
Supplementary Material for Predictive Sampling with Forecasting
Autoregressive Models

Auke Wiggers 1 Emiel Hoogeboom 2 3

A. Architecture and hyperparameters
A.1. Autoregressive model architecture

We base our PixelCNN implementation on a Pytorch imple-
mentation of PixelCNN++ (Salimans et al., 2017) by GitHub
user pclucas14 (https://github.com/pclucas14/pixel-cnn-pp,
commit 16c8b2f). We make the following modifications.

Instead of the discretized mixture of logistics loss as de-
scribed in (Salimans et al., 2017), we utilize the categorical
distributions as described in (van den Oord et al., 2016),
which allows us to model distributions with full autoregres-
sive dependence. This is particularly useful when train-
ing the PixelCNN for discrete-latent autoencoders, as the
number of input channels can be altered without substan-
tial changes to the implementation. We model dependen-
cies between channels as in the PixelCNN architecture, by
masking convolutions so that the causal structure is pre-
served. That is, the output corresponding to input xc,h,w
is conditioned on all previous rows x0,:,:, . . . , xh−1,:,:, on
all previous columns of the same row xh,0,:, . . . , xh,w−1,:

and all previous channels of the same spatial location
xh,w,0, . . . , xh,w,c−1.

The original implementation normalizes the input data to
a range between −1 and 1. Instead, we follow (van den
Oord et al., 2016) and use a one-hot encoding for inputs.
Additionally, we do not use weight normalization.

A.2. Forecasting module architecture

The forecasting module used in this work consists of a single
strictly triangular 3 × 3 convolution followed by a 1 × 1
convolution, where the number of output channels is equal
to the number of data channels multiplied by the number of

1Qualcomm AI Research, Qualcomm Technologies Nether-
lands B.V.. Qualcomm AI Research is an initiative of Qual-
comm Technologies, Inc. 2University of Amsterdam, Nether-
lands. 3Research done while completing an internship at
Qualcomm AI Research.. Correspondence to: Auke Wiggers
<auke@qti.qualcomm.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Table 1. Hyperparameters for the trained PixelCNN models.

Hyperparameter Binary MNIST Default
Learning rate 0.0002 0.0002
Learning rate decay 0.999995 0.999995
Batch size 64 64
Max iterations 200000 200000
Weight decay 1e-6 1e-6
Optimizer Adam Adam
Number of gated resnets 2 5
Filters per layer 60 162
Dropout rate 0.5 0.5
Nonlinearity concat elu concat elu
Forecasting modules 20 1
Forecasting filters 60 162
Forecasting loss weight 0.01 0.01

categories. The masked convolution is applied to the last
activation of the up-left stack of the PixelCNN, h. We set
the number of channels for this layer to 162 for image space
experiments, and 160 for latent space experiments.

We experimented with variations of forecasting modules
that use x (one-hot) or truncated Gumbel noise, obtained
as described in Section B, as additional inputs. For the
forecasting module capacity we considered, this did not
lead to improved sampling performance.

A.3. Default hyperparameters

Explicit likelihood modeling Hyperparameter settings
for the PixelCNNs trained on image data are given in Table 1.
We use the same parameters across all datasets to maintain
consistency, and did not alter the architecture for likelihood
performance. The exception is binary MNIST, where we
observed strong overfit if the size was not changed.

Latent space modeling For the latent space experiments,
we use an encoder and decoder with bottleneck structure,
and a PixelCNN to model the resulting latent space. The
width of the encoder and decoder, i.e., the parameter that
controls the number of channels at every layer, is 512 for all
experiments. The used loss function is Mean Squared Error,
and the input data is normalized to the range [−1, 1].

https://github.com/pclucas14/pixel-cnn-pp
https://github.com/pclucas14/pixel-cnn-pp

Supplementary Material for Predictive Sampling with Forecasting Autoregressive Models

The encoder consists of the following layers. First, two 3×3
convolutional layers with padding 1 and half width. Then,
one strided 4× 4 convolution of half width with padding 1
and stride 2, followed by a similar layer of full width. We
then apply two residual blocks (PyTorch BasicBlock imple-
mentation (He et al., 2016)). Finally, a 1 × 1 convolution
layer maps to the desired number of latent channels.

The decoder architecture mirrors the encoder architecture.
First, a 1 × 1 convolution layer maps from the (one-hot)
latents to the desired width. Two residual blocks are applied,
followed by a full width transpose convolution and a half
width transpose convolution, both having the same parame-
ters as their counterparts in the encoder. Lastly, two 3× 3
convolution layers of half width are applied, where the last
layer has three output channels.

The latent space is quantized by taking the argmax over
a softmax, and one-hot encoding the resulting latent vari-
able. As quantization is non-differentiable, the gradient is
obtained using a straight-through estimator, i.e., the softmax
gradient is used in the backward pass. We use a latent space
of 4 channels, with height and width equal to 8, and 128
categories per latent variable.

Optimization parameters and the parameters of the Pixel-
CNN that is used to model the latent space are kept the
same as in the explicit likelihood setting, see Table 1. We
do not train the autoencoder and ARM jointly. Instead, we
train an autoencoder for 50000 iterations, then freeze the
autoencoder weights and train an ARM on the latent space
for an additional 200000 iterations.

A.4. Infrastructure

Software used includes Pytorch (Paszke et al., 2019) version
1.1.0, CUDA 10.0, cuDNN 7.5.1. All sampling time mea-
surements were obtained on a single Nvidia 1080Ti GPU
using CUDA events, and we only compute runtime after
calling torch.cuda.synchronize. Training was performed on
Nvidia TeslaV100 GPUs, with the same software stack as
the evaluation system.

B. Posterior Reparametrization Noise
To condition forecasting modules on reparametrization noise
when training on the data distribution, sample noise pairs
(x, ε) are needed. In principle, these can be created by sam-
pling ε and computing the corresponding x using the ARM,
i.e., by computing the autoregressive inverse. However, this
process may be slow, and does not allow for joint training
of the ARM and forecasting module. Alternatively, one can
use the assumption that the model distribution PARM(x)
will sufficiently approximate Pdata(x). In this case, (x, ε)
pairs can be sampled using the data distribution Pdata(x),

and the posterior of the noise p(ε|x):

x, ε ∼ PARM(x|ε)p(ε) ≈ p(ε|x)Pdata(x), (1)

where PARM(x|ε) is a Dirac delta peak on the output of the
reparametrization, and p(ε|x) denotes the posterior of the
noise given a sample x:

p(ε|x) = PARM(x|ε)p(ε)
PARM(x)

. (2)

In the case of the Gumbel-Max reparametrization, the pos-
terior Gumbel noise p(ε|x) can be computed straightfor-
wardly by using the notion that the maximum and the lo-
cation of the maximum are independent (Maddison et al.,
2014; Kool et al., 2019). First, we sample from the Gumbel
distribution for the arg max locations, i.e., the locations that
resulted in the sample x:

εi,xi
∼ G. (3)

Subsequently, the remaining values can be sampled using
truncated Gumbel distributions (TG) (Maddison et al., 2014;
Kool et al., 2019). The truncation point is located at the
maximum value µi,xi

+ εi,xi
:

εi,c ∼ TG(µi,c|µi,xi +εi,xi)−µi,c for all c 6= xi. (4)

Here, µi,c denotes the logit from the model distribution
PARM(x) of dimension i for category c.

To summarize, a sample (x, ε) is created by first sampling
x ∼ Pdata from data, and then sampling ε ∼ p(ε|x) us-
ing the Gumbel and Truncated Gumbel distributions as de-
scribed above. This technique allows simultaneous training
of the ARM and forecasting module conditioned on Gumbel
noise without the need to create a dataset of samples.

C. Generated samples
We show 16 samples for each of the models trained with
forecasting modules, as well as forecasting mistakes. To
find forecasting mistakes made by ARM fixed-point iter-
ation, we simply disable the forecasting modules during
sampling. All samples were generated using the same ran-
dom seed (10) and were not cherry-picked for perceptual
quality or sampling performance. The used datasets are
Binary MNIST (Larochelle & Murray, 2011), SVHN (Net-
zer et al., 2011), CIFAR10 (Krizhevsky et al., 2009), and
ImageNet32 (van den Oord et al., 2016).

Samples generated by the model trained on binary MNIST
are shown in Figure 1, Figure 2 shows SVHN 8-bit samples,
and Figures 3 and 4 show samples generated by the ARM
trained on CIFAR10 for 5-bit and 8-bit data, repsectively.

Samples from the VAE are generated by decoding a sample
from the ARM trained on the latent space. That is, we

Supplementary Material for Predictive Sampling with Forecasting Autoregressive Models

(a) Samples from the model distribution x ∼ PARM(·).

(b) Forecasting mistakes by the forecasting modules.

(c) Forecasting mistakes by fixed-point iteration.

Figure 1. Samples from the 1-bit ARM and forecasting mistakes.

(a) Samples from the model distribution x ∼ PARM(·).

(b) Forecasting mistakes by the forecasting modules.

(c) Forecasting mistakes by fixed-point iteration.

Figure 2. Samples from the 8-bit ARM and forecasting mistakes.

first generate a latent variable from the trained ARM z ∼
P (z). This sample is then decoded to image-space using
the decoder G as x̂ = G(z). We show samples for SVHN
in Figure 5, for CIFAR10 in Figure 6, and for Imagenet32
in Figure 7.

(a) Samples from the model distribution x ∼ PARM(·).

(b) Forecasting mistakes by the forecasting modules.

(c) Forecasting mistakes by fixed-point iteration.

Figure 3. Samples from the 5-bit ARM and forecasting mistakes.

(a) Samples from the model distribution x ∼ PARM(·).

(b) Forecasting mistakes by the forecasting modules.

(c) Forecasting mistakes by fixed-point iteration.

Figure 4. Samples from the 8-bit ARM and forecasting mistakes.

Supplementary Material for Predictive Sampling with Forecasting Autoregressive Models

(a) Decoded samples G(z), where z ∼ P(z).

(b) Forecasting mistakes by learned forecasting modules.

(c) Forecasting mistakes by fixed-point iteration.

Figure 5. VAE samples, and forecasting mistakes in latent space.

(a) Decoded samples G(z), where z ∼ P(z).

(b) Forecasting mistakes by learned forecasting modules.

(c) Forecasting mistakes by fixed-point iteration.

Figure 6. VAE samples, and forecasting mistakes in latent space.

References
He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kool, W., van Hoof, H., and Welling, M. Stochastic beams
and where to find them: The gumbel-top-k trick for sam-
pling sequences without replacement. In Proceedings of
the 36th International Conference on Machine Learning,
ICML, pp. 3499–3508, 2019.

(a) Decoded samples G(z), where z ∼ P(z).

(b) Forecasting mistakes by learned forecasting modules.

(c) Forecasting mistakes by fixed-point iteration.

Figure 7. VAE samples, and forecasting mistakes in latent space.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Larochelle, H. and Murray, I. The neural autoregressive
distribution estimator. In Proceedings of the 14th Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 29–37, 2011.

Maddison, C. J., Tarlow, D., and Minka, T. A* sampling. In
Advances in Neural Information Processing Systems, pp.
3086–3094, 2014.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. 2011.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P.
Pixelcnn++: Improving the pixelcnn with discretized lo-
gistic mixture likelihood and other modifications. arXiv
preprint arXiv:1701.05517, 2017.

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu,
K. Pixel recurrent neural networks. arXiv preprint
arXiv:1601.06759, 2016.

