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1. Ablation Study: Learning Curve
Component

One of the most important design decisions of LCRankNet
was the learning curve component. We experimented with
several models that would generate the best learning curve
embedding. In the following discussion of different models,
we assume that the learning curve represents the validation
accuracy over time and thus higher values are better.

To begin with, passing the entire learning curve directly to
be concatenated with architecture embedding would result
in large number of predictors thereby overfitting. It was also
clear that the best or last value of the learning curve alone
(assuming that the learning curve is constantly improving,
i.e. it increases monotonically, it is the same) is a very good
predictor. After all, it is the only one used by methods like
Hyperband and Successive Halving. In our example, this
would be achieved through a simple global max pooling
layer. Any further information regarding the development
of the learning curve (improvement since epoch 1, 1st and
2nd order gradients, etc.) would, however, be disregarded.
Feature engineering would be one way to create such fea-
tures but convolutions allow to automatically learn which of
these features are helpful. In Figure 1 we take two different
models with max pooling layer into account. The version
with global max pooling layer reduces the number of predic-
tors to one per filter, while the version with strides reduces
the number to 4 per filter. In our experiments, we did not
notice a big difference between these two versions, but a
significant improvement over the version that only uses the
best value.

Furthermore, we tried in vain to apply LSTMs to this prob-
lem. But both, LSTMs directly using the learning curve and
using the output of the convolution did not achieve better
results than if the learning curve had not been taken into
account at all ("architecture only™).
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2. Joint Architecture and Hyperparameter
Optimization

As briefly discussed in the main paper, we want to show that
LCRankNet

e can be combined with optimization methods such as
Tree-structured Parzen Estimator (TPE) (Bergstra et al.,
2011), Regularized Evolution (RE) (Real et al., 2019)
and Reinforcement Learning (RL) (Zoph & Le, 2017),

e can be applied to different search spaces (convolutional
vs. fully connected neural networks) with and without
hyperparameters, and

e work with different machine learning tasks (classifica-
tion vs. regression).

For this reason we are carrying out an additional experiment
on a publicly available tabular regression benchmark (Klein
& Hutter, 2019). This benchmark was created by performing
a grid search with a total of 62,208 different architecture and
hyperparameter settings for four different tabular regression
datasets: slice localization, protein structure, parkinsons
telemonitoring, and naval propulsion. Each dataset is split
into 60% train, 20% validation, and 20% test. Each archi-
tecture has two fully connected layers. Settings vary with
respect to the initial learning rate (0.0005, 0.001, 0.005,
0.01, 0.05, 0.1), the batch size (8, 16, 32, 64), the learn-
ing rate schedule (cosine or fixed), the activation per layer
(ReLU or tanh), the number of units per layer (16, 32, 64,
128, 256, 512), and dropout per layer (0.0, 0.3, 0.6).

We are again following the leave-one-dataset-out cross-
validation protocol: We optimize the architecture and hyper-
parameter setting for one dataset and transfer the knowledge
from the others. 100 settings per dataset are randomly se-
lected as additional data for LCRankNet.

2.1. Accelerating Hyperparameter Optimization

The goal is to minimize the mean squared error (MSE) by
choosing the right architecture and hyperparameter settings.
In this experiment we compare the optimization methods
TPE, RE and RL with a version with early termination using
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Figure 1. Analysis of various different learning curve components in comparison to not using the learning curve at all.

LCRankNet. All experiments are repeated ten times. Each
optimization method can take up to 100 different settings
into account. We report results with respect to test regret
following Klein & Hutter (2019). This number indicates
the difference between test MSE actually achieved and best
possible test MSE. Finding the best setting will result in a
regret of 0. The setting chosen by an optimization method
is based on the validation MSE. It is therefore possible that
the test regret may increase again. This can be seen as an
overfitting on the validation set. In Figure 3 to 5 we report
the results up to the search time required for the shortest
of all repetitions. We find that early termination generally
improves the method. Only in one case are they not better,
but not worse either.

2.2. Technical Details

In contrast to random search, Successive Halving or Hy-
perband, the intermediate performance is not sufficient for
other optimization methods and the final performance of
a model is required. To take this into account, a simple
change to LCRankNet is required. An additional output
layer is added that predicts the final performance in addi-
tional to the ranking score. We continue to use the ranking
score only to decide whether to terminate a run early or not.
The predicted final performance is only used in the event
of early termination and is only used to provide feedback
to the optimization method. If a run is not terminated early,
the actual final performance is used. To ensure that the
predicted final performance is in a reasonable range, we
define a lower and upper bound. We are now explaining
them in the context of MSE so lower values are better and
vice versa. The lower bound is defined by the mean MSE

Figure 2. One example block used in an architecture from the NAS-
Net search space.

observed for previous runs. The motivation for this decision
is that each terminated run should be below average. We
define the best observed MSE of the partial learning curve
as an upper bound. If the upper and lower bounds conflict,
we prefer the upper bound because it is based directly on
observed data.

3. Architecture Representation

In this work we consider two different search spaces. The
NASNet search space that takes CNNs (Zoph et al., 2018)
into account and a search space for FCNNs (Klein & Hutter,
2019). In the NASNet search space, an architecture is com-
pletely described by two cells, each consisting of several
blocks. The entire architecture is defined by selecting the
design of all blocks. A block is designed by selecting two
operations and their corresponding inputs and how these
two operations are combined. A sample block is shown in
Figure 2. We follow Luo et al. (2018) and model every com-
bination of input and operation through three embeddings.
The first embedding specifies the input choice, the second
the type of operation (convolution, maximum pooling, etc.),
and the third the kernel size. In this way, an architecture
with two cells, each with five blocks, is clearly described by
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a sequence of 60 decisions.

We describe the FCNNSs in a very similar way. For each
layer we learn an embedding for the activation function, the
dropout rate and the number of units. The batch size, the
learning rate (after log transformation) and the learning rate
schedule (after one-hot encoding) are taken into account as
other hyperparameters.
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Figure 3. TPE benefits from early termination on all datasets.
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Figure 4. Regularized Evolution benefits from early termination on all datasets.
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Figure 5. Reinforcement Learning benefits from early termination on all datasets.
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