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Abstract

We consider the problem of approximating the sta-
tionary distribution of an ergodic Markov chain
given a set of sampled transitions. Classical
simulation-based approaches assume access to
the underlying process so that trajectories of suffi-
cient length can be gathered to approximate sta-
tionary sampling. Instead, we consider an alter-
native setting where a fixed set of transitions has
been collected beforehand, by a separate, possibly
unknown procedure. The goal is still to estimate
properties of the stationary distribution, but with-
out additional access to the underlying system.
We propose a consistent estimator that is based
on recovering a correction ratio function over the
given data. In particular, we develop a variational
power method (VPM) that provides provably con-
sistent estimates under general conditions. In ad-
dition to unifying a number of existing approaches
from different subfields, we also find that VPM
yields significantly better estimates across a range
of problems, including queueing, stochastic dif-
ferential equations, post-processing MCMC, and
off-policy evaluation.

1. Introduction

Markov chains are a pervasive modeling tool in applied
mathematics of particular importance in stochastic modeling
and machine learning. A key property of an ergodic Markov
chain is the existence of a unique stationary distribution;
i.e., the long-run distribution of states that remains invariant
under the transition kernel. In this paper, we consider a
less well studied but still important version of the stationary
distribution estimation problem, where one has access to a
set of sampled transitions from a given Markov chain, but
does not know the mechanism by which the probe points
were chosen, nor is able to gather additional data from the
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underlying process. Nevertheless, one would still like to
estimate target properties of the stationary distribution, such
as the expected value of a random variable of interest.

This setting is inspired by many practical scenarios where
sampling from the Markov process is costly or unavailable,
but data has already been collected and available for analy-
sis. A simple example is a queueing system consisting of a
service desk that serves customers in a queue. Queue length
changes stochastically as customers arrive or leave after
being served. The long-term distribution of queue length
(i.e., the stationary distribution of the underlying Markov
chain) is the object of central interest for managing such a
service (Haviv, 2009; Serfozo, 2009). In practice, however,
queue lengths are physical quantities that can only be mea-
sured for moderate periods, perhaps on separate occasions,
but rarely for sufficient time to ensure the (stochastic) queue
length has reached the stationary distribution. Since the
measurement process itself is expensive, it is essential to
make reasonable inferences about the stationary distribution
from the collected data alone.

We investigate methods for estimating properties of the
stationary distribution solely from a batch of previously col-
lected data. The key idea is to first estimate a correction
ratio function over the given data, which can then be used to
estimate expectations of interest with respect to the station-
ary distribution. To illustrate, consider an ergodic Markov
chain with state space X , transition kernel T , and a unique
stationary distribution µ that satisfies

µ (x0) =

Z
T (x0

|x)µ (x) dx := (T µ) (x0) . (1)

Assume we are given a fixed sample of state transitions, D =�
(x, x0)ni=1

 
⇠ T (x0

|x) p (x), such that each x has been
sampled according to an unknown probe distribution p, but
each x0 has been sampled according to the true underlying
transition kernel, x0

|x ⇠ T (x0
|x). Below we investigate

procedures for estimating the point-wise ratios, b⌧ (xi) ⇡
µ(xi)
p(xi)

, such that the weighted empirical distribution

µ̂(x) :=
⇣ nX

i=1

b⌧ (xi)
⌘�1 nX

i=1

b⌧ (xi) I{x = xi}

can be used to approximate µ directly, or further used to
estimate the expected value of some target function(s) of x
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with respect to µ. Crucially, the approach we propose does
not require knowledge of the probe distribution p, nor does
it require additional access to samples drawn from the tran-
sition kernel T , yet we will be able to establish consistency
of the estimation strategy under general conditions.

In addition to developing the fundamental approach, we
demonstrate its applicability and efficacy in a range of im-
portant scenarios beyond queueing, including:

• Stochastic differential equations (SDEs) SDEs are an
essential modeling tool in many fields like statistical
physics (Kadanoff, 2000), finance (Oksendal, 2013) and
molecular dynamcis (Liu, 2001). An autonomous SDE
describes the instantaneous change of a random variable
X by

dX = f (X) dt+ � (X) dW , (2)

where f (X) is a drift term, � (X) a diffusion term, and
W the Wiener process. Given data D =

�
(x, x0)ni=1

 

such that x ⇠ p (x) is drawn from an unknown probe
distribution and x0 is the next state after a small time step
according to (2), we consider the problem of estimating
quantities of the stationary distribution µ when one exists.

• Off-policy evaluation (OPE) Another important applica-
tion is behavior-agnostic off-policy evaluation (Nachum
et al., 2019) in reinforcement learning (RL). Consider
a Markov decision process (MDP) specified by M =
hS,A, P,Ri, such that S and A are the state and ac-
tion spaces, P is the transition function, and R is the
reward function (Puterman, 2014). Given a policy ⇡ that
maps s 2 S to a distribution over A, a random trajec-
tory can be generated starting from an initial state s0:
(s0, a0, r0, s1, a1, r1, . . .), where at ⇠ ⇡(·|st), st+1 ⇠

P (·|st, at) and rt ⇠ R (st, at). The value of a policy ⇡
is defined to be its long-term average per-step reward:

⇢(⇡) := limT!1 E
h
1
T

PT�1
t=0 rt

i
= E(s,a)⇠d⇡�⇡ [R(s, a)] ,

where d⇡ denotes the limiting distribution over states
S of the Markov process induced by ⇡. In behavior-
agnostic off-policy evaluation, one is given a target pol-
icy ⇡ and a set of transitions D = {(s, a, r, s0)ni=1} ⇠

P (s0|s, a) p (s, a), potentially generated by multiple be-
havior policies. From such data, an estimate for ⇢ (⇡) can
be formed in terms of a stationary ratio estimator:

⇢(⇡) = E(s,a)⇠p

h
d⇡(s)⇡(a|s)

p(s,a) r (s, a)
i
⇡

1
n

Pn
i=1 b⌧(si, ai)ri .

(3)
We refer the interested readers to Section 5.4 and Ap-
pendix C for further discussion.

For the remainder of the paper, we will outline four main
contributions. First, we generalize the classical power itera-
tion method to obtain an algorithm, the Variational Power

Method (VPM), that can work with arbitrary parametriza-
tions in a functional space, allowing for a flexible yet prac-
tical approach. Second, we prove the consistency and con-
vergence of VPM. Third, we illustrate how a diverse set
of stationary distribution estimation problems, including
those above, can be addressed by VPM in a unified manner.
Finally, we demonstrate empirically that VPM significantly
improves estimation quality in a range of applications, in-
cluding queueing, sampling, SDEs and OPE.

2. Variational Power Method

To develop our approach, first recall the definition of T and
µ in (1). We make the following assumption about T and µ
throughout the paper.

Assumption 1 (ergodicity) The transition operator T has
a unique stationary distribution, denoted µ.

Conditions under which this assumption holds are mild,
and have been extensively discussed in standard textbooks
(Meyn et al., 2009; Levin and Peres, 2017).

Next, to understand the role of the probe distribution p, note
that we can always rewrite the stationary distribution as
µ = p � ⌧ (i.e., µ (x) = p (x) ⌧ (x), hence ⌧ (x) = µ(x)

p(x) ),
provided the following assumption holds.

Assumption 2 (absolute continuity) The stationary distri-
bution µ is absolutely continuous w.r.t. p. That is, there
exists C < 1 such that k⌧k1 6 C.

Assumption 2 follows previous work (Liu and Lee, 2017;
Nachum et al., 2019), and is common in density ratio es-
timation (Sugiyama et al., 2008; Gretton et al., 2009) and
off-policy evaluation (Wang et al., 2017; Xie et al., 2019).

Combining these two assumptions, definition (1) yields

µ (x0) =

Z
T (x0

|x)µ (x) dx =

Z
T (x0

|x) p (x)
µ (x)

p (x)
dx

:=

Z
Tp (x, x

0) ⌧ (x) dx, which implies

p (x0) ⌧ (x0) =

Z
Tp (x, x

0) ⌧ (x) dx := Tp⌧ (x
0) . (4)

This development reveals how, under the two stated assump-
tions, there is sufficient information to determine the unique
ratio function ⌧ that ensures p � ⌧ = µ in principle. Given
such a function ⌧ , we can then base inferences about µ
solely on data sampled from p and ⌧ .

2.1. Variational Power Iteration

To develop a practical algorithm for recovering ⌧ from the
constraint (4), in function space, we first consider the clas-
sical power method for recovering the µ that satisfies (1).
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From (1) it can be seen that the stationary distribution µ is
an eigenfunction of T . Moreover, it is the principal eigen-
function, corresponding to the largest eigenvalue �1 = 1.
In the simpler case of finite X , the vector µ is the principal
(right) eigenvector of the transposed transition matrix. A
standard approach to computing µ is then the power method:

µt+1 = T µt, (5)

whose iterates converge to µ at a rate linear in |�2|, where �2

is the second largest eigenvalue of T . For ergodic Markov
chains, one has |�2| < 1 (Meyn et al., 2009, Chap 20).

Our initial aim is to extend this power iteration approach
to the constraint (4) without restricting the domain X to be
finite. This can be naturally achieved by the update

⌧t+1 =
Tp⌧t
p

, (6)

where the division is element-wise. Clearly the fixed point
of (6) corresponds to the solution of (4) under the two as-
sumptions stated above. Furthermore, just as for µt in (5),
⌧t in (6) also converges to ⌧ at a linear rate for finite X .
Unfortunately, the update (6) cannot be used directly in a
practical algorithm for two important reasons. First, we do
not have a point-wise evaluator for Tp, but only samples
from Tp. Second, the operator Tp is applied to a function ⌧t,
which typically involves an intractable integral over X in
general. To overcome these issues, we propose a variational
method that considers a series of reformulated problems
whose optimal solutions correspond to the updates (6).

To begin to develop a practical variational approach, first
note that (6) operates directly on the density ratio, which
implies the density ratio estimation techniques of Nguyen
et al. (2008) and Sugiyama et al. (2012) can be applied. Let
� be a lower semicontinuous, convex function satisfying
� (1) = 0, and consider the induced f -divergence,

D� (p̃kq̃) =

Z
p̃ (x)�

✓
q̃ (x)

p̃ (x)

◆
dx

= �

⇣
min
⌫

Ep̃ [�
⇤ (⌫)]� Eq̃ [⌫]

⌘
, (7)

where �⇤ (x) = supy2R x>y � � (y) is the conjugate func-
tion of �. The key property of this formulation is that for
any distributions p̃ and q̃, the inner optimum in ⌫ satisfies
@�⇤(⌫) = q̃/p̃ (Nguyen et al., 2008); that is, the optimum
in (7) can be used to directly recover the distribution ratio.

To apply this construction to our setting, first consider solv-
ing a problem of the following form in the dual space:

⌫t+1 = argmin
⌫

Ep(x0) [�
⇤ (⌫ (x0))]

�ETp(x,x0) [@�
⇤ (⌫t (x)) · ⌫ (x0)]

(8)

= argmin
⌫

Ep(x0) [�
⇤ (⌫ (x0))]

�ETp(x,x0)⌧t(x) [⌫ (x
0)] ,

(9)

where to achieve (9) we have applied the inductive assump-
tion that ⌧t = @�⇤(⌫t). Then, by the optimality property of
⌫t+1, we know that the solution ⌫t+1 must satisfy

@�⇤(⌫t+1) =
Tp⌧t
p = ⌧t+1, (10)

hence the updated ratio ⌧t+1 in (6) can be directly recovered
from the dual solution ⌫t+1, while also retaining the induc-
tive property that ⌧t+1 = @�⇤(⌫t+1) for the next iteration.

These developments can be further simplified by consider-
ing the specific choice � (⌧) = (⌧ � 1)2, which leads to
�⇤ (⌫) = ⌫ + ⌫2

4 , ⌧ = @�⇤(⌫) = 1 + ⌫
2 and

⌧t+1=argmin
⌧>0

1
2Ep(x0)

⇥
⌧2(x0)

⇤
� ETp(x,x0)[⌧t(x)⌧(x

0)] .

(11)
Crucially, this variational update (11) determines the same
update as (6), but overcomes the two aforementioned dif-
ficulties. First, it bypasses the direct evaluation of Tp and
p, and allows these to be replaced by unbiased estimates of
expectations extracted from the data. Second, it similarly
bypasses the intractability of the operator application Tp⌧t
in the functional space, replacing this with an expectation
of ⌧t � ⌧ that can also be directly estimated from the data.

We now discuss some practical refinements of the approach.

2.2. Normalization

For ⌧t to be a proper ratio µt

p , it should be normalized w.r.t. p,
i.e. Ep [⌧t] = 1. To address this issue, we explicitly ensure
normalization by considering a constrained optimization in
place of (11):

min
⌧>0

1
2Ep(x0)

⇥
⌧2 (x0)

⇤
� ETp(x,x0) [⌧t (x) ⌧ (x

0)] ,

s.t. Ep(x) [⌧ (x)] = 1.
(12)

We can tackle this by solving its Lagrangian. To avoid
instability, we add a regularization term:

min
⌧>0

max
v2R

J(⌧, v) = 1
2Ep(x0)

⇥
⌧2 (x0)

⇤

�ETp(x,x0) [⌧t (x) ⌧ (x
0)] + v (Ep [⌧ ]� 1)� �

2 v
2.

(13)

where � > 0 is a regularization parameter. Crucially, the
dual variable v is a scalar, making this problem much sim-
pler than dual embedding (Dai et al., 2017), where the dual
variables form a parameterized function that introduces ap-
proximation error. The problem (13) is a straightforward
convex-concave objective with respect to (⌧, v) that can be
optimized by stochastic gradient descent.

The following theorem shows that under certain conditions,
the normalization will be maintained for any � > 0.

Theorem 1 (Normalization of solution) If Ep [⌧t] = 1,
then for any � > 0, the estimator (13) has the same so-
lution as (12), hence Ep [⌧t+1] = 1.
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Algorithm 1 Variational Power Method

1: Input: Transition data D = {(x, x0)ni=1}, learning rate
↵✓,↵v , number of power steps T , number of inner opti-
mization steps M , batch size B

2: Initialize ⌧✓
3: for t = 1 . . . T do

4: Update and fix the reference network ⌧t = ⌧✓
5: for m = 1 . . .M do

6: Sample transition data {(x, x0)Bi=1}

7: Compute gradients r✓J and rvJ from (16)
8: ✓ = ✓ � ↵✓r✓J . gradient descent
9: v = v + ↵vrvJ . gradient ascent

10: end for

11: end for

12: Return ⌧✓

Hence, we can begin with any ⌧0 satisfying Ep [⌧0] = 1 (e.g.,
⌧0 = argmin⌧ (Ep [⌧ ]� 1)2), and the theorem ensures that
the normalization of ⌧t+1 will be inductively maintained
using any fixed � > 0. The proof is given in Appendix A.

2.3. Damped Iteration

The next difficulty to be addressed arises from the fact that,
in practice, we need to optimize the variational objective
based on sampled data, which induces approximation error
since we are replacing the true operator Tp by a stochastic
estimate bTp such that E[bTp] = Tp. Without proper adjust-
ment, such estimation errors can accumulate over the power
iterations, and lead to inaccurate results.

To control the error due to sampling, we introduce a damped
version of the update (Ryu and Boyd, 2016), where instead
of performing a stochastic update ⌧t+1 =

bTp

p ⌧t, we instead
perform a damped update given by

⌧t+1 = (1� ↵t+1) · ⌧t + ↵t+1 ·
bTp

p ⌧t (14)

where ↵t 2 (0, 1) is a stepsize parameter. Intuitively, the
update error introduced by the stochasticity of bTp is now
controlled by the stepsize ↵t. The choice of stepsize and
convergence of the algorithm is discussed in Section 3.

The damped iteration can be conveniently implemented with
minor modifications to the previous objective. We only need
to change the sample from Tp in (13) by a weighted sample:

min
⌧>0

max
v2R

J(⌧, v) = 1
2Ep(x0)

⇥
⌧2 (x0)

⇤

� (1� ↵t+1)Ep(x0) [⌧t(x
0)⌧(x0)] (15)

�↵t+1ETp(x,x0) [⌧t(x)⌧(x
0)] + v (Ep [⌧ ]� 1)� �

2 v
2.

2.4. A Practical Algorithm

A practical version of VPM is described in Algorithm 1. It
solves (15) using a parameterized ⌧ : X 7! R expressed as

a neural network ⌧✓ with parameters ✓. Given the constraint
⌧ > 0, we added a softplus activation log(1 + exp(·)) to
the final layer to ensure positivity. The expectations with
respect to p and Tp are directly estimated from sampled data.
When optimizing ⌧✓ by stochastic gradient methods, we
maintain a copy of the previous network ⌧t as the reference
network to compute the second and third terms of (15). The
gradients of J(⌧, v) with respect to ✓ and v are given by

r✓J(⌧, v) = Ep [⌧r✓⌧ ]� (1� ↵t+1)Ep [⌧tr✓⌧ ]

� ↵t+1ETp [⌧tr✓⌧ ] + vEp [r✓⌧ ] , (16)
rvJ(⌧, v) = Ep [⌧ ]� 1� �v.

After convergence of ⌧✓ in each iteration, the reference
network is updated by setting ⌧t+1 = ⌧✓. Note that one may
apply other gradient-based optimizers instead of SGD.

3. Convergence Analysis

We now demonstrate that the final algorithm obtains suffi-
cient control over error accumulation to achieve consistency.
For notation brevity, we discuss the result for the simpler
form (5) instead of the ratio form (6). The argument easily
extends to the ratio form.

Starting from the plain stochastic update µt = bT µt�1, the
damped update can be expressed by

µt = (1� ↵t)µt�1 + ↵t
bT µt�1

= (1� ↵t)µt�1 + ↵tT µt�1 + ↵t✏,
(17)

where ✏ is the error due to stochasticity in bT . The follow-
ing theorem establishes the convergence properties of the
damped iteration.

Theorem 2 (Informal) Under mild conditions, after t iter-
ation with step-size ↵t = 1/

p
t, we have

E
h
kµR � T µRk

2
2

i
6 C1

p
t
kµ0 � µk22 +

C2 ln t
p
t

k✏k22 ,

for some constants C1, C2 > 0, where the expectation is
taken over the distribution of iterates (µR)tR=1. In other
words, E

h
kµR � T µRk

2
2

i
= eO

�
t�1/2

�
, and consequently

µR converges to µ for ergodic T .

The precise version of the theorem statement, together with
a complete proof, is given in Appendix B.

Note that the optimization quality depends on the number of
samples, the approximation error of the parametric family,
and the optimization algorithm. There is a complex trade-
off between these factors (Bottou and Bousquet, 2008). On
one hand, with more data, the statistical error is reduced, but
the computational cost of the optimization increases. On
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the other hand, with a more flexible parametrization, such
as neural networks, reduces the approximation error, but
adds to the difficulty of optimization as the problem might
no longer be convex. Alternatively, if the complexity of
the parameterized family is increased, the consequences of
statistical error also increases.

Representing ⌧ in a reproducing kernel Hilbert space
(RKHS) is a particularly interesting case, because the prob-
lem (13) becomes convex, hence the optimization error of
the empirical surrogate is reduced to zero. Nguyen et al.
(2008, Theorem 2) show that, under mild conditions, the
statistical error can be bounded in rate O

⇣
n� 1

2+�

⌘
in terms

of Hellinger distance (� denotes the exponent in the bracket
entropy of the RKHS), while the approximation error will
depend on the RKHS (Bach, 2014).

4. Related Work

The algorithm we have developed reduces distribution es-
timation to density ratio estimation, which has been ex-
tensively studied in numerous contexts. One example is
learning under covariate shift (Shimodaira, 2000), where
the ratio ⌧ can be estimated by different techniques (Gretton
et al., 2009; Nguyen et al., 2008; Sugiyama et al., 2008;
Sugiyama and Kawanabe, 2012). These previous works
differ from the current setting in that they require data to be
sampled from both the target and proposal distributions. By
contrast, we consider a substantially more challenging prob-
lem, where only data sampled from the proposal is available,
and the target distribution is given only implicitly by (1)
through the transition kernel T . A more relevant approach
is Stein importance sampling (Liu and Lee, 2017), where
the ratio is estimated by minimizing the kernelized Stein dis-
crepancy (Liu et al., 2016). However, it requires additional
gradient information about the target potential, whereas our
method only requires sampled transitions. Moreover, the
method of Liu and Lee (2017) is computationally expensive
and does not extrapolate to new examples.

The algorithm we develop in this paper is inspired by the
classic power method for finding principal eigenvectors.
Many existing works have focused on the finite-dimension
setting (Balsubramani et al., 2013; Hardt and Price, 2014;
Yang et al., 2017), while Kim et al. (2005) and Xie et al.
(2015) have extended the power method to the infinite-
dimension case using RKHS. Not only do these algorithms
require access to the transition kernel T , but they also re-
quire tractable operator multiplications. In contrast, our
method avoids direct interaction with the operator T , and
can use flexible parametrizations (such as neural networks)
to learn the density ratio without per-step renormalization.

Another important class of methods for estimating or sam-
pling from stationary distributions are based on simula-

tions. A prominent example is Markov chain Monte Carlo
(MCMC), which is widely used in many statistical inference
scenarios (Andrieu et al., 2003; Koller and Friedman, 2009;
Welling and Teh, 2011). Existing MCMC methods (e.g.,
Neal et al., 2011; Hoffman and Gelman, 2014) require re-
peated, and often many, interactions with the transition op-
erator T to acquire a single sample from the stationary
distribution. Instead, VPM can be applied when only a fixed
sample is available. Interestingly, this suggests that VPM
can be used to “post-process” samples generated from typ-
ical MCMC methods to possibly make more effective use
of the data. We demonstrated this possibility empirically
in Section 5. Unlike VPM, other post-processing meth-
ods (Oates et al., 2017) require additional information about
the target distribution (Robert and Casella, 2004). Recent
advances have also shown that learning parametric samplers
can be beneficial (Song et al., 2017; Li et al., 2019), but
require the potential function. In contrast, VPM directly
learns the stationary density ratio solely from transition data.

One important application of VPM is off-policy RL (Precup
et al., 2001). In particular, in off-policy evaluation (OPE),
one aims to evaluate a target policy’s performance, given
data collected from a different behavior policy. This prob-
lem matches our proposed framework as the collected data
naturally consists of transitions from a Markov chain, and
one is interested in estimating quantities computed from the
stationary distribution of a different policy. (See Appendix
C for a detailed description of how the VPM algorithm can
be applied to OPE, even when � = 1.) Standard impor-
tance weighting is known to have high variance, and various
techniques have been proposed to reduce variance (Precup
et al., 2001; Jiang and Li, 2016; Rubinstein and Kroese,
2016; Thomas and Brunskill, 2016; Guo et al., 2017). How-
ever, these methods still exhibit exponential variance in the
trajectory length (Li et al., 2015; Jiang and Li, 2016).

More related to the present paper is the recent work on off-
policy RL that avoids the exponential blowup of variance.
It is sufficient to adjust observed rewards according to the
ratio between the target and behavior stationary distribu-
tions (Hallak and Mannor, 2017; Liu et al., 2018; Gelada
and Bellemare, 2019). Unfortunately, these methods require
knowledge of the behavior policy, p(a|s), in addition to the
transition data, which is not always available in practice. In
this paper, we focus on the behavior-agnostic scenario where
p(a|s) is unknown. Although the recent work of Nachum
et al. (2019) considers the same scenario, their approach is
only applicable when the discount factor � < 1, whereas
the method in this paper can handle any � 2 [0, 1].

5. Experimental Evaluation

In this section, we demonstrate the advantages of VPM in
four representative applications. Due to space limit, experi-
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Figure 1. Log KL divergence between estimation and the truth.

ment details are provided in Appendix D.

5.1. Queueing

In this subsection, we use VPM to estimate the station-
ary distribution of queue length. Following the standard
Kendall’s notation in queueing theory (Haviv, 2009; Ser-
fozo, 2009), we analyze the discrete-time Geo/Geo/1 queue,
which is commonly used in the literature (Atencia and
Moreno, 2004; Li and Tian, 2008; Wang et al., 2014). Here
the customer inter-arrival time and service time are geo-
metrically distributed with one service desk. The probe
distribution p(x) is a uniform distribution over the states in
a predefined range [0, B). The observed transition (x, x0) is
the length change in one time step. The queue has a closed-
form stationary distribution that we can compare to (Serfozo,
2009, Sec.1.11).

Fig. 1 provides the log KL divergence between the estimated
and true stationary distributions. We compare VPM to a
model-based approach, which estimates the transition matrix
bT (x0

|x) from the same set of data, then simulates a long
trajectory using bT . It can be seen that our method can
be more effective across different sample sizes and queue
configurations.

5.2. Solving SDEs

We next apply VPM to solve a class of SDEs known as
the Ornstein-Uhlenbeck process (OUP), which finds many
applications in biology (Butler and King, 2004), financial
mathematics and physical sciences (Oksendal, 2013). The
process is described by the equation:

dX = ✓(m�X)dt+ �dW

where m is the asymptotic mean, � > 0 is the deviation,
✓ > 0 determines the strength, and W is the Wiener process.
The OUP has a closed-form solution, which converges to the
stationary distribution, a normal distribution N (m,�2/2✓),
as t ! 1. This allows us to conveniently calculate the
Maximum Mean Discrepancy (MMD) between the adjusted
sample to a true sample. We compare our method with the
Euler-Maruyama (EM) method (Gardiner, 2009), which is a
standard simulation-based method for solving SDEs. VPM

uses samples from the EM steps to train the ratio network
and the learned ratio is used to compute weighted MMD.

The results are shown in Fig. 2, with different configurations
of parameters (m,�, ✓). It can be seen that VPM consis-
tently improves over the EM method in terms of the log
MMD to a true sample from the normal distribution. The
EM method only uses the most recent data, which can be
wasteful since the past data can carry additional information
about the system dynamics.

In addition, we perform experiment on real-world phy-
logeny studies. OUP is widely used to model the evolution
of various organism traits. The results of two configura-
tions (Beaulieu et al., 2012; Santana et al., 2012, Tab.3&1
resp.) are shown in Fig. 2d. Notably VPM can improve over
the EM method by correcting the sample with learned ratio.

5.3. Post-processing MCMC

In this experiment, we demonstrate how VPM can post-
process MCMC to use transition data more effectively in
order to learn the target distributions. We use four com-
mon potential functions as shown in the first column of
Fig. 3 (Neal, 2003; Rezende and Mohamed, 2015; Li et al.,
2018). A point is sampled from the uniform distribution
p(x) = Unif(x; [�6, 6]2), then transitioned through an
HMC operator (Neal et al., 2011). The transitioned pairs
are used as training set D.

We compare VPM to a model-based method that explic-
itly learns a transition model bT (x0

|x), parametrized as a
neural network to produce Gaussian mean (with fixed stan-
dard deviation of 0.1). Then, we apply bT to a hold-out set
drawn from p(x) sufficiently many times, and use the final
instances as limiting samples (second column of Fig. 3). As
for VPM, since p is uniform, the estimated b⌧ is proportional
to the true stationary distribution. To obtain limiting sam-
ples (third column of Fig. 3), we resample from a hold-out
set drawn from p(x) with probability proportional to b⌧ .

The results are shown in Fig. 3. Note that the model-
based method quickly collapses all training data into high-
probability regions as stationary distributions, which is an in-
evitable tendency of restricted parametrized bT . Our learned
ratio faithfully reconstructs the target density as shown in
the right-most column of Fig. 3. The resampled data of
VPM are much more accurate and diverse than that of the
model-based method. These experiments show that VPM
can indeed effectively use a fixed set of data to recover the
stationary distribution without additional information.

To compare the results quantitatively, Fig. 4 shows the MMD
of the estimated sample to a “true” sample. Since there is
no easy way to sample from the potential function, the “true”
sample consists of data after 2k HMC steps with rejection
sampler. After each MCMC step, VPM takes the transition
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Figure 2. Log MMD versus number of EM steps across different settings, default (m,�, ✓) = (2, 2, 2). (d) is based on the real-world
phylogeny studies (Beaulieu et al., 2012; Santana et al., 2012) with (m,�, ✓) = (0.618, 1.584, 3.85), (0.661, 0.710, 8.837) respectively.

(a) Potentials (b) Model (c) VPM (d) Estimated ⌧

Figure 3. The 2nd and 3rd columns are samples from the model-
based method and VPM respectively. Rows (from top to bottom)
correspond to data sets: 2gauss, funnel, kidney, banana.

pairs as input and adjusts the sample importance according
to the learned ratio. As we can see, after each MCMC step,
VPM is able to post-process the data and further reduce
MMD by applying the ratio. The improvement is consistent
along different MCMC steps across different datasets.

5.4. Off-Policy Evaluation

Finally, we apply our method to behavior-agnostic off-
policy evaluation outlined in Section 1, in which only the
transition data and the target policy are given, while the
behavior policy is unknown. Concretely, given a sample
D =

�
(s, a, r, s0)ni=1

 
from the behavior policy, we com-

pose each transition in D with a target action a0 ⇠ ⇡ (·|s0).
Denoting x = (s, a), the data set can be expressed as
D =

�
(x, x0)ni=1

 
. Applying the proposed VPM with

T (x0
|x), we can estimate µ(s,a)

p(s,a) , hence the average accumu-

Figure 4. MMD before and after ratio correction using VPM.

lated reward can be obtained via (3). Additional derivation
and discussion can be found in Appendix C.

We conduct experiments on the (discrete) Taxi environment
as in Liu et al. (2018), and the challenging (continuous)
environments including the Reacher, HalfCheetah and Ant.

Taxi is a gridworld environment in which the agent navigates
to pick up and drop off passengers in specific locations. The
target and behavior policies are set as in Liu et al. (2018).
For the continuous environments, the Reacher agent tries to
reach a specified location by swinging an robotic arm, while
the HalfCheetah/Ant agents are complex robots that try to
move forward as much as possible. The target policy is a
pre-trained PPO or A2C neural network, which produces
a Gaussian action distribution N (mt,⌃t). The behavior
policy is the same as target policy but using a larger action
variance ⌃b = (1�↵)⌃t +2↵⌃t,↵ 2 (0, 1]. We collect T
trajectories of n steps each, using the behavior policy.

We compare VPM to a model-based method that estimates
both the transition T and reward R functions. Using behav-
ior cloning, we also compare to the trajectory-wise and step-
wise weighted importance sampling (WIST,WISS) (Precup
et al., 2001), as well as Liu et al. (2018) with their public
code for the Taxi environment.

The results are shown in Fig. 5. The x-axes are differ-
ent configurations and the y-axes are the log Mean Square
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Figure 5. Log MSE of different methods for various datasets and settings.

Error (MSE) to the true average target policy reward, es-
timated from abundant on-policy data collected from the
target policy. As we can see, VPM outperforms all baselines
significantly across different settings, including number of
trajectories, trajectory length and behavior policies. The
method by Liu et al. (2018) can suffer from not knowing the
behavior policy, as seen in the Taxi environment. Weighted
importance sampling methods (WIST,WISS) also require
access to the behavior policy.

5.5. Ablation Study

In this section, we conduct an ablation study to show that
VPM is robust to different choices of the parameters. Fig. 6
shows the MMD curves for the MCMC funnel dataset in
Section 5.3, using different learning rates, number of inner
optimization steps and the regularization �. Other datasets
show similar trends.

Learning rates. In all experiments, we use Adam op-
timizer (Kingma and Ba, 2014). Fig. 6a shows the
convergent behaviour with different learning rates in
{0.0003, 0.0006, 0.001, 0.003}. The algorithm can take a
longer time to converge when using a small learning rate.
Even though large learning rate (e.g., 0.003) seems to con-
verge faster, its final solution can be noisy. We can see that
VPM can work using different learning rates around the
default Adam learning rate of 0.001.

Number of inner optimization steps. Recall that in each
power iteration, VPM solves an inner optimization Eq. (15).
Fig. 6b shows the the effect of different number of inner
optimization steps M . Larger M can produce more accurate
power iterator and converge faster in terms of number of
power iterations, but the time per iteration will also increase
accordingly. If M is too small (e.g., 3), the learning can
be unstable and the final ratio network can be inaccurate.
Due to the damped update, the error in each power iteration
can be controlled effectively and VPM can converge to the
optimal ratio as long as M is reasonably large.

Regularization. Finally, we investigate the effect of the reg-
ularization parameter �. Intuitively, � controls the capability
of the dual variable v in Eq. (13). The results are shown in
Fig. 6c. Although different � values can have different con-
vergence speeds, their final solutions can achieve low MMD
given sufficient iterations, as suggested by Theorem 1.

6. Conclusion

We have formally considered the problem of estimating
stationary distribution of an ergodic Markov chain using a
fixed set of transition data. We extended a classical power
iteration approach to the batch setting, using an equivalent
variational reformulation of the update rule to bypass the ag-
nosticity of transition operator and the intractable operations
in a functional space, yielding a new algorithm Variational
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Figure 6. Ablation study. MMD versus number of power iterations for the funnel dataset. Default (lr,M,�) = (0.001, 10, 0.5).

Power Method (VPM). We characterized the convergence
of VPM theoretically, and demonstrated its empirical advan-
tages for improving existing methods on several important
problems such as queueing, solving SDEs, post-processing
MCMC and behavior-agnostic off-policy evaluation.
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