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Abstract 
The problem of adversarial examples has shown 
that modern Neural Network (NN) models could 
be rather fragile. Among the more established 
techniques to solve the problem, one is to require 
the model to be �-adversarially robust (AR); that 
is, to require the model not to change predicted la-
bels when any given input examples are perturbed 
within a certain range. However, it is observed 
that such methods would lead to standard per-
formance degradation, i.e., the degradation on 
natural examples. In this work, we study the 
degradation through the regularization perspec-
tive. We identify quantities from generalization 
analysis of NNs; with the identifed quantities we 
empirically fnd that AR is achieved by regulariz-
ing/biasing NNs towards less confdent solutions 
by making the changes in the feature space (in-
duced by changes in the instance space) of most 
layers smoother uniformly in all directions; so to a 
certain extent, it prevents sudden change in predic-
tion w.r.t. perturbations. However, the end result 
of such smoothing concentrates samples around 
decision boundaries, resulting in less confdent so-
lutions, and leads to worse standard performance. 
Our studies suggest that one might consider ways 
that build AR into NNs in a gentler way to avoid 
the problematic regularization. 

1. Introduction 
Despite the remarkable performance (Krizhevsky et al., 
2012) of Deep Neural Networks (NNs), they are found to 
be rather fragile and easily fooled by adversarial examples 
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(Szegedy et al., 2014). More intriguingly, these adversarial 
examples are generated by adding imperceptible noise to 
normal examples, and thus are indistinguishable for humans. 
NNs that are more robust to adversarial examples tend to 
have lower standard accuracy (Su et al., 2018), i.e., the accu-
racy measured on natural examples. The trade-off between 
robustness and accuracy has been empirically observed in 
many works (Fawzi et al., 2018; Kurakin et al., 2017; Madry 
et al., 2018; Tsipras et al., 2019), and has been theoretically 
analyzed under the context of simple models, e.g., linear 
models (Tsipras et al., 2019), quadratic models (Fawzi et al., 
2018), but it is not clear whether the analysis generalizes to 
NNs. For example, Tsipras et al. (2019) show that for linear 
models, if examples are close to decision boundaries, ro-
bustness provably conficts with accuracy, though the proof 
seems unlikely to generalize to NNs. Arguably, the most 
widely used remedy is developed to require NNs to be �-
adversarially robust (AR), e.g., via Adversarial Training 
(Madry et al., 2018), Lipschitz-Margin Training (Tsuzuku 
et al., 2018); that is, they require the model not to change 
predicted labels when any given input examples are per-
turbed within a certain range. In practice, such AR methods 
are found to lead to worse performance measured in stan-
dard classifcation accuracy. Alternatives to build AR into 
NNs are also being developed. For instance, Zhang et al. 
(2019) show that a gap exists between surrogate risk gap 
and 0-1 risk gap if many examples are close to decision 
boundaries, and better robustness can be achieved by push-
ing examples away from decision boundaries. But pushing 
examples away again degrades NN performance in their 
experiments. But they are yet to be widely adopted by the 
community. 

We investigate how adversarial robustness built into NNs 
by the arguably most established method, i.e., Adversar-
ial Training (Madry et al., 2018), infuences the behaviors 
of NNs to make them more robust but have lower perfor-
mance through the lens of regularization. In an earlier time 
(Szegedy et al., 2014), adversarial training has been sug-
gested as a form of regularization: it augments the training 
of NNs with adversarial examples, and thus might improve 
the generalization of the end models. Note that such a hard 
requirement that the adversarial examples need to be clas-
sifed correctly is different from the methods that increase 
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adversarial robustness by adding a soft penalty term to the 
risk function employed by Lyu et al. (2015) and Miyato 
et al. (2018), or a penalty term through curvature reduc-
tion (Moosavi-Dezfooli et al., 2019), or local linearization 
(Qin et al., 2019) (more discussion in appendix A). In these 
works, regularization is explicitly enforced by a penalty 
term, while in adversarial training, it is not clear that how 
training with augmented adversarial examples regularizes 
NNs. For example, if adversarial training does work as a 
regularizer, how does a possible improvement in general-
ization by using more data end up degrading performance? 
Even such a basic problem does not have a clear answer. To 
understand the regularization effects of AR on NNs, we go 
beyond simple linear or quadratic models and undertake a 
comprehensive generalization analysis of AR by establish-
ing a rigorous generalization bound on NNs, and carrying 
out a series of empirical studies theoretically guided by the 
bound. 

Technically, improved generalization implies the reduction 
in gap between training errors and test errors. Regulariza-
tion achieves the gap reduction by reducing the size of the 
hypothesis space, which reduces the variance, but mean-
while increases the bias of prediction made — a constant 
classifer can have zero generalization errors, but also have 
low test performance. Thus, when a hypothesis space is im-
properly reduced, another possible outcome is biased poorly 
performing models with reduced generalization gaps. 

Key results. Through a series of theoretically motivated 
experiments, we fnd that AR is achieved by regulariz-
ing/biasing NNs towards less confdent solutions by making 
the changes in the feature space of most layers (which are 
induced by changes in the instance space) smoother uni-
formly in all directions; so to a certain extent, it prevents 
sudden change in prediction w.r.t. perturbations. However, 
the end result of such smoothing concentrates examples 
around decision boundaries and leads to worse standard 
performance. We elaborate the above statement in details 
shortly in section 1.1. 

Implications. We conjecture that the improper reduction 
comes from the indistinguishability of the change induced 
in the intermediate layers of NNs by adversarial noise and 
that by inter-class difference. To guarantee AR, NNs are 
asked to smoothe out difference uniformly in all directions 
in a high dimensional space, and thus are biased towards 
less confdent solutions that make similar/concentrated pre-
dictions. We leave the investigation of the conjecture as 
future works. 

1.1. AR leads to less confdent NNs with more 
indecisive misclassifcations 

This section elaborates the key results we briefy present 
previously. 

AR reduces the perturbations in the activation/outputs — the 
perturbations that are induced by perturbations in the in-
puts fed into the layer — of most layers. Through a series of 
theoretically motivated experiments, the results prompt us to 
look at the singular value distributions of the weight matrix 
of each layer of the NNs. Shown in fg. 1a, we fnd that 
overall the standard deviation (STD) of singular values asso-
ciated with a layer of the NN trained with lower AR strength 
4 is larger than that of the NN with higher AR strength 16 
1 — the green dots are mostly below the red dots. Note that 
given a matrix W and an example x, singular values of 
W determine how the norm ||Wx|| is changed comparing 
with ||x||. More specifcally, let σmin, σmax be the mini-
mal and maximal singular values. If x is not in the null 
space of W , then we have ||Wx|| ∈ [σmin||x||, σmax||x||], 
where || · || denotes 2-norm. This applies to norm ||δx||
of a perturbation as well; that is, given possible changes 
δx of x of the same norm ||δx|| = c, where c is a con-
stant, the variance of σ(W ) roughly determines the vari-
ance of ||W δx||, where σ(W ) denotes all singular values 
{σi} of W . In more details, note that by SVD decomposi-P 

Ttion, W δx = σiuiv δx, thus σi determines how thei i 
Tcomponent vi δx in the direction of vi is amplifed. To 

see an example, suppose that σmin = σmax = σ0, then 
the variance of σ(W ) is zero, and ||W δx|| = σ0||δx||. 
In this case, the variance of ||W δx|| (given an ensemble 
of perturbations δx of the same norm c) is zero as well. 
The conclusion holds as well for ReLU(W δx), where W 
here is a weight matrix of a layer of a NN, and ReLU de-
notes Rectifer Linear Unit activation function (proved by 
applying Cauchy interlacing law by row deletion (Chafai) 
in lemma 3.1). Consequently, by reducing the variance of 
singular values of weight matrix of a layer of the NN, AR 
reduces the variance of the norms of layer activations, or 
informally, perturbations in the activations, induced by input 
perturbations. 

The perturbation reduction in activations concentrates ex-
amples, and it empirically concentrates them around deci-
sion boundaries; that is, predictions are less confdent. The 
reduced variance implies that the outputs of each layer of 
the NN are more concentrated, but it does not tell where they 
are concentrated. Note that in the previous paragraph, the 
variance relationship discussed between ||W δx|| and ||δx||
equally applies to ||Wx|| and ||x||, where x is an actual 
example instead of perturbations. Thus, to fnd out the con-
centration of perturbations, we can look at the concentration 
of samples. Technically, we look at margins of examples. In 
a multi-class setting, suppose a NN computes a score func-
tion f : Rd → RL, where L is the number of classes; a way 

1The AR strength is characterized by the maximally allowed 
l∞ norm of adversarial examples that are used to train the NNs — 
we use adversarial training (Madry et al., 2018) to build adversarial 
robustness into NNs. Details can be found in appendix B.1 



Towards Understanding the Regularization of Adversarial Robustness on Neural Networks 

(a) STD of Singular Values (b) Margin Distribution (c) Accuracy 

Figure 1. Experiment results on ResNet56 (He et al., 2016) trained on the CIFAR10 dataset. For the details of the experiments, refer to 
section 4. (a) The standard deviation of singular values of each layer of NNs with adversarial robustness (AR) strength 4, 16 (AR strength 
8 is dropped for clarity of the plot). To emphasize, the x-axis is the layer index — overall 56 layers are involved. (b) The probability 
distribution of margins of NNs with AR strength 4, 8, 16. (c) The standard and adversarial accuracy of NNs with AR 4, 8, 16. 

to convert this to a classifer is to select the output coordinate 
with the largest magnitude, meaning x 7→ arg maxi fi(x). 
The confdence of such a classifer could be quantifed by 
margins. It measures the gap between the output for the cor-
rect label and other labels, meaning fy (x) − maxi6=y fi(x). 
Margin piece-wise linearly depends on the scores, thus the 
variance of margins is also in a piece-wise linear relation-
ship with the variance of the scores, which are computed 
linearly from the activation of a NN layer. Thus, the con-
sequence of concentration of activation discussed in the 
previous paragraph can be observed in the distribution of 
margins. More details of the connection between singular 
values and margins are discussed in section 4.2.2, after we 
present lemma 3.1. A zero margin implies that a classifer 
has equal propensity to classify an example to two classes, 
and the example is on the decision boundary. We plot the 
margin distribution of the test set of CIFAR10 in fg. 1b, and 
fnd that margins are increasingly concentrated around zero 
— that is, the decision boundaries — as AR strength grows. 

The sample concentration around decision boundaries 
smoothes sudden changes induced perturbations, but also in-
creases indecisive misclassifcations. The concentration of 
test set margins implies that the induced change in margins 
by the perturbation in the instance space is reduced by AR. 

0Given two examples x, x0 from the test set, δx = x − x 
can be taken as a signifcant perturbation that changes the 

0example x to x . The concentration of overall margins im-
plies the change induced by δx is smaller statistically in 
NNs with higher AR strength. Thus, for an adversarial per-
turbation applied on x, statistically the change of margins 
is smaller as well — experimentally it is refected in the 
increased adversarial robustness of the network, as shown in 
the increasing curve in fg. 1c. That is, the sudden changes 
of margins originally induced by adversarial perturbations 

are smoothed (to change slowly). However, the cost of such 
smoothness is lower confdence in prediction, and more test 
examples are slightly/indecisively moved to the wrong sides 
of the decision boundaries — incurring lower accuracy, as 
shown in the decreasing curve in fg. 1c. 

Lastly, we note that experiments in this section are used 
to illustrate our main arguments in this section. Further 
consistent quality results are reported in section 4 by con-
ducting experiments on CIFAR10/100 and Tiny-ImageNet 
with networks of varied capacity. And more corroborative 
experiment results are presented in the appendices, and out-
lined in section 1.2. 

1.2. Outline and contributions 

This work carries out generalization analysis on NNs with 
AR. The quantities in the previous section are identifed by 
the generalization errors (GE) upper bound we establish at 
theorem 3.1, which characterizes the regularization of AR 
on NNs. The key result is obtained at the end of a series of 
analysis, thus we present the outline of the analysis here. 

Outline. After presenting some preliminaries in section 2, 
we proceed to analyze the regularization of AR on NNs, and 
establish a GE upper bound in section 3. The bound prompts 
us to look at the GE gaps in experiments. In section 4.1, we 
fnd that for NNs trained with higher AR strength, the surro-
gate risk gaps (GE gaps) decrease for a range of datasets, i.e., 
CIFAR10/100 and Tiny-ImageNet. It implies AR effectively 
regularizes NNs. We then study the fner behavior change 
of NNs that might lead to such a gap reduction. Again, we 
follow the guidance of theorem 3.1. We look at the margins 
in section 4.2.1, then at the singular value distribution in 
section 4.2.2, and discover the main results described in 
section 1.1. More corroborative experiments are present 
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in appendix B.4 and appendix B.6 to show that such phe-
nomenon exists in a broad range of NNs with varied capacity 
and adversarial training techniques. More complementary 
results are present in appendix B.3 to explain some seem-
ingly abnormal observations, and in appendix B.5 to quanti-
tatively demonstrate the smoothing effects of AR discussed 
in section 1.1. Related works are present in appendix A. 

Contributions. Overall, the core contribution in this work 
is to show that adversarial robustness (AR) regularizes NNs 
in a way that hurts its capacity to learn to perform in test. 
More specifcally: 

• We establish a generalization error (GE) bound that char-
acterizes the regularization of AR on NNs. The bound 
connects margin with adversarial robustness radius � via 
singular values of weight matrices of NNs, thus suggest-
ing the two quantities that guide us to investigate the 
regularization effects of AR empirically. 

• Our empirical analysis tells that AR effectively regularizes 
NNs to reduce the GE gaps. To understand how reduced 
GE gaps turns out to degrade test performance, we study 
variance of singular values of layer-wise weight matrices 
of NNs and distributions of margins of samples, when 
different strength of AR are applied on NNs. 

• The study shows that AR is achieved by regulariz-
ing/biasing NNs towards less confdent solutions by mak-
ing the changes in the feature space of most layers (which 
are induced by changes in the instance space) smoother 
uniformly in all directions; so to a certain extent, it pre-
vents sudden change in prediction w.r.t. perturbations. 
However, the end result of such smoothing concentrates 
samples around decision boundaries and leads to worse 
standard performance. 

2. Preliminaries 
Assume an instance space Z = X ×Y , where X is the space 
of input data, and Y is the label space. Z := (X, Y ) are 
the random variables with an unknown distribution µ, from 
which we draw samples. We use Sm = {zi = (xi, yi)}m 

i=1 
to denote the training set of size m whose examples are 
drawn independently and identically distributed (i.i.d.) by 
sampling Z. Given a loss function l, the goal of learning is 
to identify a function T : X 7→ Y in a hypothesis space (a 
class T of functions) that minimizes the expected risk 

R(l ◦ T ) = EZ∼µ [l (T (X), Y )] , 

Since µ is unknown, the observable quantity serving as the 
proxy to the expected risk R is the empirical risk 

mX1 
Rm(l ◦ T ) = l (T (xi), yi) . 

m 
i=1 

Our goal is to study the discrepancy between R and Rm, 
which is termed as generalization error — it is also some-

times termed as generalization gap in the literature 

GE(l ◦ T ) = |R(l ◦ T ) − Rm(l ◦ T )|. (1) 

A NN is a map that takes an input x from the space X , and 
builds its output by recursively applying a linear map Wi 

followed by a pointwise non-linearity g: 

xi = g(W ixi−1), 

where i indexes the times of recursion, which is denoted as 
a layer in the community, i = 1, . . . , L, x0 = x, and g de-
notes the activation function. which is restricted to Rectifer 
Linear Unit (ReLU) (Glorot et al., 2011) or max pooling 
operator (B´ To compactlyecigneul, 2017) in this paper. 
summarize the operation of T , we denote 

Tx = g(W Lg(W L−1 . . . g(W 1x))). (2) 

Defnition 1 (Covering number). Given a metric space 
(S, ρ), and a subset S̃  ⊂ S, we say that a subset Ŝ  of 
S̃  is a �-cover of S̃ , if ∀s̃ ∈ S̃ , ∃ŝ ∈ Ŝ  such that ρ(s̃, ŝ) ≤ �. 
The �-covering number of S̃  is 

ˆN�(S̃, ρ) = min{|S|̂ : S is an �-covering of S}˜ . 

Various notions of adversarial robustness have been studied 
in existing works (Madry et al., 2018; Tsipras et al., 2019; 
Zhang et al., 2019). They are conceptually similar; in this 
work, we formalize its defnition to make clear the object 
for study. 

Defnition 2 ((ρ, �)-adversarial robustness). Given a multi-
class classifer f : X → RL, and a metric ρ on X , where L 
is the number of classes, f is said to be adversarially robust 
w.r.t. adversarial perturbation of strength �, if there exists an 
� > 0 such that ∀z = (x, y) ∈ Z and δx ∈ {ρ(δx) ≤ �}, 
we have 

fŷ(x + δx) − fi(x + δx) ≥ 0, 

where ŷ  = arg maxj fj (x) and i =6 ŷ  ∈ Y . � is called ad-
versarial robustness radius. When the metric used is clear, 
we also refer (ρ, �)-adversarial robustness as �-adversarial 
robustness. 

Note that the defnition is an example-wise one; that is, it 
requires each example to have a guarding area, in which all 
examples are of the same class. Also note that the robust-
ness is w.r.t. the predicted class, since ground-truth label is 
unknown for a x in test. 

We characterize the GE with ramp risk, which is a typical 
risk to undertake theoretical analysis (Bartlett et al., 2017; 
Neyshabur et al., 2018b). 

Defnition 3 (Margin Operator). A margin operator M : 
RL × {1, . . . , L} → R is defned as 

M(s, y) := sy − max si 
i6=y 
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Defnition 4 (Ramp Loss). The ramp loss lγ : R → R+ is 
defned as ⎧ ⎪0 r < −γ⎨ 

lγ (r) := 1 + r/γ r ∈ [−γ, 0]⎪⎩
1 r > 0 

Defnition 5 (Ramp Risk). Given a classifer f , ramp risk 
is the risk defned as 

Rγ (f) := E(lγ (−M(f(X), Y ))), 

where X, Y are random variables in the instance space Z 
previously. 

We will use a different notion of margin in theorem 3.1, and 
formalize its defnition as follows. We reserve the unqual-
ifed word “margin” specifcally for the margin discussed 
previously — the output of margin operator for classifca-
tion. We call this margin to-be-introduced instance-space 
margin (IM). 

Defnition 6 (Smallest Instance-space Margin). Given an 
element z = (x, y) ∈ Z , let v(x) be the distance from x to 
its closest point on the decision boundary, i.e., the instance-
space margin (IM) of example x. Given a covering set Ŝ of 
Z , let 

vmin = min v(x), (3) 
x∈{x∈X |∃x0∈Ŝ 

m,||x−x0||2≤�} 

0 ∈ ˆwhere Ŝ 
m := {x S|∃xi ∈ Sm, ||xi − x0||2 ≤ �}. vmin 

is the smallest instance-space margin of elements in the 
covering balls that contain training examples. 

3. Theoretical instruments for empirical 
studies on AR 

In this section, we rigorously establish the bound mentioned 
in the introduction. We study the map T defned in section 2 
as a NN (though technically, T now is a map from X to RL , 
instead of to Y , such an abuse of notation should be clear 
in the context). To begin with, we introduce an assumption, 
before we state the generalization error bound guaranteed 
by adversarial robustness. 

Assumption 3.1 (Monotony). Given a point x ∈ X , let 
x0 be the point on the decision boundary of a NN T that 

00is closest to x. Then, for all x on the line segment x + 
00t(x0 − x), t ∈ [0, 1], the margin M(T x , y) decreases 

monotonously. 

The assumption is a regularity condition on the classifer 
that rules out undesired oscillation between x and x0 . To see 
how, notice that the margin defned in defnition 3 refects 
how confdent the decision is made. Since x0 is on the 
decision boundary, it means the classifer is unsure how it 

should be classifed. Thus, when the difference x0 − x is 
gradually added to x, ideally we want the confdence that 
we have on classifying x to decrease in a consistent way to 
refect the uncertainty. 

Theorem 3.1. Let T denote a NN with ReLU and MaxPool-
ing nonlinear activation functions (the defnition is put at 
eq. (2) for readers’ convenience), lγ the ramp loss defned at 
defnition 4, and Z the instance space assumed in section 3. 
Assume that Z is a k-dimensional regular manifold that 
accepts an �-covering with covering number ( CX )k , and� 
assumption assumption 3.1 holds. If T is �0-adversarially 
robust (defned at defnition 2), � ≤ �0, and denote vmin 

the smallest IM margin in the covering balls that contain 
training examples (defned at defnition 6), σi the smallest min 
singular values of weight matrices W i, i = 1, . . . , L − 1 
of a NN, {wi}i=1,...,|Y| the set of vectors made up with ith 
rows of W L (the last layer’s weight matrix), then given an 
i.i.d. training sample Sm = {zi = (xi, yi)}m drawn from i=1 
Z , its generalization error GE(l ◦ T ) (defned at eq. (1)) 
satisfes that, for any η > 0, with probability at least 1 − η 

uminGE(lγ ◦ T ) ≤ max{0, 1 − }
γ r 

2 log(2)Ck 2 log(1/η)X+ + (4)
�km m 

where 

L−1Y 
= min ||wy ||2 σi (5)umin − wŷ minvmin 

y,ŷ∈Y,y 6=ŷ 
i=1 

is a lower bound of margins of examples in covering balls 
that contain training samples. 

The proof of theorem 3.1 is in appendix C. The bound iden-
tifes quantities that would be studied experimentally in sec-
tion 4 to understand the regularization of AR on NNs. The 
frst term in eq. (4) in theorem 3.1 suggests that quantities 
related to the lower bound of margin umin might be useful 
to study how �-adversarial robustness (�-AR) regularizes 
NNs. However, �-AR is guaranteed in the instance space 
that determines the smallest instance-space margin vmin. To 
relate GE bound with �-AR, we characterize in eq. (5) the 
relationship between margin with IM, via smallest singular 
values of NNs’ weight matrices, suggesting that quantities 
related to singular values of NNs’ weight matrices might 
be useful to study how AR regularizes NNs as well. An 
illustration on how AR could infuence generalization of 
NNs through IM is also given in fg. 2a. The rightmost term 
in eq. (4) is a standard term in robust framework (Xu & 
Mannor, 2012) in learning theory, and is not very relevant 
to the discussion. The remaining of this paper are empir-
ical studies that are based on the quantities, e.g., margin 
distributions and singular values of NNs’ weight matrices, 
that are related to the identifed quantities, i.e., umin, σ

i 
min. 
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(a) (b) 

Figure 2. (a) Illustration of the regularization effect of adversarial robustness. If a NN T is �-adversarially robust, for a given example x 
(drawn as flled squares or circles) and points x 0 in the yellow ball {x 0 | ρ(x, x 0) ≤ �} around x, the predicted labels of x, x 0 should be 
the same, and the loss variation is potentially bigger as x 0 moves from the center to the edge, as shown as intenser yellow color at the 
edge of a ball. Collectively, the adversarial robustness of each example requires an instance-space margin (IM) to exist for the decision 
boundary, shown as the shaded cyan margin. As normally known, margin is related to generalization ability that shrinks the hypothesis 
space. In this case, the IM required by adversarial robustness would weed out hypotheses that do not have an adequate IM, such as the 
red dashed line shown in the illustration. (b) Illustration of lemma 3.1. Given a NN with ReLU activation function, the feature map 
Il at layer l is divided into regions where Il(x) is piecewise linear w.r.t. x. The induced linear map W q 

1 is given by diag(τ1(q))W 1, 
where diag(τl(q)) is a diagonal matrix whose diagonal entries are given by a vector τ1(q) that has 0-1 values. For example, in region 
p, I1 = W p 

1x and distance between instances x are vertical elongated, while in region q, I1 = W q 
1x and distance are horizontally 

elongated. Thus given x, x 0, the difference ||Il(x) − Il(x 0)|| between Il(x) and Il(x 0) is the length of the transformed line segment 
x − x 0 drawn, of which each segment is linearly transformed in a different way. 

These studies aim to illuminate with empirical evidence on 
the phenomena that AR regularizes NNs, reduces GE gaps, 
but degrades test performance. 2 

Before turning into empirical study, we further present a 
lemma to illustrate the relation characterized in eq. (5) with-
out the need to jump into proof of theorem 3.1. It would 
motivate our experiments later in section 4.2.2. We state the 
following lemma that relates distances between elements 
in the instance space with those in the feature space of any 

2Note that in the previous paragraph, though we identifes 
quantities umin and σi related to the upper bound of GE, the min 
quantities we actually would study empirically are margin dis-
tribution and all singular values that characterize the GE of all 
samples, not just the extreme case (upper bound). The analytic 
characterization of the GE of all samples is not possible since we 
do not have enough information (we do not know the true distri-
bution of samples). That’s why to arrive at close-form analytic 
characterization of GE, we resort to the extreme non-asymptotic 
large-sample behaviors. The analytic form is a neat way to present 
how relevant quantities infuence GE. In the rest of the paper, we 
would carry on empirical study on the distributions of margins and 
singular values to investigate AR’s infuence on GE of all samples. 

intermediate network layers. 

Lemma 3.1. Given two instances x, x0 ∈ X , let I l(x) be 
the activation g(W lg(W l−1 . . . g(W 1x))) at layer l of x, 

qjthen there exist n ∈ N sets of matrices {W }i=1...l, j = i 
1 . . . n, that each of the matrix W qj is obtained by setting i 
some rows of W i to zero, and {qj }j=1...n are arbitrary 
distinctive symbols indexed by j that index W qj , such that i 

n Z ej lX Y 
qj||I l(x) − I l(x 0)|| = W dt(x − x 0)i 

sjj=1 i=1 

where s1 = 0, sj+1 = ej , en = 1, sj , ej ∈ [0, 1] — each 
[sj , ej ] is a segment in the line segment parameterized by t 
that connects x and x0 . 

Its proof is in appendix C, and an illustration is given in 
fg. 2b. Essentially, it states that difference in the feature 
space of a NN, induced by the difference between elements 
in the instance space, is a summation of the norms of the Ql qjlinear transformation ( W ) applied on segments of i=1 i 
the line segment that connects x, x0 in the instance space. 
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(a) (b) 

Figure 3. Experiment results on CIFAR10/100, and Tiny-ImageNet. The unit of x-axis is the adversarial robustness (AR) strength of NNs, 
c.f. the beginning of section 4. (a) Plots of loss gap (and error rate gap) between training and test datasets v.s. AR strength. (b) Plots of 
losses (and error rates) on training and test datasets v.s. AR strength. 

qjSince W is obtained by setting rows of W i to zero, the i 
singular values of these induced matrices are intimately 
related to weight matrices W i of NN by Cauchy interlac-
ing law by row deletion (Chafai). Since the margin of an 
example x is a linear transform of the difference between 
IL−1(x) and the IL−1(x

0) of an element x0 on the decision 
boundary, singular values of {Wi}i=1...L−1 determine the 

0amplifcation/shrinkage of the IM x − x . 

4. Empirical studies on regularization of 
adversarial robustness 

In this section, guided by theorem 3.1, we undertake empir-
ical studies to explore AR’s regularization effects on NNs. 
We frst investigate the behaviors of off-the-shelf architec-
tures of fxed capacity on various datasets in section 4.1 
and section 4.2. More corroborative controlled studies that 
explore the regularization effects of AR on NNs with varied 
capacity are present in appendix B.3. 

4.1. Adversarial robustness effectively regularizes NNs 
on various datasets 

This section aims to explore whether AR can effectively 
reduce generalization errors — more specifcally, the sur-
rogate risk gaps. We use adversarial training (Madry et al., 
2018) to build adversarial robustness into NNs. The AR 
strength is characterized by the maximally allowed l∞ norm 
of adversarial examples that are used to train the NNs. De-
tails on the technique to build adversarial robustness into 
NNs is given in appendix B.1. 

Our experiments are conducted on CIFAR10, CIFAR100, 
and Tiny-ImageNet (ImageNet, 2018) that represent learn-

ing tasks of increased diffculties. We use ResNet-56 and 
ResNet-110 (He et al., 2016) for CIFAR10/100, and Wide 
ResNet (WRN-50-2-bottleneck) (Zagoruyko & Komodakis, 
2016) for Tiny-ImageNet (ImageNet, 2018). These net-
works are trained with increasing AR strength. Results are 
plotted in fg. 3. 

Regularization of AR on NNs. We observe in fg. 3a 
(shown as blue lines marked by circles) that GE gaps (the 
gaps between training and test losses) decrease as strength 
of AR increase; we also observe in fg. 3a that training losses 
increase as AR strength increase; these results (and more 
results in subsequent fg. 6) imply that AR does regularize 
training of NNs by reducing their capacities to ft training 
samples. Interestingly, in the CIFAR10/100 results in fg. 3b, 
the test losses show a decreasing trend even when test error 
rates increase. It suggests that the network actually performs 
better measured in test loss as contrast to the performance 
measured in test error rates. This phenomenon results from 
that less confdent wrong predictions are made by NNs 
thanks to adversarial training, which will be explained in 
details in section 4.2, when we carry on fner analysis. We 
note that on Tiny-ImageNet, the test loss does not decrease 
as those on CIFAR10/100. It is likely because the task 
is considerably harder, and regularization hurts NNs even 
measured in test loss. 

Trade-off between regularization of AR and test error 
rates. The error rate curves in fg. 3b also tell that the end 
result of AR regularization leads to biased-performing NNs 
that achieve degraded test performance. These results are 
consistent across datasets and networks. 
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Seemingly abnormal phenomenon. An seemingly ab-
normal phenomenon in CIFAR10 observed in fg. 3a is that 
the error rate gap actually increases. It results from the same 
underlying behaviors of NNs, which we would introduce in 
section 4.2, and an overftting phenomenon that AR cannot 
control. Since it would be a digress to explain, it is put in 
appendix B.3. 

We fnally note that the adversarial robustness training re-
produced is relevant, of which the defense effect is com-
parable with existing works. One may refer to fg. 12 in 
appendix D.2 for the details. We can see from it that similar 
adversarial robustness to Madry et al. (2018) and Li et al. 
(2018) is achieved for CIFAR10/100, Tiny-ImageNet in the 
NNs we reproduce. 

4.2. Refned analysis through margins and singular 
values 

The experiments in the previous sections confrm that AR re-
duces GE, but decreases accuracy. We study the underlying 
behaviors of NNs to analyze what have led to it here. More 
specifcally, we show that adversarial training implements 
�-adversarial robustness by making NNs biased towards less 
confdent solutions; that is, the key fnding we present in 
section 1.1 that explains both the prevented sudden change 
in prediction w.r.t. sample perturbation (i.e., the achieved 
AR), and the reduced test accuracy. 

4.2.1. MARGINS THAT CONCENTRATE MORE AROUND 
ZERO LEAD TO REDUCED GE GAP 

To study how GE gaps are reduced, theorem 3.1 suggests 
we frst look at the margins of examples — a lower bound of 
margins is umin in eq. (5). The analysis on margins has been 
a widely used tool in learning theory (Bartlett et al., 2017). 
It refects the confdence that a classifer has on an example, 
which after being transformed by a loss function, is the sur-
rogate loss. Thus, the loss difference between examples are 
intuitively refected in the difference in confdence character-
ized by margins. To study how AR infuences generalization 
of NNs, distributions of samples which are obtained by train-
ing ResNet-56 on CIFAR10 and CIFAR100 with increased 
AR strength (the same setting as for fg. 3). Applying the 
same network of ResNet-56 respectively on CIFAR-10 and 
CIFAR-100 of different learning diffculties creates learning 
settings of larger- and smaller-capacity NNs. 

Concentration and reduced accuracy. In fg. 4, we can 
see that in both CIFAR10/100, the distributions of margins 
become more concentrated around zero as AR grows. The 
concentration moves the mode of margin distribution to-
wards zero and more examples slightly across the decision 
boundaries, where the margins are zero, which explains the 

(a) CIFAR10 Test (b) CIFAR100 Test 

(c) CIFAR10 Training (d) CIFAR100 Training 

Figure 4. Margin distributions of NNs with AR strength 4, 8, 16 
on Training and Test sets of CIFAR10/100. 

reduced accuracy 3. 

Concentration and reduced loss/GE gap. The concen-
tration has different consequences on training and test losses. 
Before describing the consequences, to directly relate the 
concentration to loss gap, we further introduce estimated 
probabilities of examples. This is because though we use 
ramp loss in theoretical analysis, in the experiments, we 
explore the behaviors of more practically used cross entropy 
loss. The loss maps one-to-one to estimated probability, but 
not to margin, though they both serve as a measure of conf-
dence. Suppose p(x) is the output of the softmax function 
of dimension L (L is the number of target classes), and y is 
the target label. The estimated probability of x would be the 
y-th dimension of (p(x)), i.e., (p(x))y. On the training 
sets, since the NNs are optimized to perform well on the 
sets, only a tiny fraction of them are classifed wrongly. To 
concentrate the margin distribution more around zero, is to 

3We remark a possibly confusing phenomenon here about the 
margin. The bound eq. (4) might give the impression that a smaller 
margin might lead to a larger generalization error, while the empir-
ical study instead shows that the NNs with a smaller margin have 
a smaller generalization error. The hypothesized confusion is a 
misunderstanding of the generalization bound analysis. The upper 
bound is a worst case analysis of GE. However, in practice, the in-
teresting object is the average gap between the training losses and 
the test losses, i.e., the GE. Unfortunately, the average gap cannot 
be analyzed analytically (cf. footnote 2). Thus, we, and also the 
statistical learning community, resort to worst case analysis to fnd 
an upper bound on GE to identify quantities that might infuence 
GE. In this case, the phenomenon suggests that the bound might be 
loose, though this is a problem that plagues the statistical learning 
community (Nagarajan & Kolter, 2019). But our focus in this work 
is not to derive tight bounds, or reach defnite conclusions from 
bounds alone, but to guide experiments with the bound. 
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make almost all of predictions that are correct less conf-
dent. Thus, a higher expected training loss ensues. On the 
test sets, the estimated probabilities of the target class con-
centrate more around middle values, resulting from lower 
confdence/margins in predictions made by NNs, as shown 
in fg. 5a (but the majority of values are still at the ends). 
Note that wrong predictions away from decision boundaries 
(with large negative margins) map to large loss values in the 
surrogate loss function. Thus, though NNs with larger AR 
strength have lower accuracy, they give more predictions 
whose estimated probabilities are at the middle (compared 
with NNs with smaller AR strength). These predictions, 
even if relatively more of them are wrong, maps to smaller 
loss values, as shown in fg. 5b, where we plot the histogram 
of loss values of test samples. In the end, it results in ex-
pected test losses that are lower, or increase in a lower rate 
than the training losses on CIFAR10/100, Tiny-ImageNet, 
as shown in fg. 3b. The reduced GE gap results from the 
increased training losses, and decreased or less increased 
test losses. 

4.2.2. AR MAKES NNS SMOOTHE PREDICTIONS W.R.T. 
INPUT PERTURABTIONS IN ALL DIRECTIONS 

(a) Prob. Histogram (b) Loss Histogram 

(c) CIFAR10 (d) CIFAR100 

Figure 5. (a)(b) are histograms of estimated probabilities and 
losses of the test set sample of NNs trained with AR strength 
4, 8, 16. We plot a subplot of a narrower range inside the plot 
of the full range to better show the histograms of examples that 
are around the middle values induced by AR. (c)(d) are standard 
deviations of singular values of weight matrices of NNs at each 
layer trained on CIFAR10/100 with AR strength 4, 16. The AR 
strength 8 is dropped for clarity. 

The observation in section 4.2.1 shows that AR make NNs 
just less confdent by reducing the variance of predictions 
made and concentrate margins more around zero. In this 
section, we study the underlying factors of AR that make 
NNs become less confdent. 

To begin with, we show that the singular values of the weight 
matrix of each layer determine the perturbation in margins 
of samples induced by perturbations in the instance space. 
Such a connection between singular values and the perturba-
tion of outputs of a single layer, i.e., ReLU(W δx), has been 
discussed in section 1.1. In the following, with lemma 3.1, 
we describe how the relatively more complex connection 
between margins and singular values of each weight matrix 
of layers of NNs holds. Observe that margins are obtained 
by applying a piece-wise linear mapping (c.f. the margin 
operator in defnition 3) to the activation of the last layer 
of a NN. It implies the perturbations in activation of the 
last layer induce changes in margins in a piece-wise linear 
way. Meanwhile, the perturbation in the activation of the 
last layer (induced by perturbation in the instance space) is 
determined by the weight matrix’s singular values of each 
layer of NNs. More specifcally, this is explained as follows. 
Lemma 3.1 shows that the perturbation δI induced by δx,P R Qln ej qjis given by W δxdt . Note that forj=1 sj i=1 i 

each i, W qi is a matrix. By Cauchy interlacing law by row i 
deletion (Chafai), the singular values of W i, the weight 

qjmatrix of layer i, determine the singular values of W .i 
Thus, suppose l = 1, we have the change (measured in P R n ej qjnorm) induced by perturbation as W δxdt .j=1 sj 1 

The singular values of W 1 would determine the variance 
(of norms) of activation perturbations induced by perturba-
tions δx, similarly as explained in section 1.1 except that 
the norm perturbation now is obtained by a summation of 

qjn terms W δxdt (each of which is the exact form dis-1 
cussed in section 1.1) weighted by 1/(ej − sj ). Similarly, 
for the case where l = 2 . . . L − 1, the singular values of 
W l determine the variance of perturbations in the output 
of layer l that induced by the perturbations in the output 
of the previous layer (the input to layer l), i.e., layer l − 1. 
Consequently, we choose to study these singular values. 

We show the standard deviation of singular values of each 
layer of ResNet56 trained on CIFAR10/100 earlier in fg. 5c 
fg. 5d. Overall, the standard deviation of singular values 
associated with a layer of the NN trained with AR strength 
4 is mostly larger than that of the NN with AR strength 
16. The STD reduction in CIFAR100 is relatively smaller 
than CIFAR10, since as observed in fg. 4b, the AR induced 
concentration effect of margin distributions is also relatively 
less obvious than that in fg. 4a. More quantitative analysis 
is given in appendix B.2. This leads us to our key results 
described in section 1.1. 
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