SVFED)|| < T ST R - F) (29)
m=1
By the A-strong convexity of F', we have that
2n M 2n M A
t m * m t m * m *112
— 2 @ -2t VE@) < == Y | Fa) — Fa®) + Slap — ||
M M 2
m=1 m=1
o, M
< =37 LIFGr) - PGl - Mle -a GO

Finally, using the fact that for any vectors a, b and any v > 0, 2(a, b) < v||a]|? + v~ ||b||* we have

2H77t

— 2z, — 2, VF()) < myllae — o + 2 IIVF(It W < neyllze — 2| + [F(z}") — F(z")]  31)

Combining these with (28), we conclude that for v = 2H

2(1 — Hrpy) 2 o
E[Zis1 —*|* < (1 - An)E| @ — 2" - W S E[F(p) - Plat)] + 22
m=1
" M
# 3 3 (2Bl P EIPGE) — F ) (32)

M
— (1 - M|z, — o — T2 S~ gy p)

2 9 M
ngo 2H7}t _ mi2
+ 3\4 +=; § E||Z; — 2™ (33)

m=1
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1

By the convexity of F' and the fact that 1, < 77, this implies

2 9 M
- . - w1 _ X n;o”  2Hn - m
E|[Zer1 — 27)|° < (1 - Anp)E|ze — *|| — *;E[F(xt)*F(ﬂc )+ 3\4 + Mt E E||z, — 2}"||” (34)

m=1

Rearranging completes the proof. O

We will proceed to bound the final term in Lemma 1 more tightly than was done by Stich (2018), which allows us to
improve on their upper bound. To do so, we will use the following technical lemmas:

Lemma 2 (Co-Coercivity of the Gradient). For any H-smooth and convex F, and any x, and y
|VF(@) = VE@)|* < H(VF(x) - VF(y), x ~ )
and
2
IVE(z) = VF(@y)|" < 2H(F(z) — F(y) = (VF(y), © = y))
Proof. This proof follows closely from (Vandenberghe, 2019). Define the H-smooth, convex functions
F.(z) = F(z) — (VF(x), z) and F,(z) = F(z) — (VF(y), z) (35)

By setting the gradients of these convex functions equal to zero, it is clear that x minimizes F, and y minimizes F,. For
any H-smooth and convex F, for any z, |[VF(2)||* < 2H(F(z) — min, F(z)), therefore,

F(y)—F(l’)—<VF(.’L’), y—l‘> :Fw<y)_Fm(m) (36)
1 2
> —||VF, 37
ol (37)
1 2
= = IVF(y) - VF@)]| (39)
Similarly,
1
F(x) = Fy) = (VF(@y), & —y) 2 5 [VF(y) - VF(x)|* (39)
This is the second claim of the Lemma, and combining these last two inequalities proves the first claim. O

Lemma 3 (See Lemma 6 (Karimireddy et al., 2019)). Let F' be any H-smooth and \-strongly convex function, and let
n < % Then for any x,y
lz = nVF(2) =y +nVF(y)|* < (1= Mn)llz - y|”

Proof. This Lemma and its proof are essentially identical to (Karimireddy et al., 2019, Lemma 6), we include it here in

order to keep our results self-contained, and we are more explicit about the steps used.
lz = 4V EF(@) =y +nVF)* = o = yl* + 0| VF (@) = VE(y)|* = 29 (VF(z) = VF(y), = - y) (40)
<|lz —yl* +*H (VF(x) = VF(y), x — y) = 20 (VF(z) = VF(y), = —y) (41)

where the inequality follows from Lemma 2. Since nH < 1, we further conclude that

lz =V E(@) —y+nVEW)|* < |z —y|* —=n(VF(z) - VF(y), = — y) (42)

Finally, by the A-strong convexity of F'

A
(VF(z), © —y) ZF(ﬂﬁ)—l“j(y)Jrgllfc—yll2 (43)
A
~(VF(@), x —y) > F(y) - F(z) + Sl — y|* (44)
Combining these, we conclude

|z —nVE(@) —y+nVF)|? < llz —y|* —n(VF(z) - VF(y), = — y) (45)
< lz = yll* = nAllz — y))? (46)

which completes the proof. O
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Lemma 4. For any t and m # m/
M—-1 2

M

’

Elloy — 2l < = —E||o}" - 27"

Proof. First, we note that 2}, ..., 2 are identically distributed. Therefore,
1 < ’
m _ 2 m m’
Ellef" — 2" = B||af" — 57 Z_jlzt (47)
2
1 1 m m’
:W]E i Z T — Xy (48)
m’#m
1 m m’ 2 m m/ m m”
=1 ZE’@ — H + Z E<xt -z, — > (49)
_m’;ém m’#m,m'’ #m,m’#m’’
1 m m’ 2 . m’ |12 m m!’ (|2
< — | (M = DE||e — 7|+ 3 Elap — 27 || El|2p — o (50)
L m/#m,m! #m,m’/#m’
17 /|2 M-1 /|2
= 3 |~ DE[e — a7 +2< ) )EHJU?”—JU?” ’] GD
M —1)? Mk
= %EH‘TT - 52)
M-1 /12
< = flar - a (53)
O
Lemma 5. Under the conditions of Lemma 1, with the additional condition that the sequence of stepsizes 1n1,n2, ... is
non-increasing and 1; < % for all t, for any t and any m
2(M —1)(K — 1)n? o2
E||z" — ft||2 < ( ) = )i K 1m0
Ifne = W then it further satisfies
_ 2(M — 1)(K — 1)n?_,0?
Proof. By Lemma 4, we can upper bound
M-1 /|2
m _ 2 m m
Ello}" = &l < = —E||o}" -} (54)
for all £ and m # m’. In addition,
’ 2 !’ ! ’7 2
Ellar - ap|| = Elor, = noa Vs am) — 2y mea V@i )| (55)
’ ’ 2
< E’ zity = VF(@ty) — o2 + ntAVF(x;nq)H + 27’752710—2 (56)
)
< (1= e )E||oy — oy |+ 20210 (57)

where for the final inequality we used Lemma 3 and the fact that the stepsizes are less than %,. Since the iterates are

averaged every K iterations, for each ¢, there must be a tg with 0 < ¢ — ¢ty < K — 1 such that x?; = m?gl. Therefore, we
can unroll the recurrence above to conclude that

2 t—1 t—1 t—1
<y 2o [ (1= <20 > o (58)

i=to j=it+1 i=to

a — x;n/

g




Is Local SGD Better than Minibatch SGD?

where we define Z?:a ¢; = 0and H?:a ¢; =1foralla > bandall {¢;}
we conclude

sen- Therefore, for any non-increasing stepsizes,

2 277t2—K+1A0‘72(M - 1)(K -1)

Eljz}" — 24| Vi (59)
This implies the first claim.
In the special case 1; = m, we have
2 t—1 t—1
Bllar — 2| <202 > w2 T (1= 2y) (60)
i=to  j=i+1
t—1 t—1 :
a+j—1
= 202 Z n? H () (61)
i=tg  j=i+l at+j+1
20202 H(a+t— = L(a+1i) a+z+1)
= 202n? =2 62
7 -1 F a+t ; (a+t—1)(a+71) 62)
-3
(a+t)(a+t—2) (a+i)(a+t)
=2 1 63
U”“( HENCETEE Z (at+t—D(@atitl) (63)
1=to
<2020t (t —to) (64)
<2(K —1)o?*n? (65)
This implies the second claim. O

Next, we show that Local SGD is always at least as good as K R steps of sequential SGD. To do so, we use the following
result from Stich (2019):

Lemma 6 (Lemma 3 (Stich, 2019)). For any recurrence of the form
rep1 < (1 — aye)rs — byesy + cy?

with a,b > 0, there exists a sequence 0 < v, < % and weights wy > 0 such that

T
aT 36¢
— < 32d —
W 50 spwy + arpyq] Toexp( 2d) + T

T
where Wrp 1= 3", wy.

We now argue that Local SGD is never worse than K R steps of sequential SGD:

Lemma 7. Let (f,D) € F(H,\, B,0?). When A\ = 0, an appropriate average of the iterates of Local SGD with an
optimally tuned constant stepsize satisfies for a universal constant ¢

HB? oB
F@@)—F"<c- .
(2) N +c JRE

In the case \ > 0, then an appropriate average of the iterates of Local SGD with decreasing stepsize n; < (\t)~! satisfies
for a universal constant c
o

AKR 2
< 2 - .
F(@)—F"<c¢-HB exp( 1 )+c 3

Proof. Define T' := KR and consider the (¢ 4 1)st iterate on some machine m, =7} ;. If t + 1 mod K # 0, then
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iy = ay — eV f(x}"; 27). In this case, for n, < ﬁ

* 2 £
E|zf%, — ¥ = Ell2]" — V(] 2") — 2|2 (66)
=Ella]* — 2*|* + 7E|V £ (2] 2| * — 2 E (V f (2] 277), 2" — z*) (67)
< Ela —z*|* + nio? + p?E|VF (@) — 20,E (VF(z]"), 2} — z*) (68)

A
< El|la}" —2*||* + njo” + 2Hn{E[F (a]") — F*] = 20,E | F(a]") — F* + 5l = z*|®

(69)
= (1= Mp)E[|l2]* — 2*||* + nfo? — 2n(1 — Hup)E[F(2}") — F*] (70)
m * 1 m * 1 m *[|2
— E[F(2™) - F*] < (m —)\)IEth - aIEthH —a*||” + mo? (71)

Here, for the first inequality we used the variance bound on the stochastic gradients; for the second inequality we used the
H-smoothness and A-strong convexity of F'; and for the final inequality we used that Hrn, < % and rearranged.

If, on the other hand, ¢t + 1 mod K = 0, then 27", = 2+ 2%:1 ™ — 0V f(xy; 2. Since the local iterates on the
different machines are identically distributed,

M
m x||2 1 m’ m' . m’ *

E||xt+1*x || =E M Z v V(" )~ (72)

m’/=1

1 < , A
< — > E|a -V ) —a 73)
m’/=1

— Elle} - mV f(as ) — o %)

Where for the first inequality we used Jensen’s inequality, and for the final equality we used that the local iterates are
identically distributed. From here, using the same computation as above, we conclude that in either case

* 1 m * 1 m %|2
E[F(z") — F*] < ( - A)IEth — | = =E|jz}r, — 2*||” + no? (75)
Nt Nt
Weakly Convex Case A = 0: Choose a constant learning rate 7, = 7 = min{ ﬁ, o 5?} and define the averaged iterate
;| Mo T
b= o DA (76)
m=1 t=1
Then, by the convexity of F:
] M7
EF(2) — F* < 5o m;‘l ;E[F@Z") — F] (77)
1 A1 1 2
m %112 m * 2
< W;; Ll —at* - 5E’|5L’t+1 —*||" +no (78)
Rl 79)
Tn
2H|lwo — 2*|* ollzo — || | , ollwo — 2|
= max , + 80
{ T VT VT A

- 2H ||zo — *||° N 20|z — x|

81
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Strongly Convex Case A\ > 0: Rearranging (75), we see that it has the same form as the recurrence analyzed in Lemma
6 with r, = El|27" — 2*|°, s; = E[F(#7") — F*], a = A, ¢ = 02, and 7, = 7, with the requirement that 7, <
i.e. d = 2H. Consequently, by Lemma 6, we conclude that there is a sequence of stepsizes and weights w; such that

L
20’
M KR

1 mo) _
F<1\42KR ZZwtxt ) F

t=0 Wt m=1t=0

M KR

> E[F(wayt) - F7 (82)

MZ Wt =1 t=0

< 64HE|zo — z*||* exp (

E

2
AKR) 360 83)

4H AKR

The stepsizes and weights are chosen as follows: If KR < %, then 7, = ﬁ and w; = (1 — M)~ 7L If KR > %
and t < KR/2, then 1, = ﬁ and w; = 0. f KR > 22 and t > KR/2, then n, =

5 and w; =
(4H/X +t — K R/2)?. This completes the proof.

2
IH+A(t—KR/2)

O

Finally, we prove our main analysis of Local SGD. Portions of the analysis of the strongly convex case follow closely the
proof of (Stich, 2019, Lemma 3).

Theorem 2. Let (f,D) € F(H,\, B,0?). When A = 0, an appropriate average of the iterates of Local SGD with an
optimally tuned constant stepsize satisfies for a universal constant c

E[F(2) - F(z")]

1
- . [HB? oB (Ho*B*)®
< ¢-min KR + MKR+ K1B3R2/3

HB? n oB }
KR KR

If X > 0, then an appropriate average of the iterates of Local SGD with decaying stepsizes satisfies for a universal constant
c

E[F(2) - F(z")]

AKR o?
< ¢ - mi 2 _
<c mm{HB exp( 10 >+)\MKR
AKR
Hazlog(9+T)
AN K R? ’

AKR o2
HB? - .
eXp( AH ) + )\KR}

Proof. We will prove the first terms in the min’s in Theorem in two parts, first for the convex case A = 0, then for the
strongly convex case A > 0. Then, we conclude by invoking Lemma 7 showing that Local SGD is never worse than K R
steps of SGD on a single machine, which corresponds to the second terms in the min’s in the Theorem statement.

Convex Case A = 0: By Lemma 1 and the first claim of Lemma 5, the mean iterate satisfies

_ 2 - 2 2. o 2mo® | SH(M — 1)(K = )i e i9000°
E[F —F* < —E|z; —«*||" — —E —x* 84
() = F] < Bl =t~ CEle -+ TR o7 (84
Consider a fixed stepsize 7, = 1 which will be chosen later, and consider the average of the iterates
L1~
r=— Ty (85)
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By the convexity of F',
| KR
E[F (%) — F*] < — E[F(Z:) — F*
[F(2) L_KRZ;[(%) ] (86)
1 Hra L2 L2 2n0%  8H(M — 1)(K — 1)n%02
S %R 2 “Ez — 2" - E]E”mtﬂ eyl Y (87)
2B2  2no?  8H(M —1)(K — 1)n*c?
< 88
S KR ter T % (88)
Choose as a stepsize
min{ﬁ, f\/‘/%} K=1lorM=1
n= 3 (89)
min{[dq, f\/‘/%, (HUQBIZ(ZR) 3} Otherwise
Then,
2B%  2no?  8H(M —1)(K — 1)n*0?
E[F(z) — F*] < 0
@)~ F') < T Tt = ©0)
1 1
8HB? 20B  2(Ho?B*)? 208 8(Ho?B*)?
< max ) ; + + (C2))
KR /MKR K1/3R2/3 MKR K1/3R2/3
HB?  40B  10(HoB*)®
< 8 o ( o ) ©2)

- KR + MKR+ K1/3R2/3

Strongly Convex Case A > 0: For the strongly convex case, following Stich (2019)’s proof of Lemma 6, we choose
stepsizes according to the following set of cases: If KR < Qf, then n, = ﬁ and wy = (1 —Ap)~t7L If KR >
2l andt < KR/2, thenn, = gz and w, = 0. If KR > %l and t > KR/2, then 1, = gyxpogryp and
wy = (8H/A +t — KR/2). We note that in the second and third cases, the stepsize is either constant or equal to

N = m (for a = 82) within each individual round of communication.

By Lemma 1 and the first claim of Lemma 5, during the rounds of communication for which the stepsize is constant, we
have the recurrence:
2 2 T nio’ 3 2
El|Zi11 — 2" < (1 = Ag)E|| 2z — ™" - 5E[F(ft) —Fr]+ BV 4H Kn;o (93)

On the other hand, during the rounds of communication in which the stepsize is decreasing, we have by Lemma 1 and the
second claim of Lemma 5 that:

2 2

_ * — * — *k a
Bl — o < (1= M)Bllee — o | = DEIF) - F7]+ B0 + 4 Kno_yo? o4

Furthermore, during the rounds (i.e. when ¢ > K R) where the stepsize is decreasing,

a+t—KR/2)?
7y = 1D < an ©5)
(a—14+t—KR/2)
So, for every ¢t we conclude
2 2 Mt 77t202 3 2
E|lZi41 — 2" < (1 = M) E||ze — 2™||° — 5E[F(ft) - F*+ i +16HKn;o (96)
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First, suppose K R > % and consider the steps during which 7, = ﬁ:

_ %12 A _ %112 1 _ « o? Ko?
El|Zxr/ — 2% < (1 - 4H)IE”% —z"|" = 87H]E[F(fft) - F]+ T6H2M iz 97
A 9 o? Ko?
<(1- -2 )E|z: — 2* - 98
= ( 4H) 2 =2"I"+ Tgpmar + 1 ©8)
A KR/2 ) o2 Ko? KR/2 1 A\
<(1-=% E|zg — * 1- =
<(1-g)  Eeo-o P+ (formr+ g ) (-7) o
A\ K2 4H ([ o2 KUQ
<(1-=% E|z — 2* 100
—( 4H) 20— + = (16H2M+4H2 (100)
KR o? Ko?
< E|zo — z* - 101
< Ellzo — 27| eXp( 8H >+4H)\M+ i23) (101
Now, consider the remaining steps. Rearranging, we have
_ 2 A _ 2 2 _ 277t0'2
E[F(z,) — F*] < | = — 2 |E||z, — 2*||* — ZE - 102
(P - P < (2 - 3Bl — ot - 2l — o) + 229 (102
So, since n; = ﬁ where a = % = @ and w; = (a + t), we have
1 KR
T > wiE[F(z,) - F7]
T —KkRr/2
KR
1 2 2 2,02
Sw DL we K - 2)\)E|xt — 2| = ZE|Fsr — 2| + 7}(; + 32H K 20> (103)
T \_KR/2 Mt Mt
KR
1 202 32HKn0?
= — 3 Matt)(a+t 2Bz - 2*|* — Ma+ ) B[ — 2*|* + o 4+ ST (104)
T M A
t=KR/2
KR
1 _ 9 _ o 202  32HKmn,0?
< — Z Ma+t—1)%E|z; — 2% — Ma + t)°E||Tyq — 2*])° + o + — (105)
Wr = AM A
Ma+KR/2-1)%_, 202(KR/2) 64HKo? =% 1
< E||Zxr/s — | = > (106)
Wr WrAM WrA =K T2 a—+t
ABE —1)? L2 20%(KR/2)  64HK0? "CL 1
=22 Elzgppe — ot + + 5 7 (107)
Wr WorAM WrA bt T_;’_t/
_ 6am? QUQ(KR/2) 64H K o2 AKR
——E — 1 = 1
< W Ellescnyz =2 I+ Wi Wl ‘T E (108)
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Finally, we recall (101), KR > %,and note that W = ZtK:IE(R/Qa—i—t > %—l—w = @—i— AHKR ~ 8H 2 thus

2 8 x
1 KR
e > wiE[F(z) - F7
t=KR/2
64H? AKR o> Ko?\ 20%(KR/2) 64HKo® AKR
E||zo — " - lo AR (109
= WT)\( Izo = 27| eXp< SH > S HA) WM WAz ( g ) (109
L KR\ | 16Ho® | GAHKo® | 80°  512Ho* (KR 110)
= a0 TSP TR ) T MWy T AWy AMER - A2KR? P\ 4

(111)

AKR 402 512H o> 802 512H o2 AKR
§8)\E||x0—x*||2exp(— ) o g o 7 log( )

SH AMMKR + A2 K R2 + AMMKR + MK R? 4H
KR) 1202 512H g2 ( AKR)
log

(112)

8H )\MKR+ A2 K R? ot

< 8AE|Zg — z*||* exp (— i

This concludes the proof for the case K R > %

IfKR< %, we use the constant stepsize 7; = 1 and weights w; = (1 — An)~*~!. Rearranging (93) therefore gives

2
E[F(z;) — F*] < ;(1_)‘77)EH3315_-T & —*Ellmm—w & 4 207 M +8HKn (113)
SO
KR
e > wiElF(a) - 1
1 2oy
< 1= \E||z: — - ZE - 8HKn?c? 114
I L L L g 14
| KRy 5 -
= 20 =) Bz — ) = 21 = a) YR 7 — 2P| + 25 £ SHE? 115
%;M DB 1 - 2 Bl ]+ 2 sioret 1
oE|Zg — z*||*  2no?

77WT M

Finally, we note that W > (1 — An)~KE=1 50

1 - o _ 2E[To — z*|? 2no” 2 2
T > wk[F(z) — F*] < — exp(—=An(KR +1)) + =7 + 8HK o (117)

We also observe that 2H > AK R so withp = % <3 /\KR we have

(118)

KR
1 , , ) AKR o? 2Ho?
— S wiE[F(#) — F*] < 8HE||7o — a* =
W &= [F (@) = F7] < 8HE|2o — 27| eXp( 1H ) MIER T NEKR?

D. Proofs from Section 5

Here, we will prove the lower bound in Theorem 3. Recall the objective and stochastic gradient estimator for the hard
instance are defined by

L

L ((x3 — ) 4 [as — c]i) (119)

Flw) = s

1\3\‘:

(o= b + 5 (w2 = D) +
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and
0

Vf(x;2) =VF(z)+ |0 where Pz=0]=Plz=—0] = (120)
z

Due to the structure of the objective (119), which decomposes as a sum over three terms which each depend only on a
single coordinate, the local-SGD dynamics on each coordinate of the optimization variable are independent of each other.
For this reason, we are able to analyze local-SGD on each coordinate separately.

Define the 2L-smooth and L-strongly convex function

L L
gr(z) = Sa* + S [2]% (121)
2 2
Define a stochastic gradient estimator for g7, via
9r(z,2) = g(z) + 2 (122)

for z ~ Uniform(£o). Observe that the third coordinate of local-SGD on F' evolves exactly the same as local-SGD on the
univariate function gy,. In the next three lemmas, we analyze the behavior of local-SGD on g :

Lemma 8. Fix L,n,0 > 0 such that Ly < % Let xq denote a random initial point with Exq < 0, and let x5 =

xo — ngr (o, 20) — gy (xo — ngy (zo, 20), 21) be the second iterate of stochastic gradient descent with fixed stepsize 1
intialized at xo, and let x5 = xo — ng} (T2, 22) be the third iterate. Then

=+ (1—Ln)(Bxo + %) Exg € (F2,0]
e+ (- Ly (Ezo+ 7)) Eag € (F12,0]

Proof. Consider the 2nd iterate of SGD with fixed stepsize 7:

o =11 — gy (71, 21) (123)
= (1= Ln)zy — Ln[z1], —n=x (124)
= (1 = Ln)(xo — ng7 (0, 20)) — Lo — ngr, (w0, 20)] ; — 121 (125)
= (1= Ln)*xo — Ln(1 — Ln)[xo], — Ln[(1 — Ln)zo — Lnlwo], —nz0] , —n(1 —n)z0 —n21 (126)
Thus,
Exy = (1~ Ln)*Ezo — L(1 — Ly)Efzo], — LnE[(1 — Ly)zo — Lnlzo], — nzo] , (127)
Define y := (1 — Ln)zo — Ln[zo], , then
E[(1 - Ln)zo — Ln[zo], —nz] , = Ely — 0zl (128)
1 1
= 5Ely —nol, + 5Ely +no], (129)
Yy y>no
=K ﬁ% ly| < no (130)
0 y < —no
The function
z z > no
z QET 2 <o (131)

0 z < —no
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is convex, so by Jensen’s inequality

Y y>no
Exo = (1 — Ln)Ey — LyE ¢ Y212 |y| < no (132)
0 Yy < —no
Ey Ey > no
<(1-Ln)Ey— Ln Ey% |[Ey| < no (133)
0 Ey < —no
(1—-2Ln)Ey Ey > no
2
=9 (1-2Ln)Ey— 222 |Ey| <no (134)
(1— Ln)Ey Ey < —no
(1—2Ln)Ey Ey > no
2
< (1= 3Ln)Ey — £22  |Ey| <o (135)
== Ey < —no

where we used that Ln < % for the final inequality. Suppose Exq < —I which implies Ey < 7(1]‘7;7’)"". Then we are in

either the second or third case of (135). If we are in the third case then

—nho - —no

< =
Exq 5 <8 (136)
If we are in the second case, then
3 Ln?c
Exy < (1-5Ln By - =2 (137)
—(1—=Ln)no  Ln*o
< — _
< (1 2Ln> 18 2 (138)
—no  3(1—Ln)Ln?c  Ln?c  Lnc
= — 139
48 + 96 * 48 2 (139)
—no
<= 14
S8 (140)
Either way, Exy < —I7.
Suppose instead that Ezo € (4%, 0]. Then,
3 Ln?c
Ex, < (1-5Ln By - =2 (141)
In(l—-L Ln?
< (1 Ly)Exo— > ! 5 N By — 772 c (142)
3Ln no  Ln*c
< (1 — a7
< (1= LmBro+ —= - 2 5 (143)
L 2
< (1— Ly)Ex — —L2 (144)
__ne _ no
= -2+ (- Ly (Bxo + - ) (145)

‘We conclude that

Exq < a8 Ezo < 48 (146)
| TE+ Q- Ly (Bxo + L) Ezg € (52,0
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Now, consider the third iterate of SGD, x3:

Ez3 = Exo — nEg} (22, 22)
= (1 - Ln)Exy — LnE[zs]

= (1 - Ln)Exy — LnE[E[zs | 21] — nz1]

L
< (1 — Ln)Exy — LI E[E[zs | 1] + noly

2

Since z ~ [z], is convex, by Jensen’s inequality

Ln
Exs < (1 — Ln)Exy — —[Exg +mnol,

- (1 — 32")1&3962 — L"Tz" Exy > —no
(1 = Ln)Exy Exy < —no
< (1 — %—")Exz — L"Tz” Exzo > —no
N - Exs < —n0
To complete the proof, we must show that

—no Exo <

E$3 < —480- . 48

{ =17 4 (1 L) (Eao + 12)  Eap € (52,0

Returning to (153), note that if Ex; < —no then Ezs <
case of (153).

Suppose first that Exg < —I7, then by (146) we have Ezy < —L7, thus
3Ln Ln%c
E 1— — |Exy —
-
_ 2
<(1_ 3Ln\—no  Ln“c
- 2 48 2
< N9
~ 48

If instead Exg € (4%, 0], then by (146) we have Exy <

3Ln Ln*c
E 1- 2B, —
T3 < ( 2 ) 2Ty

48’

IN

— 3Ln? Ln?
< 770+ n°o 770+(1—L77)2(Ex0+m)

= 4 8 2 4
g
ng—i—(l—Ln) (ETO‘F%)

This completes both cases of (154).

3Ln\ —no 3Ln no
iy PR LANEY [ I Y (E —)—
( 5 > 1 —i—( 5 ( n)(Exo + 1

=12 + (1 — Ln) (Exo + 77, thus

Ln*c
2

(147)
(148)
(149)

(150)

(151)

(152)

(153)

(154)

—2 implies (154). Therefore, we only need to consider the first

(155)

(156)

(157)

(158)

(159)

(160)
(161)

O

Lemma9. Fix L,n,0 > 0 such that Ln < % and let k > 2. Let xq denote a random initial point with Exy < 0 and let xy,

denote the kth iterate of stochastic gradient descent on gy, with fixed stepsize 1 intialized at xo. Then

—no Ex
Exp, < { 48 0=

=2+ (1— Lp)*?(Bao + %) Eag € ( a8 ’O]
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Proof. The idea of this proof is simple: & steps of SGD initialized at some point z is equivalent to doing two steps of
SGD initialized at x to get x2, then doing two more steps initialized at x5 to get x4, and so forth until % steps have been
completed. The only minor complication is if & is odd, in which case we start by doing three steps initialized at x to get
x3 and continue in steps of two.

We will consider two cases, either Exg < =2% or Exg € (77"’ 0]. In the first case, Ezo < —£%, if k is even then by

48 T48
Lemma 8
—no —no —no —no
Ezg < — Ezo < —— Ery < — Ezp < —— 162
zo < 18 = [Ez9 < 18 = [Ez4 < 18 = = [Ez; < 18 (162)
If & is odd then
—no —no —no —no
Ezg < —— Ezs < —— Ery < — Ezp < —— 1
Ty < 18 = Ez3 < 18 = Ez5 < 18 = = Ezi < 18 (163)
In the second case, Exg € (%’g’, 0]. Then, when k is even, by repeatedly invoking Lemma 8 we get
Exy < _T"” +(1- Ly) (Exo + %") (164)
Ezy < =% + (1 - Ln) (B + 22 ) < =% + (1 = Ln)* (Exo + 17 (165)
Erg < 1+ (1~ Ln)(Bas + %) < 717 4 (1 — L) (B + 27 (166)
(167)
B < 207+ (1 L)*? (o + %") (168)
The same argument applies when k is odd (using the bound on Ex3) to prove
Eay < *T”U + (1 — Ly)E+D72 (IEJ:O + %) < %70 (1 L)k (Exo + %) O (169)

Lemma 10. Let K > 2 and let & be the output of local-SGD(K, R, M) on F using a fixed stepsize n < ﬁ and initialized
at zero. Then

L “ 2 R 2 .[/’1720'2
. [2 (G =+ 13 - C]+)] = 4608 < Y {ex B vz o }

Proof. Since each coordinate evolves independently when optimizing F' using local-SGD, we can ignore the first two co-
ordinates and focus only on the third. Observe that using local-SGD(K, R, M) on F with a fixed stepsize 7 and initialized
at zero to obtain I3 is exactly equivalent to using local-SGD(K, R, M) on g;, with the same fixed stepsize 7 and initialized
at —c. The different initialization is due to the fact that the local-SGD dynamics do not change with the change of variables
x — ¢ — x. Let T, denote the averaged iterate of local-SGD (K, R, M) initialized at —c with stepsize 7 after the rth round
of communication and let z, j ,, denote its kth iterate during the rth round of communication on the mth machine. We

will start by proving that when 1) < 5 and either ¢ > & or n > 57 then

. _ —no
By — ¢ = Bzp < % (170)
Consider first the case Exg = —c < —&%. Then by Lemma 9
—no —no
Eag = —c < 12 Exy qcm < —12 171
To c < 18 = Ez1,xm < 18 m (171)

therefore

Ez, =E

1 < —no
— m| < —— 172
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Repeatedly applying Lemma 9 shows that for each r

- —no —no —no
Ez, < — o = Etrpixom < - = By = l Z To41 Km] <5 (173)
We conclude Ezp < 17
Consider instead the case that Exg = —c € (%éo, 0] andn > LR%‘ Then, by Lemma 9
Ezg= —ce [ —2 0| — Elemg_—er(l—Ln)K/?(”ﬁ—c) Vm (174)
48 Y 4 4
and so
1 —no K/2 (N0
Ez =E|- g::lxmm < —=+(1-Ln) (Z - c) (175)
Again, we can repeatedly apply Lemma 9 to show
Ezy < _T”” + (1 — L)/ (]E:El + %) < _T"U +(1- Ln)QK/Q(% - c) (176)
Ezs < =+ (1= L)/ (Bp + ) < =%+ (1 = L™ * (L - ¢) 177)
4 4 4 4
(178)
Ezp < _Z . Ln)RK/Q(% — c) (179)
< 7(1 (- Ln)RK/Z) %" (180)
RK/2
2 no
<—(1—-(1——== — 181
() s
no
e 182
<18 (182)
These inequalities hold only as long as Ez,, > —L*. But, if for some r, Ez, < —L* then Ezp < —L* by the same
argument as above. We conclude that
_ —no
ExRSKﬂ{WSﬁ}H{CZ%VnZL}%K (183)
Since Ez3 — ¢ = EZ g, by Jensen’s inequality
E| L (i SN 2V| > L((Ez)? + [Ezn)? 184
§($3*C)+[$3*C]+ _§($R)+[IR}+ (184)
L 2 2
= 74608 Hn<an )y ez g vz v} (185
O

We now analyze the progress of SGD on the first two coordinates of F' in the following lemma:

Lemma 11. Let & be the output of local-SGD(K, R, M) on F using a fixed stepsize n) and initialized at zero. Then with
probability 1,

RS

. 2 HbQ
(@ =07 = =l i)

and )
. o Hb
(2 =b)" =2 512y

|
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Proof. Since the stochastic gradient estimator has no noise along the first and second coordinates, and since the separate
coordinates evolve independently, Z; is exactly the output of K R steps of deterministic gradient descent with fixed stepsize
7 on the univariate function z — 5 (x — b)2. Similarly, 25 is the output of K R steps of deterministic gradient descent with

fixed stepsize n on z — & (z — b)®. Thus,

xgﬂ_l) -b = osgt) —b- nu(zgt) — b) = & =b+(1- nu)KR(:rgo) - b) = b(l —(1- nu)KR) (186)

Thus, if n < —L__ then

KR’ ,
71 < byuKR < g — g(ﬁl —b)?> %l{mﬁ} (187)
Similarly,
oY = 2P —p— nH(x;” - b) — @y -b=(1 —nH)KR(x;(” - b) = —b(1 —nH)X® (188)
Thus, if n > 2, then
|ip — b > b = 5@2 -b)’> HTbQH{D%} (189)

O

Combining Lemmas 10 and 11, we are ready to prove the theorem:

Theorem 3. For 0 < A\ < %, there exists (f,D) € F(H,\, B,d?) such that for any K > 2 and M, R > 1, local SGD

initialized at 0 with any fixed stepsize, will output a point & such that for a universal constant c

EF(Z) — min F(x)

x

H1/302/3B4/3 Ho2 HBQ}

Z c'min{ K2/3R2/3 ' \2K2R2’

. oB o2
+c- mm{ JMEKER )\MKR}'
Proof. Consider optimizing the objective F' defined in (119) using the stochastic gradient oracle (120) initialized at zero
and using a fixed stepsize 7. The variance of the stochastic gradient oracle is equal to o, This function is max{u, H,2L}-
smooth, and min{u, H, L}-strongly convex. We will be choosing L = % and 1 € [)\, 1%] so that F' is H-smooth and
A-strongly convex. Finally, the objective F' is minimized at the point z* = [b, b, c] " and F'(z*) = 0. This point has norm

lz*|| = v/2b% 4 ¢ we will choose b = ¢ = % so that ||z*|| = B.

By Lemma 10, the output of local-SGD(K, R, M), & satisfies

L R 9 ) 9 L’f]QO'Q
|5 (a0 o= e2)| 2 L e on i (190)

By Lemma 11, the output of local-SGD(K, R, M), & satisfies

B 2, H . 2 pub? 2
5@ =07+ (@2 =) 2 =Ly Ly ey (191)
Combining these, we have
. . ub? Hb? Ln?c?
EF(Q’}) — Ir;lnF(ﬂ;‘) Z ?1{7]<2H}(R} + T]l{n>%} + mﬂ{ngi H{WS%VWZLRLK} (192)
Consider two cases: first, suppose that 1 & {ﬁ, %} Then,
b2 Hb? b?
EF (%) — min F(z) > min{“s, 2} = ’% (193)
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Suppose instead that 7 € [w}{R,%}. Since L =, n < 2 < ;L. Similarly, since p < £ = £ > 2u}(R > A=

Therefore, n € {ﬁ, %} implies

EF(2) — min F(z) > w Ly 1 194
() — e (@) 2 ne[zm}ir; 2] 4608 {n<sp} T {n<fevzoix (194)
e T
2 2
—  mn 1O (195)
ne[miﬂw%] 4608
Lo?
T 1843242 K2 R? (196)
Combining (193) and (196) yields
. . . [ uB? Ho?
EF (&) — min F(z) > mm{ 51 T30S P KR (197)
1/3
This statement holds for any . € [A, £]. Consider three cases: first, suppose 1 = (%) € [\, Z]. Then
A . H1/352/3 g4/3

1/3
: Ho? H o’ H? _H
Consider next the case that (m) > 16 - 199B2R2R2 > 556 and choose on = 16" Then

HB? Ho? HB?
EF(£) — min F(z) > mi = 199
(#) —min F(z) 2 mm{ 384 ' 73728K2R? - 556} 384 (199)
. . Ho? 1/3
Finally, consider the case that (m) < A and choose ;& = A. Then,
A\B? Ho? Ho?
EF(£) — min F(z) > mi = 200
(#) —min F(z) 2 mm{ 24 T3T28N K2 R2 } T3T28N K22 (200

Combining these cases completes the proof. O



