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Appendices 

A. Related works 
Generalization and robustness. Robustness in machine 
learning models is a large feld. We review some more 
works that analyze robustness from the statistical perspec-
tive. The majority of works that study adversarial robustness 
from the generalization perspective study the generalization 
behaviors of machine learning models under adversarial 
risk. The works that study adversarial risk include Attias 
et al. (2018); Schmidt et al. (2018); Cullina et al. (2018); Yin 
& Bartlett (2018); Khim & Loh (2018); Sinha et al. (2018). 
The bounds obtained under the setting of adversarial risk 
characterize the risk gap introduced by adversarial examples. 
Thus, it is intuitive that a larger risk gap would be obtained 
for a larger allowed perturbation limit �, which is roughly 
among the conclusions obtained in those bounds. That is to 
say, the conclusion normally leads to a larger generalization 
error as an algorithm is asked to handle more adversarial 
examples, for that it focuses on characterizing the error of 
adversarial examples, not that of natural examples. How-
ever, adversarial risk is not our focus. In this paper, we 
study when a classifer needs to accommodate adversarial 
examples, what is the infuence that the accommodation has 
on generalization behaviors of empirical risk of natural data. 

Hard and soft adversarial robust regularization. We 
study the behaviors of NNs that are trained in the way that 
adversarial examples are required to be classifed correctly. 
We note that the adversarial robustness required can also be 
built in NNs in a soft way by adding a penalty term in the 
risk function. Relevant works includes Lyu et al. (2015) and 
Miyato et al. (2018). This line of works is not our subject of 
investigation. They focus on increasing test performance in-
stead of defense performance. The focus of our works is to 
study the behaviors that lead to standard performance degra-
dation when a network is trained to has a reasonable defense 
ability to adversarial examples. For example, a 50% accu-
racy on adversarial examples generated by PGD methods 
(Madry et al., 2018) in fg. 12 is a defense ability that can 
serve as a baseline for a reasonable defense performance. It 
is natural that in the setting where the requirement to defend 
against adversarial examples is dropped, the regularization 
can be weakened (added as a penalty term) to only aim to 
improve the test performance of the network. In this case, 
no performance degradation would occur, but the defense 
performance is also poor. 

Explicit regularization that increases robustness of NNs 
by imposing smoothness through a penalty term. The 
smoothing effect of adversarial training on the loss sur-
face has been observed in contemporary works (Moosavi-
Dezfooli et al., 2019; Qin et al., 2019). And based on such an 
observation, explicit regularization is formulated by adding 

a penalty term to the risk function to increase NNs’ ro-
bustness. The message of this work is different from the 
insights of (Moosavi-Dezfooli et al., 2019; Qin et al., 2019) 
related to regularization. They (Moosavi-Dezfooli et al., 
2019; Qin et al., 2019) show that if the output of NNs is 
explicitly smoothed through a penalty term thorough curva-
ture regularization (Moosavi-Dezfooli et al., 2019), or local 
linearization (Qin et al., 2019), then a certain degree of ad-
versarial robustness (AR) can be achieved. The penalty term 
works as a regularizer because it is explicitly formulated 
that way. It is not clear whether adversarial training, which 
is a different and arguably the most widely used technique, 
has the effect of a regularizer. This is the issue that is inves-
tigated in this work, and we show that adversarial training 
effectively regularizes NNs, which is not clear previously. 
In addition, this work has shown that adversarial training 
has a smoothing effect on features of all layers, instead of 
just the loss surface. Such a fne-grained analysis is possi-
ble because of the theoretical instruments developed in this 
work, and is absent previously. 

B. Further empirical studies on adversarial 
robustness 

B.1. Technique to build adversarial robustness 

To begin with, we describe the technique that we use to 
build AR into NNs. As mentioned in the caption of fg. 1, 
we choose arguably the most well received technique, i.e., 
the adversarial training method (Madry et al., 2018). Specif-
ically, we use l∞-PGD (Madry et al., 2018) untargeted at-
tack adversary, which creates an adversarial example by 
performing projected gradient descent starting from a ran-
dom perturbation around a natural example. Then, NNs 
are trained with adversarial examples. NNs with different 
AR strength are obtained by training them with increasingly 
stronger adversarial examples. The adversarial strength of 
adversarial examples is measured in the l∞ norm of the per-
turbation applied to examples. l∞-norm is rescaled to the 
range of 0 − 255 to present perturbations applied to differ-
ent datasets in a comparable way; that means in fg. 1 fg. 3 
fg. 4 fg. 5 and fg. 6 fg. 12, AR is measured in this scale. 
We use 10 steps of size 2/255 and maximum of = [4/255, 
8/255, 16/255] respectively for different defensive strength 
in experiments. For example, a NN with AR strength 8 is 
a NN trained with adversarial examples generated by per-
turbations whose l∞ norm are at most 8. Lastly, we note 
that although adversarial training could not precisely guar-
antee an adversarial robustness radius of �, a larger l∞ norm 
used in training would make NNs adversarially robust in 
a larger ball around examples. Thus, though the precise 
adversarial robustness radius is not known, we know that 
we are making NNs adversarially robust w.r.t. a larger �. 
Consequently, it enables us to study the infuence of �-AR 
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on NNs by studying NNs trained with increasing l∞ norm. 

B.2. Quantitative analysis of variance reduction in 
singular values 

Here, we provide more quantitative analysis on fg. 5c and 
fg. 5d, as noted previously in section 4.2.2. 

Quantitatively, we can look at the accumulated standard 
deviation (STD) difference in all layers. We separate the 
layers into two group: the group that the STD (denoted 
σ4) of singular values of layer i (of the NN trained) with i 
AR strength 4 that is larger than that (denoted σ16) of AR i 
strength 16; and the group that is smaller. In CIFAR10, for 
the frst group, the summation of the difference/incrementsP 

− σ16of STD of the two networks ( σ4 ) is 4.7465, and i i i 
the average is 0.1158. For the second groups, the summa-P 

σ16tion ( − σ4) is 0.4372, and the average is 0.0312. In i i i 
CIFAR100, the summation of the frst group is 3.7511, and 
the average is 0.09618; the summation of the second group 
is 0.4372, and the average is 0.1103. The quantitative com-
parison shows that the accumulated STD decrease in layers 
that have their singular value STDs decreased (comparing 
STD of the NN with AR strength 16 with STD of the NN 
with AR strength 4) is a magnitude larger the accumulated 
STD increase in the layers that have their singular value 
STDs increased. The magnitude difference is signifcant 
since the STDs of singular values of most layers are around 
1. 

B.3. Discrepancy between trends of loss and error rate 
gaps in large capacity NNs 

In section 4.1, we have noted an inconsistent behaviors 
of CIFAR10, compared with that of CIFAR100 and Tiny-
ImageNet: the error gap reduces for CIFAR100 and Tiny-
ImageNet, but increases for CIFAR10. It might suggest 
that AR does not effectively regularize NNs in the case 
of CIFAR10. However, we show in this section that the 
abnormal behaviors of CIFAR10 are derived from the same 
margin concentration phenomenon observed in section 4.2.1 
due to capacity difference, and compared with the error 
gaps, the GE/loss gaps are more faithfully representatives of 
the generalization ability of the NNs. Thus, the seemingly 
abnormal phenomenon corroborate, not contradict, the key 
results present in section 1. 

Using CIFAR10 and CIFAR100 as examples and evidence 
in the previous sections, we explain how the discrepancy 
emerges from AR’s infuence on margin distributions of the 
same network trained on tasks with different diffculties. 
Further evidence that the discrepancy arises from capac-
ity difference would be shown at appendix B.3, where we 
run experiments to investigate GE gap of NNs with varied 
capacities on the same task/dataset. 

1. On CIFAR10, the margin distribution of training sets 
not only concentrate more around zero, but also skews 
towards zero. As shown in the margin distribution on 
training sets of CIFAR10 in fg. 4c, we fnd that the large 
error gap is caused by the high training accuracy that 
is achieved with a high concentration of training sam-
ples just slightly beyond the decision boundary. This 
phenomenon does not happen in CIFAR100. Compar-
ing margin distribution on the test set in fg. 4(a) in 
fg. 4a, the margin distribution on the training set in 
fg. 4c is highly skewed, i.e., asymmetrically distributed 
w.r.t. mean. While the margin distributions of CIFAR100 
training set in fg. 4d is clearly less skewed, and looks 
much more like a normal distribution, as that of the mar-
gin distribution on the test set. 

2. The high skewness results from the fact that the NN 
trained on CIFAR10 is of large enough capacity to overft 
the training set. As known, CIFAR100 is a more diffcult 
task w.r.t. CIFAR10 with more classes and less training 
examples in each class. Thus, relatively, even the same 
ResNet56 network is used, the capacity of the network 
trained on CIFAR10 is larger than the one trained on 
CIFAR100. Recall that NNs have a remarkable ability to 
overft training samples (Zhang et al., 2016). And note 
that though AR requires in a ball around an example, 
the examples in the ball should be of the same class, 
since the ball is supposed only to include imperceptible 
perturbation to the example, few of the training samples 
are likely in the same ball. Thus, the ability to overft 
the training set is not regularized by AR: if NNs can 
overft all training samples, it can still overft some more 
examples that are almost imperceptibly different. For CI-
FAR10, since NNs have enough capacity, the NN simply 
overfts the training set. 

3. However, as shown in the observed overftting phe-
nomenon in fg. 4c, the high training accuracy is made up 
of correct predictions with relatively lower confdence 
(compared with NNs with lower AR), which is bad and 
not characterized by the error rate; and the low test ac-
curacy are made up of wrong predictions with relatively 
lower confdence as well (as explain in section 4.2.1), 
which is good, and not characterized by error rate as well. 
Thus, the error gap in this case does not characterize 
the generalization ability (measured in term of predic-
tion confdence) of NNs well, while the GE gap more 
faithfully characterizes the generalization ability, and 
show that AR effectively regularizes NNs. In the end, 
AR still leads to biased poorly performing solutions — 
since the overftting in training set does not prevent the 
test margin distribution concentrating more around zero, 
which leads to higher test errors of CIFAR10 as shown 
in fg. 3b. It further suggests that the damage AR done 
to the hypothesis space is not recovered by increasing 
capacity, however the ability of NNs to ft arbitrary labels 
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(a) Gap Curves (b) Error Rate & Loss Curves 

Figure 6. The four plots from upper left to lower bottom (in each subfgure) are NNs with increasingly smaller spectral complexity, where 
“Spectral Norm 1” means for each weight matrix of the NN, its spectral norm is at most 1. (a) Plots of training/test loss gap (and error gap) 
against adversarial robustness strength. (b) Training/test losses and error rates against increased strength of adversarial robustness. 

is not hampered by AR. 

B.4. Further evidence of regularization effects on NNs 
with varied capacity 

In previous sections, we observe AR consistently effectively 
regularizes NNs; meanwhile, we also observe that in the 
case where a NN has a large capacity, it can spuriously 
overft training samples and lead to an increased error gap. 
In this section, we present additional results by applying 
AR to networks of varied capacities. The effects of adver-
sarial training on a larger NNs, i.e., ResNet 110 is given 
in appendix B.4.1. Then, AR applied on NNs with con-
trolled capacities through spectral normalization is given in 
appendix B.4.2. This is to ensure that our observations and 
analysis in previous sections exist not just at some singular 
points, but also in a continuous area in the hypothesis space. 

B.4.1. REGULARIZATION EFFECTS ON NNS WITH 
LARGER CAPACITY 

To preliminarily validate that the regularization effects ob-
served in section 4.1 manifest in NNs with varied capacities, 
we investigate the regularization effects of AR on a larger 
NNs, i.e., ResNet 110. The results are shown in fg. 7. The 
observed phenomenon is the same with that of ResNet56 
presented in section 4.1, and thus corroborates our results. 

B.4.2. REGULARIZATION EFFECTS ON NNS WITH 
CONTROLLED CAPACITIES 

To control capacities of NNs quantitatively, we choose 
the measure based on spectral norm (Bartlett et al., 2017; 
Neyshabur et al., 2018a). In spectral norm based capac-

ity measure bound (Bartlett et al., 2017; Neyshabur et al., 
2018a), the NN capacity is normally proportional to a quan-
tity called spectral complexity (SC), which is defned as 
follows. 
Defnition 7 (Spectral Complexity). Spectral complexity 
SC(T ) of a NN T is the multiplication of spectral norms of 
weight matrices of layers in a NN. 

LY 
SC(T ) = ||W i||2 

i=1 

where {W i}i=1...L denotes weight matrices of layers of the 
NN. 

To control SC, we apply the spectral normalization (SN) 
(Sedghi et al., 2018) on NNs. The technique renormalizes 
the spectral norms of the weight matrices of a NN to a 
designated value after certain iterations. We carry out the 
normalization at the end of each epoch. 

We train ResNet56 with increasingly strong AR and with 
increasingly strong spectral normalization. The results are 
shown in fg. 6. 

As can be seen, as the capacity of NNs decreases (from 
upper left to bottom right in each sub-fgure), the error 
gap between training and test gradually changes from an 
increasing trend to a decreasing trend, while the loss gap 
keeps a consistent decreasing trend. It suggests that the 
overftting phenomenon is gradually prevented by another 
regularization techniques, i.e., the spectral normalization. 
As a result, the regularization effect of AR starts to emerge 
even in the error gap, which previously manifests only in 
the loss gap. The other curves corroborate our previous 
observations and analysis as well. 
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(a) (b) 

Figure 7. Experiment results on CIFAR10/100 with ResNet-110 (He et al., 2016). The unit of x-axis is the adversarial robustness (AR) 
strength of NNs, c.f. the beginning of section 4. (a) Plots of loss gap (and error rate gap) between training and test datasets v.s. AR 
strength. (b) Plots of losses (and error rates) on training and test datasets v.s. AR strength. 

B.5. Further evidence on the smoothing effect of 
adversarial robustness 

We quantitatively measure the smoothing effect around 
examples here by measuring the average maximal loss 
change/variation induced by the perturbation (of a fxed 
infnity norm) applied on examples. We found that the loss 
variation decreases as networks become increasingly adver-
sarially robust. Note that the loss of an example is a proxy 
to the confdence of the example — it is the logarithm of 
the estimated probability (a characterization of confdence) 
of the NN classifer. 

For a given maximal perturbation range characterized by the 
infnity norm, we generate adversarial examples within that 
norm for all test samples. For each example, the maximal 
loss variation/change of the adversarial example w.r.t. the 
natural example is computed for networks with different 
adversarial strength. To obtain statistical behaviors, we 
compute the average and standard deviation of such maxima 
of all test samples. The results are shown in fg. 8. The 
exact data can be found in table 1. 

We can see that the average loss variation decreases with ad-
versarial robustness. The standard deviation decreases with 
network adversarial robustness as well. The phenomenon 
that the standard deviation is comparably large with the 
mean might need some explanation. This is because differ-
ent examples have different losses, thus the loss varies in 
relatively different regimens — the more wrongly classifed 
examples vary in a larger magnitude, and vice versa for 
more correctly classifed examples. This phenomenon leads 
to the large standard deviation of the loss variation. 

Figure 8. Average maximal loss variation induced by adversar-
ial examples in networks with increasing adversarial robustness. 
The experiments are carried on CIFAR10/100. � represents the 
maximal perturbation can be applied on natural test examples to 
generate adversarial examples. It is measured in the infnity norm. 
The larger the �, the stronger the perturbation is. The error bars 
represent standard deviation. 

B.6. Further experiments on using FGSM in 
adversarial training to build adversarial 
robustness 

We explain the choice of PGD as the representative of ad-
versarial training techniques here. Various adversarial train-
ing methods are variant algorithms that compute frst order 
approximation to the point around the input example that 
minimizes the label class confdence. The difference is 
how close the approximation is. Recent works on adver-
sarial examples exclusively only use PGD in experiments 
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Table 1. Data of the smoothing effect of PGD adversarial training in fg. 8. 

Dataset Attack Strength 
4 

Defensive Strength 
8 16 

CIFAR10 
� = 1 
� = 2 
� = 4 

0.0273 ± 0.0989 
0.0590 ± 0.1637 
0.1337 ± 0.2494 

0.0236 ± 0.0778 
0.0477 ± 0.1337 
0.1006 ± 0.2137 

0.0215 ± 0.0588 
0.0443 ± 0.1102 
0.0888 ± 0.1816 

CIFAR100 
� = 1 
� = 2 
� = 4 

0.0550 ± 0.1276 
0.1072 ± 0.2138 
0.1868 ± 0.2946 

0.0430 ± 0.1043 
0.0839 ± 0.1802 
0.1563 ± 0.2712 

0.0379 ± 0.0886 
0.0732 ± 0.1568 
0.1355 ± 0.2494 

(Kannan et al., 2018; Schmidt et al., 2018; Xie et al., 2019; 
Ilyas et al., 2019; Wang & Zhang, 2019). It is also a very 
strong multi-step attack method that improves over many of 
its antecedents: NNs trained by FGSM could have no de-
fense ability to adversarial examples generated by PGD, as 
shown in Table 5 in Madry et al. (2018); multi-step methods 
prevent the pitfalls of adversarial training with single-step 
methods that admit a degenerate global minimum (Tramer` 
et al., 2017). Thus, we believe the observations in this work 
is representative for various adversarial training techniques. 
Yet, even in the worst case, this work at least makes a frst 
step to understand a representative approach of the approxi-
mation. 

To corroborate the analysis, we also use FGSM (Goodfellow 
et al., 2015) in the adversarial training to build adversarial 
robustness into NNs. The results are consistent with the 
results obtained using PGD. The experiments are carried on 
CIFAR10/100. We present key plots that support the results 
obtained in the main con- tent here. All the setting are same 
with that described in appendix B.1 of PGD, except that we 
replace PGD with FGSM. 

Adversarial robustness reduces generalization gap and 
standard test performance. In section 4.1, we fnd that 
NNs with stronger adversarial robustness tend to have 
smaller loss/generalization gap between training and test 
sets. Consistent phenomenon has been observed in net-
works adversarially trained with FGSM on CIFAR10/100, 
as shown in fg. 9a. Consistent standard test performance 
degradation has been observed in adversarially trained with 
FGSM on CIFAR10/100 as well, as shown in fg. 9b. The 
exact data can be found in table 2. 

Adversarial robustness concentrates examples around 
decision boundaries. In section 4.2.1, we fnd that the 
distributions of margins become more concentrated around 
zero as AR grows. The phenomenon has been observed 
consistently in networks adversarially trained with FGSM 
on CIFAR10/100, as shown in fg. 10. Phenomenon in fg. 5a 
and fg. 5b are also reproduced consistently in fg. 11a and 
fg. 11b. Please refer to section 4.2.1 for the analysis of the 

results. Here we mainly present counterparts of the results 
analyzed there. 

Adversarial robustness reduces the standard deviation 
of singular values of weight matrices in the network. 
In section 4.2.2, we fnd that for NNs with stronger adversar-
ial robustness, the standard deviation of singular values of 
weight matrices is smaller in most layers. The phenomenon 
has been consistently observed in NNs trained with FGSM 
on CIFAR10/100, as shown in fg. 11c and fg. 11d. Please 
refer to section 1.1 and section 4.2.2 for the analysis of the 
results. Here we mainly present counterparts of the results 
analyzed there. 

In conclusion, all key empirical results have been consis-
tently observed in NNs trained with FGSM. 

Table 2. Data of fg. 9 

Defensive Strength Dataset 
4 8 16 

Test Acc. 89.32 86.67 82.83 

CIFAR10 
Trn Loss 
Test Loss 
Δ Loss 

0.038 
0.467 
0.429 

0.086 
0.495 
0.409 

0.252 
0.637 
0.385 

CIFAR100 

Test Acc. 
Trn Loss 
Test Loss 
Δ Loss 

62.01 
0.469 
1.776 
1.307 

59.78 
0.656 
1.723 
1.067 

56.30 
0.822 
1.797 
0.975 
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(a) 

(b) 

Figure 9. Experiment results on CIFAR10/100. The network is 
ResNet-56 (He et al., 2016). The unit of x-axis is the adversarial 
robustness (AR) strength of NNs, c.f. the beginning of section 4. 
(a) Plots of loss gap between training and test datasets v.s. AR 
strength. (b) Plots of error rates on training and test datasets v.s. 
AR strength. 

(a) CIFAR10 Test (b) CIFAR100 Test 

(c) CIFAR10 Training (d) CIFAR100 Training 

Figure 10. Margin distributions of NNs with AR strength 4, 8, 16 
on Training and Test sets of CIFAR10/100. 

(a) Prob. Histogram (b) Loss Histogram 

(c) CIFAR10 (d) CIFAR100 

Figure 11. (a)(b) are histograms of estimated probabilities and 
losses respectively of the test set sample of NNs trained AR 
strength 4, 8, 16. We plot a subplot of a narrower range inside 
the plot of the full range to show the histograms of examples that 
are around the middle values to show the change induced by AR 
that induces more middle valued confdence predictions. (c)(d) are 
standard deviations of singular values of weight matrices of NNs 
at each layer trained on CIFAR10/100 with AR strength 4, 16. The 
AR strength 8 is dropped for clarity. 
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C. Proof of theorem 3.1 
C.1. Algorithmic Robustness Framework 

In order to characterize the bound to the GE, we build on the 
algorithmic robustness framework (Xu & Mannor, 2012). 

We introduce the framework below. 

Defnition 8 ((K, �(·))-robust). An algorithm is (K, �(·)) 
robust, for K ∈ N and �(·) : Zm 7→ R, if Z can be parti-
tioned into K disjoint sets, denoted by C = {Ck}K , such k=1 
that the following holds for all si = (xi, yi) ∈ Sm, z = 
(x, y) ∈ Z, Ck ∈ C: 

∀si = (xi, yi) ∈ Ck, ∀z = (x, y) ∈ Ck 

=⇒ |l(f(xi), yi) − l(f(x), y)| ≤ �(Sm). 

C.2. Proof 

Proof of lemma 3.1 . By theorem 3 in Sokolic et al. (2017), 
we have Z 1 

||Il(x) − Il(x 0)|| = 
0 

J(x − t(x 0 − x))dt(x − x 0) 

(7) 
where J(x) denotes the Jacobian of Il(x) at x. 

By lemma 3.2 in Jia et al. (2019), when we only have max 
pooling layers and ReLU as nonlinear layer in NNs, J(x) is 
a linear operator at a local region around x. For terminology 
concerning regions, we follow the defnitions in Jia et al. 
(2019). More specifcally, we have 

Yl 
J(x) = W x 

i 
i=1 

The gist of the defnition is to constrain the variation of loss 
values on test examples w.r.t. those of training ones through where W x 

i is the linear mapping (matrix) induced by J(x) 
local property of the algorithmically learned function f . at x. It is a matrix obtained by selectively setting certain 
Intuitively, if s ∈ Sm and z ∈ Z are “close” (e.g., in the rows of W i to zero. For the more concrete form of W x 

i , 
same partition Ck), their loss should also be close, due to 
the intrinsic constraint imposed by f . 

For any algorithm that is robust, Xu & Mannor (Xu & Man-
nor, 2012) proves 

Theorem C.1 (Xu & Mannor (Xu & Mannor, 2012)). If 
a learning algorithm is (K, �(·))-robust and L is bounded, 
a.k.a. L(f(x), y) ≤ M ∀z ∈ Z , for any η > 0, with 
probability at least 1 − η we have r 

2K log(2) + 2 log(1/η)
GE(fSm ) ≤ �(Sm) + M . (6) 

m 

To control the frst term, an approach is to constrain the varia-
tion of the loss function. Covering number (Shalev-Shwartz 
& Ben-David, (Shalev-Shwartz & Ben-David, 2014), Chap-
ter 27) provides a way to characterize the variation of the 
loss function, and conceptually realizes the actual number 
K of disjoint partitions. 

For any regular k-dimensional manifold embedded in space 
equipped with a metric ρ, e.g., the image data embedded in 
L2(R2), the square integrable function space defned on R2 , 
it has a covering number N (X ; ρ, �) of (CX /�)

k (Verma, 
2013), where CX is a constant that captures its “intrinsic” 
properties, and � is the radius of the covering ball. When 
we calculate the GE bound of NNs, we would assume the 
data space is a k-dimensional regular manifold that accepts 
a covering. 

Adversarial robustness makes NNs a (K, �(·))-robust algo-
rithm, and is able to control the variation of loss values 
on test examples. Building on covering number and theo-
rem C.1, we are able to prove theorem 3.1. 

refer to lemma 3.2 in Jia et al. (2019). In Jia et al. (2019), it 
is noted as W q , where q is a region where x is in. i 

0Suppose that from x to x0, the line segment x − x passes 
through regions {qj }j=1,...,n. The line segment is illustrated 
in fg. 2b as the boldest black line segment at the upper half 

0of the fgure. In the illustration, x − x passes through 
three regions, colored coded as gray, dark yellow, light blue 
respectively. The line segment is divided into three sub-
segments. Suppose l(t) = x + t(x0 − x). Then the three 
sub-segments can be represented by l(t) as l(s1) to l(e1), 
l(s2) to l(e2), and l(s3) to l(e3) respectively, as noted on 
the line segment in the illustration. Originally, the range 
of the integration in eq. (7) is from 0 to 1, representing the 
integration on the line segment l(0) to l(1) in the instance 
space. Now, since for each of these regions trespassed by 
the line segment, the Jacobian J(x) is a linear operator, 

qjdenoted as W , the integration in eq. (7) from 0 to 1 cani 
be decomposed as a summation of integration on segments 
l(s1) to l(e1) etc. In each of these integration, the Jaco-

qjbian J(x) is the multiplication of linear matrices W , i.e., iQl 
W qj . Thus, eq. (7) can be written asi=1 i 

n Z lX ej Y 
qjW dt(x − x 0)i 

j=1 i=1sj 

where sj , ej denotes the start and end of the segment 
[sj , ej ] ⊂ [0, 1] of the segment [0, 1] that passes through 
the region qj . 

In the cases that a linear operator is applied on the feature 
map Il(x) without any activation function, we can also 
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obtain a similar conclusion. Actually, such cases are just 
degenerated cases of feature maps that have activation func-
tions. 

0Corollary C.1. Given two elements x, x , and Il(x) = 
W lg(W l−1 . . . g(W 1x)), we have 

n Z ej l−1X Y 
||Il(x) − Il(x 0)|| = W dt(x − x 0)W l i

qj 

j=1 i=1sj 

where symbols are defned similar as in Proof of lemma 3.1. 

Now, we are ready to prove theorem C.1. 

Proof of theorem C.1. Similar with the proof of theo-
rem C.1, we partition space Z into the �-cover of Z , which 
by assumption is a k-dimension manifold. Its covering num-
ber is upper bounded by Ck /�k , denoting K = Ck /�k ,X X 

and Ĉ 
i the ith covering ball. For how the covering ball 

is obtained from the �-cover, refer to theorem 6 in Xu & 
Mannor (2012). We study the constraint/regularization that 
adversarial robustness imposes on the variation of the loss 
function. Since we only have �-adversarial robustness, the 
radius of the covering balls is at most � — this is why we 
use the same symbol. Beyond �, adversarial robustness does 
not give information on the possible variation anymore. Let 
T 0 denotes the NN without the last layer. 

First, we analyze the risk change in a covering ball Ci. The 
analysis is divided into two cases: 1 all training samples 
in Ci are classifed correctly; 2) all training samples in Ci 

are classifed wrong. Note that no other cases exist, for 
that the radius of Ci is restricted to be �, and we work on 
�-adversarial robust classifers. It guarantees that all samples 
in a ball are classifed as the same class. Thus, either all 
training samples are all classifed correctly, or wrongly. 

We frst study case 1). Given any example z = (x, y) ∈ Ci, 
T T 0let ŷ  = arg maxi w x. Its ramp loss is =y6 i 

1 
lγ (x, y) = max{0, 1 − (wy − wŷ)

T T 0 x}. 
γ 

Note that within Ci, (wy − wŷ)
T T 0x ≥ 0, thus lγ (x, y) is 

mostly 1, and we would not reach the region where r > 0 
iin defnition 4. Let u(x) := (wy − wŷ)

T T 0x, and u = min 
min∀x∈Ci u(x). We have 

iumin umin
lγ (x, y) ≤ max{0, 1 − } ≤ max{0, 1 − },

γ γ 

where umin denotes the smallest margin among all parti-
tions. 

The inequality above shows adversarial robustness requires 
that T 0x should vary slowly enough, so that in the worst 
case, the loss variation within the adversarial radius should 

satisfy the above inequality. The observation leads to the 
constraint on the loss difference �(·) defned earlier in def-
nition 8 in the following. 

Given any training example z := (x, y) ∈ Ci, and any 
0 0element z := (x , y0) ∈ Ci, where Ci is the covering ball 

that covers x, we have 

0|lγ (x, y) − lγ (x , y 0)| 
u(x) u(x0) 

=| max{0, 1 − } − max{0, 1 − }|
γ γ 

umin≤ max{0, 1 − }. (8)
γ 

Now we relate the margin to the margin in the instance 
space. 

0Given z := (x, y) ∈ Z , and z , of which x0 is the closest 
points to x (measured in Euclidean norm) on the decision 
boundary, we can derive the inequality below. 

u(x) = u(x) − u(x 0) (9)Z 1 

= J(x − t(x − x 0))dt(x − x 0) (10) 
0 Z 1 L−1Y 

)T 
0 0)

x−t(x−x )
= (wy − wŷ W dt(x − xi 

0 i=1 Z 1 L−1Y 
x−t(x−x )

= (wy − wŷ)
T W 

0 

dt(x − x 0)i 
0 i=1 

(11) 
n Z L−1X ej Y 

qj= (wy − wŷ)
T W dt(x − x 0)i 

sjj=1 i=1 

(12) 
L−1 Z 1Y 

≥ min ||wy ||2 σi 0||2 dt− wŷ min||x − x 
y,ŷ∈Y,y 6=ŷ 

i=1 

(13) 
L−1Y 

σi 

y,ŷ∈Y,y 6=ŷ 
≥ min ||wy − wŷ||2 min||x − x 0||2 

i=1 

where J(x) denotes the Jacobian of Il(x) at x. eq. (10) can 
be reached by theorem 3 in Sokolic et al. (2017). eq. (11) 

x−t(x−x )can be reached because (wy − wŷ)W 
0 

(x − x0)i 
is the actually classifcation score u(x), u(x0) difference 
between x, x0, and by assumptions assumption 3.1, they are 
positive throughout. eq. (12) is reached due to corollary C.1 
— in this case, the matrix W l in corollary C.1 is of rank one. 

To arrive from eq. (12) to eq. (13), we observe that x0 is 
the closest point to x on the decision boundary. Being the 
closest means x−x0 ⊥ N ((wy −wŷ)T 0). If the difference 
x0 − x satisfes x − x0 6⊥ N (T 0), we can always remove 

0 
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the part in the N (T 0), which would identify a point that is 
closer to x, but still on the decision boundary, which would 

0be a contradiction. Then if x − x is orthogonal to the 
null space, we can bound the norm using the least singular 
values. We develop the informal reasoning above formally 
in the following. 

Similarly in lemma 3.4 in Jia et al. (2019), by Cauchy inter-QL−1 qjlacing law by row deletion, assuming x ⊥ N ( W )i=1 i 
(N denotes the null space; the math statement means x is 
orthogonal to the null space of J(x)), we have 

L−1 L−1Y Y 
qj σi|| W i x||2 ≥ min||x||2 (14) 

i=1 i=1 

where σi is the smallest singular value of W i. Thenmin 
conclusion holds as well for multiplication of matricesQL−1 qjW , since the multiplication of matrices are also ai=1 i 
matrix. 

Notice that in each integral in eq. (12), we are integrating 
over constant. Thus, we have it equates to 

n L−1X Y 
qj(ej − sj ) (wy − wŷ)

T W i (x − x 0) . 
j=1 i=1 

0Now we show that in each operand, x − x ⊥QL−1 qjN ((wy − wŷ)
T W ). Denote Tqj as N ((wy −i=1 iQL−1 qjwŷ)

T W ). Suppose that it does not hold. Theni=1 i 
we can decompose x − x0 into two components Δ1, Δ2, 
where Δ1 ⊥ Tqj , Δ2 6⊥ Tqj . We can fnd a new point 
00x = x + Δ1 that is on the boundary. However, in this case 

||x − x 00||2 = ||Δ1||2 ≤ ||Δ1||2 + ||Δ2||2 = ||x − x 0||2 

Recall that x0 is the closest point to x on the decision bound-
ary. This leads to a contradiction. Repeat this argument for 
all j = 1, . . . , n, then we have x − x0 be orthogonal to all 
N (Tqj ). Thus, by the inequality eq. (14) earlier, we can 
arrive at eq. (13) — notice that wy − wŷ is a matrix with 
one column, thus also satisfes the above reasoning. 

Through the above inequality, we can transfer the margin 
to margin in the instance space. Let v(x) be the shortest 
distance in || · ||2 norm from an element x ∈ X to the 

idecision boundary. For a covering ball Ci, let v bemin 
iminx∈Ci v(x). Let vmin be the smallest v among all min 

covering balls Ci that contain at least a training example. 
We have that 

L−1Y 
umin ≥ min ||wy − wŷ||2 σi 

minvmin 
y,ŷ∈Y,y 6=ŷ 

i=1 

Consequently, we can obtain an upper bound of eq. (8) 

parameterized on vmin, as follows 

umin 
max{0,1 − } ≤ max{0,

γ QL−1
miny,ŷ∈Y,y 6 y ||wy − wŷ||2 i=1 σ

i 
=ˆ minvmin

1 − }. 
γ 

Notice that only because �0-adversarial robustness, we can 
guarantee that vmin is non-zero, thus the bound is infuenced 
by AR. 

Then, we study case 2), in which all training samples z ∈ Ci 

are classifed wrong. In this case, for all z ∈ Ci, the ŷ  given 
T T 0by ŷ  = arg maxi w x in the margin operator is the =y6 i 

same, for that ŷ  is the wrongly classifed class. Its ramp loss 
is 

1 
lγ (x, y) = max{0, 1 − (wy − wŷ)

T T 0 x}. 
γ 

Note that in the case 1), it is the y that stays fxed, while ŷ  
may differ from example to example; while in the case 2), it 
is the ŷ  stays fxed, while y may differ. 

Similarly, within Ci as required by adversarial robustness, 
(wy − wŷ)

T T 0x ≤ 0, thus we always have 1 − 1 (wy −γ 

wŷ)
T T 0x ≥ 1, implying 

lγ (x, y) = 1. 

0 0Thus, ∀z = (x, y), z = (x , y0) ∈ Ci 

0|lγ (x, y) − lγ (x , y 0)| = 0. (15) 

Since only these two cases are possible, by eq. (8) and 
eq. (15), we have ∀z, z0 ∈ Ci 

0 umin|lγ (x, y) − lγ (x , y 0)| ≤ max{0, 1 − }. (16)
γ 

The rest follows the standard proof in algorithmic robust 
framework. 

Let Ni be the set of index of points of examples that fall into 
Ci. Note that (|Ni|)i=1...K is an IDD multimonial random 
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variable with parameters m and (|µ(Ci)|)i=1...K . Then 

|R(l ◦ T ) − Rm(l ◦ T )| 
K mX X1 

=| EZ∼µ[l(T X, Y )]µ(Ci) − l(T xi, yi)|
m 

i=1 i=1 

K mX |Ni| 1 X 
≤| EZ∼µ[l(T X, Y )] − l(T xi, yi)|

m m 
i=1 i=1 

K KX X |Ni|
+ | EZ∼µ[l(T X, Y )]µ(Ci) − EZ∼µ[l(T X, Y )] 

m 
i=1 i=1 

KX X1 ≤| max |l(T x, y) − l(T xj , yj )| (17) 
m z∈Ci 

i=1 j∈Ni 

KX |Ni|
+ | max |l(T x, y)| | − µ(Ci)||. (18) 

z∈Z m 
i=1 

Remember that z = (x, y). 

By eq. (16) we have eq. (17) is equal or less 
than max{0, 2(1 − umin )}. By Breteganolle-γ 
Huber-Carol inequality, eq. (18) is less or equal toq 

log(2)2k+1Ck 2 log(1/η)X + .
γk m m 

The proof is fnished. 

D. Implementation Details 
We summarize the details of the experiments in this section. 
The experiments are run with PyTorch (Pfeiffer, 2017). 

| 

Figure 12. The plot of accuracy on adversarial examples v.s. ad-
versarial defense strength built in NNs. The dotted line of which 
the intersections are marked by stars are adversarial accuracy in 
Madry et al. (2018) (CIFAR10), in Li et al. (2018) (Tiny ImageNet) 
under similar adversarial attack strength. 

D.1. Datasets 

CIFAR10/100. Each CIFAR dataset consists of 50, 000 
training data and 10, 000 test data. CIFAR-10 and CIFAR-
100 have 10 and 100 classes respectively. Our data aug-
mentation follows the standard manner in Lee et al. (2015): 
during training, we zero-pad 4 pixels along each image side, 
and sample a 32 × 32 region cropped from the padded im-
age or its horizontal fip; during testing, we use the original 
non-padded image. 

Tiny-ImageNet. Tiny-ImageNet is a subset of ImageNet 
dataset, which contains 200 classes rather than 1, 000 
classes. Each class has 500 training images and 50 vali-
dation images. Images in the Tiny-ImageNet dataset are 
of 64 × 64 pixels, as opposed to 256 × 256 in the full Im-
ageNet set. The data augmentation is straightforward: an 
input image is 56 × 56 randomly cropped from a resized 
image using the scale, aspect ratio augmentation as well as 
scale jittering. A single 56 × 56 cropped image is used for 
testing. 

D.2. Experiments in section 4.1 

CIFAR10/100 Models and Training. The models for CI-
FAR10/100 are the same as the ones in appendix B.3, ex-
cept that we do not use spectral normalization anymore. 
CIFAR100 has 100 output neurons instead of 10. 

Tiny-ImageNet Model. For Tiny ImageNet dataset, we use 
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Table 3. Raw data of CIFAR10 dataset for plots in fg. 3, fg. 7 and 
fg. 12. 

Method Defensive Strength 
4 8 16 

ResNet-56 
+ Adv Trn 

Trn Acc. 
Test Acc. 
ΔAcc. 

Trn Loss 
Test Loss 
ΔLoss 
PGD 

99.51 
88.86 
10.65 
0.014 
0.683 
0.669 
65.92 

98.45 
87.51 
10.94 
0.043 
0.649 
0.606 
65.24 

95.97 
84.89 
11.08 
0.105 
0.650 
0.545 
72.16 

ResNet-110 
+ Adv Trn 

Trn Acc. 
Test Acc. 
ΔAcc. 

Trn Loss 
Test Loss 
ΔLoss 
PGD 

99.95 
89.20 
10.75 
0.002 
0.825 
0.823 
58.02 

99.62 
87.09 
12.53 
0.010 
0.813 
0.803 
66.94 

98.42 
85.02 
13.40 
0.044 
0.729 
0.685 
72.40 

50-layered wide residual networks with 4 groups of resid-
ual layers and [3, 4, 6, 3] bottleneck residual units for each 
group respectively. The 3×3 flter of the bottleneck residual 
units have [64 × k, 128 × k, 256 × k, 512 × k] feature maps 
with the widen factor k = 2 as mentioned in Zagoruyko & 
Komodakis (2016). We replace the frst 7 × 7 convolution 
layer with 3 × 3 flters with stride 1 and padding 1. The 
max pooling layer after the frst convolutional layer is also 
removed to ft the 56 × 56 input size. Batch normalization 
layers are retained for this dataset. The weights of convo-
lution layers for Tiny ImageNet are initialized with Xavier 
uniform (Glorot & Bengio, 2010). Again, all dropout layers 
are omitted. 

Tiny-ImageNet Training. The experiments on the Tiny-
ImageNet dataset are based on a mini-batch size of 256 
for 90 epochs. The initial learning rate is set to be 0.1 
and decayed at 10 at 30 and 60 epochs respectively. All 
experiments are trained on the training set with stochastic 
gradient descent with the momentum of 0.9. 

Results. The data for fg. 3 and fg. 7 are given in table 3, 
table 4 and table 5. More specifcally, the data on CIFAR10 
are given in table 3. The result on CIFAR100 are given in 
table 4. The result on Tiny-ImageNet are given in table 5. 

Adversarial Robustness Attack Method. The adversarial 
accuracy is evaluated against l∞-PGD (Madry et al., 2018) 
untargeted attack adversary, which is one of the strongest 
white-box attack methods. When considering adversarial 
attack, they usually train and evaluate against the same per-
turbation. And for our tasks, we only use the moderate 
adversaries that generated by 10 iterations with steps of size 
2 and maximum of 8. When evaluating adversarial robust-
ness, we only consider clean examples classifed correctly 
originally, and calculate the accuracy of the adversarial ex-

Table 4. Raw data of CIFAR100 dataset for the plot in fg. 3, fg. 7 
and fg. 12. 

Method Defensive Strength 
4 8 16 

ResNet-56 
+ Adv Trn 

Trn Acc. 
Test Acc. 
ΔAcc. 

Trn Loss 
Test Loss 
ΔLoss 
PGD 

88.73 
61.31 
27.42 
0.357 
2.063 
1.706 
30.52 

86.97 
60.87 
26.10 
0.413 
2.106 
1.693 
40.99 

82.17 
59.43 
22.74 
0.570 
1.978 
1.408 
48.81 

ResNet-110 
+ Adv Trn 

Trn Acc. 
Test Acc. 
ΔAcc. 

Trn Loss 
Test Loss 
ΔLoss 
PGD 

96.91 
61.48 
35.43 
0.098 
2.645 
2.547 
33.33 

94.55 
61.26 
33.29 
0.171 
2.413 
2.241 
42.08 

90.90 
59.56 
31.34 
0.278 
2.323 
2.045 
50.99 

Table 5. Raw data of Tiny-ImageNet dataset for the plot in fg. 3, 
fg. 7 and fg. 12. 

Method 0 
Defensive Strength 

4 8 16 

Wide ResNet 
+ Adv Trn 

Trn Acc. 
Test Acc. 
ΔAcc. 

Trn Loss 
Test Loss 
ΔLoss 

79.12 
63.43 
15.69 
0.874 
1.561 
0.687 

73.71 
62.09 
11.62 
1.080 
1.637 
0.557 

66.17 
61.09 
5.08 
1.384 
1.689 
0.305 

60.73 
57.36 
3.37 
1.641 
1.806 
0.165 

PGD 0.00 32.26 41.20 53.12 

amples generated from them that are still correctly classifed. 
The adversarial accuracy is given in table 3 table 4 table 5, 
the row named “PGD”, and plotted in fg. 12. 

D.3. Experiments in appendix B.3 

Models. We use ResNet-type networks (Zhang et al., 2018). 
Given that we need to isolate factors that infuence spectral 
complexity, we use ResNet without additional batch normal-
ization (BN) layers. To train ResNet without BN, we rely 
on the fxup initialization proposed in Zhang et al. (2018). 
The scalar layers in Zhang et al. (2018) are also omitted, 
since it changes spectral norms of layers. Dropout layers 
are omitted as well. Following Sedghi et al. (2018), we clip 
the spectral norm every epoch rather than every iteration. 

Training. The experiments on CIFAR10 datasets are based 
on a mini-batch size of 256 for 200 epochs. The learning 
rate starts at 0.05, and is divided by 10 at 100 and 150 
epochs respectively. All experiments are trained on training 
set with stochastic gradient descent based on the momentum 
of 0.9. 
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Table 6. Raw data for fg. 6. SP denotes spectral norm. 

Strength of Defensive Strength 
Spectral Normalization 4 8 16 

Trn Acc. 96.91 94.38 90.58 
Test Acc. 90.47 88.87 85.82 
ΔAcc. 6.44 5.51 4.76 

SP 1 Trn Loss 0.092 0.159 0.265 
Test Loss 0.316 0.353 0.432 
ΔLoss 0.224 0.194 0.168 
PGD 57.93 69.98 75.98 

Trn Acc. 99.65 98.51 95.94 
Test Acc. 90.02 88.07 85.43 
ΔAcc. 9.63 10.44 10.51 

SP 3 Trn Loss 0.010 0.039 0.107 
Test Loss 0.606 0.580 0.577 
ΔLoss 0.596 0.541 0.470 
PGD 56.83 67.73 73.41 

Trn Acc. 99.57 98.33 95.96 
Test Acc. 89.53 88.09 85.32 
ΔAcc. 10.04 10.24 10.64 

SP 5 Trn Loss 0.012 0.045 0.105 
Test Loss 0.649 0.602 0.611 
ΔLoss 0.638 0.557 0.506 
PGD 54.91 65.96 72.37 

Trn Acc. 99.51 98.45 95.97 
Test Acc. 88.86 87.51 84.89 
ΔAcc. 10.65 10.94 11.08 

SP Uncontrolled Trn Loss 0.014 0.043 0.105 
Test Loss 0.683 0.649 0.650 
ΔLoss 0.669 0.606 0.545 
PGD 65.92 65.24 72.16 

Results. The data for fg. 6 are given in table 6. 




