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Appendix
A. Proof of Theorem 2
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where HSi = {x 7! L(h(x), fSi(x)) : h 2 H} is the set of functions mapping x to the corresponding loss, ⌘H,i is a

constant similar to Eq. (3) with bQ = bSi,
bP = bT and MS = supi2[k],x2X ,h2H

L(h(x), fSi(x)) is the upper bound on loss
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Proof: Given ↵ 2 �, the mixture bS =
P

i ↵i
bSi can be considered as the joint source data with km points, where a point

x
(i) from bSi has weight ↵i/m. Define � = suph2H

LT (h, fT )�
P

i ↵iLbSi
(h, fSi). Changing a point x(i) from bSi will

change � at most MS↵i
m . Using the McDiarmid’s inequality, we have Pr(�� E[�] > ✏)  exp

⇣
�

2✏2m
M2

Sk↵k
2
2

⌘
. As a result,

for � 2 (0, 1), w.p. at least 1� �, the following holds for any h 2 H

LT (h, fT ) 
X

i

↵iLbSi
(h, fSi) + E[�] + k↵k2MS

r
log(1/�)

2m
.

Now we bound E[�]. Let HSi = {x 7! L(h(x), fSi(x)) : h 2 H}.
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where first and second inequalities are using the subadditivity of sup, followed by the equality using the independence
between the domains {bSi}, the second last inequality is due to the standard “ghost sample” argument in terms of the
Rademacher complexity and the last inequality is due to Cortes et al. (2019, Proposition 8) for each individual Si.
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B. Jacobian
Here we calculate the Jacobian Jij = @↵i/@zj for Eq. (7) in the main text:

↵⇤ = [z� ⌫
⇤1]+/k[z� ⌫

⇤1]+k1.

In the following, we write ↵ = ↵⇤
, ⌫ = ⌫

⇤ to simplify notations. Let S = {i : zi � ⌫ > 0} be the support of the probability
vector ↵. Jij = 0 if i /2 S or j /2 S since ↵i = 0 in the former case while zj does not contribute to the ↵ in the latter case.
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where �i=j is the indicator or delta function. Now we compute @⌫
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. By the definition of ⌫, we know that
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The first right-arrow is due to the quadratic formula and realizing that
P

j2S zj/|S| is the mean of the supported zj so ⌫

must be smaller than it (i.e., we take � in the ± of the quadratic formula, otherwise some of the zj will not be in the support
anymore). And
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Plugging Eq. (12) and Eq. (13) in Eq. (11) gives
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where s = [s1, . . . , sk]> is a vector indicating the support si = �i2S and � is element-wise multiplication. More often, we
need to compute its multiplication with a vector v
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Note that all quantities except A have been computed during the forward pass of calculating Eq. (7). A can be computed in
O(|S|) time so the overall computation is still O(k) since |S|  k.
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C. Experiment Details
The following provides additional details of the experiments.

C.1. Regression

For the eight source domains, the ith (i = {0, 1, . . . , 7}) domain data is generated by xi ⇠ N (⇡4 i�
7⇡
8 , 0.22) and the output

is y = sin(x) + ✏ where ✏ ⇠ N (0, 0.052) is random noise. For the four target domains, the jth (j = {0, 1, 2, 3}) domain is
generated by xj ⇠ N (⇡2 j �

3⇡
4 , 0.42).

C.2. Digit Recognition

MNIST images are resized to 32⇥ 32 and represented as 3-channel color images in order to match the shape of the other
three datasets. Each domain has its own given training and test sets when downloaded. Their respective training sample
sizes are 60000, 59001, 73257, 479400, and the respective test sample sizes are 10000, 9001, 26032, 9553. In each run,
20000 images are randomly sampled from each domain’s training set as actual labelled source or unlabelled target training
examples, and 9000 images are randomly sampled from each domain’s test set as actual test examples for evaluation. The
model structure is shown in Fig. 6. There is no dropout and the hyper-parameters are chosen based on cross-validation. It is
trained for 50 epochs and the mini-batch size is 128 per domain. The optimizer is Adadelta with a learning rate of 1.0. The
soft version of MDAN has an additional parameter � = 1/⌧ which is the inverse of our temperature ⌧ . � = 0.5 is used for
MDAN and � = 0.1 for DARN.

Figure 6: Model architecture for the digit recognition.

C.3. Object Recognition: Office-Home

For the four domains, Art, Clipart, Product and Real-World, the respective sample sizes are 2427, 4365, 4439, 4357. In each
run, 2000 images are randomly sampled from each domain as labelled source or unlabelled target training examples, and
the rest images are used as test images for evaluation. We use the ResNet50 (He et al., 2016) pretrained features from the
ImageNet as the base network for feature learning and put an MLP with [1000, 500, 100, 65] units on top for classification.
It is trained for 50 epochs and the mini-batch size is 32 per domain. The optimizer is Adadelta with a learning rate of 1.0.
MDAN uses � = 1.0 while DARN uses � = 0.5.

C.4. Sentiment Analysis

The respective sample sizes for the Books, DVD, Electronics and Kitchen domains are 6465, 5586, 7681, 7945. We train
a fully connected model (MLP) with [1000, 500, 100] hidden units for classifying positive versus negative reviews. The
dropout drop rate is 0.7 for the input and hidden layers. In each run, we randomly sample 2000 reviews from each domain as
labelled source or unlabelled target training examples, while the remaining instances are used as test examples for evaluation.
The hyper-parameters are chosen based on cross-validation. The model is trained for 50 epochs and the mini-batch size is 20
per domain. The optimizer is Adadelta with a learning rate of 1.0. The chosen parameters are � = 10.0 for MDAN and
� = 0.9 for our DARN, which are selected from a wide range of candidate values.
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Fig. 7 and Fig. 8 show the domain weights of MDMN and DARN without exponential average smoothing. They correspond
to Fig. 4 and Fig. 5 in the main text. Although both can have certain instability due to small mini-batch size, MDMN is
noticeably less stable, especially towards the end of the training, in which alternating one-hot weights can occur (e.g., epochs
40-50 for the Books target domain). This makes their weights hard to interpret.
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Figure 7: Domain weights of MDMN for the Amazon data.
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Figure 8: Domain weights of DARN for the Amazon data.


